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Abstract. In this paper, we study the dynamics of a two-dimensional viscous
fluid evolving through a porous medium or a Hele-Shaw cell, driven by gravity
and surface tension. A key feature of this study is that the fluid is confined
within a vessel with vertical walls and below a dry region. Consequently, the
dynamics of the contact points between the vessel, the fluid and the dry region
are inherently coupled with the surface evolution. A similar contact scenario was
recently analyzed for more regular viscous flows, modeled by the Stokes [52] and
Navier-Stokes [53] equations. Here, we adopt the same framework but use the
more singular Darcy’s law for modeling the flow. We prove global-in-time a priori
estimates for solutions initially close to equilibrium. Taking advantage of the
Neumann problem solved by the velocity potential, the analysis is carried out in
non-weighted L2-based Sobolev spaces and without imposing restrictions on the
contact angles.

1. Introduction

This paper deals with the evolution of contact point dynamics between a solid, a
fluid, and a dry region in incompressible flows. The scenario considers fluids in
porous media or Hele-Shaw cells, whose evolution equations are explained below.
A two-dimensional incompressible flow

(1.1) ∇ · u(t, x, y) = 0, t ≥ 0, (x, y) ∈ R2,

confined in a porous medium is modeled by the classical Darcy’s law [33], given by

(1.2)
µ

ν
u(t, x, y) = −∇p(t, x, y)− gρ(0, 1).

Above, µ is the viscosity of the fluid, ν is the permeability of the homogeneous
medium and u the velocity of the flow. This is equation where the forces include the
gradient of the fluid pressure p and the effect of gravity, with g being its constant
and ρ the density. The fluid bulk is contained within the moving domain

(1.3) Ω(t) = {(x, y) ∈ R2 | x ∈ I := (−1, 1), hw(x) < y < h(t, x)},

with boundary ∂Ω(t) = Γ(t) ∪ Γw(t), which is divided into two parts. The first part
corresponds to the fluid’s moving boundary, given by

(1.4) Γ(t) = {(x, h(t, x)) | x ∈ I},

while the second part corresponds to the rigid boundary, a wall, given by

(1.5) Γw(t) = {(±1, y) | hw(±1) ≤ y < h(t,±1)} ∪ {(x, hw(x)) | x ∈ I}.
1

ar
X

iv
:2

50
2.

19
28

6v
1 

 [
m

at
h.

A
P]

  2
6 

Fe
b 

20
25
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Figure 1. Configuration of the vessel.

The stated configuration is for a fluid filtered inside a vessel with a smooth boundary.
The contact points where the fluid, the vessel, and the dry region meet occur along
the vertical lateral walls, as shown in Figure 1.
We assume that the lower part of the vessel boundary is a curve that smoothly
connects to the vertical walls. Within this geometrical configuration, the fluid
domain exhibits corners only at the contact points

Γ(t) ∩ Γw(t) = {(−1, h(t,−1)), (1, h(t, 1))}.

The regime investigated here is stable, as the fluid lies below a dry region or another
fluid with negligible viscosity.
In this scenario, the main interest is the evolution of the contact points between the
fluid, the vessel and the dry region. Because of that, it is of crucial importance the
effect of capillarity in the model. For the interaction among the fluid and the dry
region, Laplace-Young condition is given as follows

(1.6) p = −σκh on Γ(t).

Above, σ > 0 is the surface tension coefficient and κh the moving surface curvature
given by

(1.7) κh(t, x) =
h′′(t, x)

(1 + (h′(t, x))2)3/2
=
( h′(t, x)√

1 + (h′(t, x))2

)′
,

with prime spatial derivative. The contact points’ evolution are also affected by
Laplace-Young condition as follows

(1.8) F (∂th)(t,±1) = JγK ∓ σ
h′√

1 + (h′)2
(t,±1),

where F is an given injective function and JγK is a physical constant due to the
three-phase contact points. See Section 1.1 below for more details on the dynamics
of contact points. Finally, the system of equations is closed by giving the kinematic
boundary condition

(1.9) ∂th(t, x) = u(t, x, h(t, x)) · (−h′(t, x), 1), x ∈ I,
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Figure 2. A possible equilibrium configuration.

together with non-penetration condition on the vessel

(1.10) u · n = 0 on Γw(t),

with n the outer normal vector to the vessel.
We appointed this physical scenario as the Muskat problem [77] with contact points.
Remarkably, it is mathematically analogous to the evolution of a fluid in a Hele-Shaw
cell [84]. In it, two parallel plates are close enough together so that the fluid contained
has a two-dimensional evolution. In particular, the dynamics equation modeling this
problem is equivalent to Darcy’s law by comparing the permeability constant with
the distance of the plates. In the setting established in this paper, the vessel is the
Hele-Shaw cell, considering the interaction with the fluid and the contact points.

1.1. Contact points. It is well-known [48,67, 86] that in equilibrium configurations
the angle at the contact points is determined by the different surface tensions between
the three phases fluid-solid-dry. More precisely, denoting by γsd the solid-dry surface
tension and by γsf the solid-fluid surface tension, the equilibrium contact angle ωeq

(see Figure 2) verifies Young’s law

cos(ωeq) =
γsd − γsf

σ
=:

JγK
σ
.

In this paper we focus in the partial wetting regime, that is, when the surface does
not touch tangentially the walls but forms real angles. Thus,

ωeq ∈ (0, π) or, equivalently,
JγK
σ

∈ (−1, 1).

On the other hand, regarding dynamical configurations, experiments and simulations
have shown that the normal velocity of the contact point Vcp is related to the
deviation of the dynamical angle ωt from the equilibrium angle, that is,

Vcp = F (cos(ωeq)− cos(ωt)) .

This type of relation has been derived in several studies [13, 32, 82, 83] using ther-
modynamical, molecular and hydrodynamical arguments. All of them brought to
the same general form of F , which is an increasing function of its argument such
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that F (0) = 0. For simplicity, we choose here F (s) = σs and, writing the previous
relation in our setting, we derive the evolution equation for the contact points

(1.11) ∂th(t,±1) = JγK ∓ σ
h′√

1 + (h′)2
(t,±1).

We remark that this additional evolution equation is due to capillarity, while in the
pure gravity-driven case the dynamics of the contact points is directly determined
by the kinematic condition (1.9). See also [52,53] for mathematical discussion and
Section 1.3 below.

1.2. Main results. In this paper we prove a priori global-in-time estimates for the
one-phase Muskat system (1.1)-(1.11) for initial data closed enough to the stationary
state with exponential convergence. See Proposition 2.1 below for details of the
stationary state. In a companion paper we will provide local-in-time well-posedness
for the system. Both statements together yield global well-posedness and stability for
the contact scenario. Our result allows the contact points with any angle determined
by the stationary state.
In this setting, we disclose a synthesize version of the main result for sake of exposi-
tion. In Theorem 8.2 it is possible to find a detailed version, once the appropriate
formulation of the problem and the detailed functional spaces are explained in detail
below.

Theorem 1.1. Let h(t, x) = hs(x) + η(t, x) and hs(x) be, respectively, the surface
profiles of the dynamical and stationary solution to (1.1)-(1.11). Assume that h and
hs have equal mean in I. Then, for any t ∈ [0, T ] with T > 0, the following bound
holds:

E(t) +
ˆ t

0
D(s)ds ≤ CE(0),

provided that E(0) is small enough. Above, the energy term E(t) is given by

E(t) = E∥(t) + ∥η(t)∥2
H3/2+δ(I) + ∥∂tη(t)∥2H3/2(I), with E∥(t) =

2∑
j=0

∥∂jt η(t)∥2H1(I),

for any 0 < δ ≤ 1, and the dissipation term D(t) in (4.8) includes

2∑
j=0

(∂j+1
t η)2(t,−1) + (∂j+1

t η)2(t, 1) + ∥∂jt η(t)∥2H5/2(I).

In addition, there exists λ > 0 such that, for any t ∈ [0, T ], the following decay
estimate holds:

E∥(t) +
ˆ
Ω(t)

|u(t)|2 + (∂tη)
2(t,−1) + (∂tη)

2(t, 1) ≤ CE∥(0)e−λt.
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Remark 1.2. The solution h(t, x) to (1.1)-(1.11) with the regularity given in the
theorem above has to satisfy the fundamental energy-dissipation equality

d

dt

[ˆ
I

(g
2
h2(t, x) + σ

√
1 + (h′)2(t, x)

)
dx− JγK (h(t,−1) + h(t, 1))

]
+

ˆ
Ω(t)

|u(t)|2 + (∂th)
2(t,−1) + (∂th)

2(t, 1) = 0.

1.3. Previous results and main novelties. The Muskat problem and the evolution
of fluids in Hele-Shaw cells are classical problems in fluid dynamics [77,84]. Originally
considered to study the evolution of oil and water in oil recovery, it deals with the
interface dynamics among the two immiscible fluids. It models the interaction among
two fluids (two-phase case) and also the surface evolution of one fluid with a dry
region (one-phase case) in a porous medium or a Hele-Shaw cell. It is possible to find
a large amount of recent literature with fundamental results [41] as these interface
evolution problems have interesting dynamics behaviors.
Considering no surface tension and no contact points, the system is local-in-time
well-posed when the Rayleigh-Taylor condition is satisfied [29,30]. It holds due to
gravity when the denser fluid is below the least dense, and the more viscous fluid
pushing the less viscous fluid. Sharp local-in-time well-posedness results in subcritical
spaces can be found in [4, 28, 71, 80] and in critical spaces in [6, 7, 35]. See also [2, 47]
for the evolution of cusps. For small initial data, the lineal parabolic regime is
stronger than the nonlinear terms, resulting in global-in-time well-posedness of the
system [7,19,26,31,40,79]. On the other hand, large initial data provide very different
dynamics in the two-phase and one-phase scenarios. In the two-phase case, initial
data given by graphs develop singularities in finite time with over turning profiles [23]
having loss of regularity [21]. In the one-phase case, large initial graphs do not turn
[5, 59] and exist globally-in-time [3, 35]. But it is possible to have finite-time particle
collision on smooth interfaces for non-graph initial data [22]. On the other hand,
finite-time particle collision on smooth interfaces is not possible in the two-phase case
[46]. Considering impermeable boundaries, global-in-time regularity holds for small
data [49] as well as finite-time blow-up [88] in similar scenario explored before for
several quasi-geostrophic temperature front models [45,60]. If the Rayleigh-Taylor
condition is not satisfied, the contour evolution problem is ill-posed [30,40]. However,
weak solutions exist developing a mixing zone [20,72].
Adding capillarity to the model, the system is local-in-time well-posed with or without
satisfying the Rayleigh-Taylor condition initially [24, 36, 38] in subcritical spaces [78].
This is due to the fact that surface tension adds a higher-order nonlinear parabolic
term to the system. However, initial data with lack of Rayleigh-Taylor condition
produce instabilities related with fingering [37,51,81]. Without gravity, there exist
close to circle global-in-time solutions [24, 25, 85]. Gravity unstable solutions can be
stabilized globally in time with surface tension for near flat solution [44] and near
circle moving bubbles [42, 43]. Nonetheless, initial stable solutions converge to no
capillarity solutions as surface tension coefficient goes to zero [8] in subcritical spaces
[39]. Arbitrarily large Lipschitz data with a small critical Sobolev norm have recently
been proven to provide global-in-time solutions for stable two-phase cases [69]. With
impermeable boundaries, there have been an intense study of thin-film models and
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lubrication approximations together with the convergence to the original Muskat
solutions [12,18,27,68] even for gravity unstable situations [16].
The surface tension case with constant points was first considered for the Muskat
problem in [9,10] for scenarios without gravity force. The fluid spreads over a flat
impermeable fixed boundary, where well-posedness is obtained for initial configura-
tions with no moving contact points. Further developments were given in [61, 62] for
the same scenario, allowing movement of contact points and having a fixed small
contact angle of size ε. The authors proved global-in-time well-posedness, obtaining
uniform estimates in ε, showing convergence to a family of thin-film approximation
equations.
The scenario considered in this paper allows the dynamics of the contact points and
angles of any size, determined by the stationary state, modeled as in Section 1.1
above. A similar contact points study has recently been developed to model the
evolution of a viscous fluid in a vessel using the 2D Stokes equations [52, 87] and
the 2D Navier-Stokes equations [53,54]. The authors first developed global-in-time
a priori estimates for the models [52,53] and later the local-in-time well-posedness
theory [54,87] to obtain the stability of the contact points problem.
In this paper, we obtain global-in-time a priori estimates for the Muskat problem with
contact points, and therefore deal with the more singular Darcy’s law to model the
flow. In this setting, we close a scheme of a priori estimates, obtaining a bootstrap
argument from the energy-dissipation control of the time derivatives to higher spatial
regularity via elliptic estimates for the system. The dissipation is obtained through
the potential formulation of the system, taking u = ∇ϕ, as shown in Section 2.1
below. In this scenario, the zero Newman condition (non-penetration) on the fixed
boundary for the potential appears inherently, allowing the movement of the contact
point. This is a big difference with the Stokes and Navier-Stokes equation to model
the flow, where a zero Dirichlet (no-slip) condition on the fixed boundary for the
velocity does not allow the movement of the contact points, and therefore in [52, 53]
a Navier-slip boundary condition is used. In [52], the authors derived global-in-time
a priori estimates without imposing restrictions on the contact angle ω ∈ (0, π).
However, due to the eigenvalues of the pencil operator associated with an elliptic
problem they studied, they are forced to work with weighted L2-based Sobolev spaces
with weight exponent δ satisfying

max
(
0, 2− π

ω

)
< δ < 1,

in order to gain regularity through elliptic estimates. In [53], the authors managed to
kickstart the elliptic gain switching from weighted L2-based spaces to non-weighted
Lq-based spaces. In this paper, we perform a priori energy estimates for a Darcy flow
considering the same geometry. An important difference, with respect to these two
works, is that the analysis is carried out in non-weighted Hilbert spaces, while, at
the same time, we allow contact angles ω ∈ (0, π). This is done by taking advantage
of the Neumann problem solved by the velocity potential and the spectral properties
of the associated pencil operator around the corners. We are then able to bootstrap
from the appropriate energy-dissipation control of the time derivatives to higher
spatial regularity via elliptic estimates.
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The dynamics of contact points has also been recently studied for the water waves
problem, that is, for free-surface gravity-driven incompressible Euler flows. A priori
estimates were shown for any dimension in [34] for angles smaller than a dimensional
constant, preventing singularities in the elliptic equations providing the model.
Adding surface tension to the model, a priori estimates were shown for angles less
than π/6 [74] and local-in-time well-posedness for angles less than π/16 [75]. The
authors have recently improved the results to acute angles [76].
For the floating body problem in water waves, the dynamics of contact points was first
discussed in [65]. Recently, its local well-posedness for a fixed object was established
in [66]. In particular, we emphasize a trace theorem for the homogeneous Sobolev

space Ḣ1 developed there that we use in our approach, see Section 5.1. It allows
us to get control of the mean of the potential and therefore of its L2-norm by the
dissipation, as Poincaré-type inequalities can not be used directly due to lack of zero
Dirichlet boundary conditions. This represents another main difference with respect
to [52, 53], where the Navier-slip boundary condition used in the model permits
to directly have such a control. In shallow water asymptotic models, considering
partially immersed objects with vertical walls [11,14,15,17,55] results in fixed contact
points or lines. In contrast, for boat-shaped geometries, contact dynamics was studied
in [56] and more recently in [57].

1.4. General notation. We denote by I the interval (−1, 1). We write f ′ for the x-
derivative of functions f(x) or f(t, x) that spatially depend only on the variable x ∈ I,
while we write ∂x or ∂y for functions that spatially depend on (x, y) ∈ R2. We denote
by Nf the outward normal vector to the one-dimensional surface parameterized by
the function f , while we denote by n a generic unit outward normal vector. Br(x0)
and Br(x0, y0) denote the one-dimensional and two-dimensional ball with radius
r > 0 centered in x0 ∈ R and (x0, y0) ∈ R2, respectively.
Constants: throughout the paper, C > 0 denotes a generic constant that can depend
on the parameters of the problem; when necessary, we comment on the dependence
of these constants.
Spaces, norms and traces: we denote by Lp the usual Lebesgue space for 1 ≤ p ≤ ∞,
by Hs the usual L2-based Sobolev space of order s ≥ 0 and by ∥ · ∥Lp , ∥ · ∥Hs their

respective norms. We denote by Ḣs the homogeneous L2-based Sobolev space of
order s > 0 and by ∥ · ∥Ḣs its semi-norm. We denote by H̊2 the quotient space H2/R
and by ∥ · ∥H̊2 its norm ∥∇ · ∥H1 . For α > 0, we use the compact notation Hα+ that

stands for Hα+δ for any 0 < δ ≤ 1. For the sake of readability, we write functions
defined on domains directly within boundary integrals and boundary norms, rather
than using their corresponding traces.

1.5. Outline of the paper. The rest of the paper is devoted to providing the proof of
Theorem 1.1. Section 2 introduces the potential and fixed-boundary formulations used
throughout the paper. In Section 3, we show the basic a priori energy-dissipation
equalities satisfied by the solution. Section 4 establishes different energies and
dissipation terms of various orders needed to obtain the a priori estimates. In Section
5, we address additional dissipation and a trace theorem required to obtain Poincaré-
type estimates. Section 6 details results on elliptic estimates used to bootstrap
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regularity. In Section 7, the inequalities developed in Sections 5 and 6 are used
to handle the nonlinear terms of the system. Gathering all previous estimates, we
conclude the proof of the main result in Section 8. For completeness, technical
estimates are provided in Appendix A.

2. Potential and fixed-boundary formulations

2.1. Potential formulation. Without any loss of generality, let us set µ = ν = ρ = 1.
Using Darcy’s law (1.2), the fluid velocity can be written as the gradient of the
potential ϕ := −p− gy. Writing (1.9) in terms of ϕ yields

(2.1) ∂th = ∇ϕ ·Nh on Γ(t),

where Nh(t, x) = (−h′(t, x), 1) is the normal outward vector to Γ(t), coupled with
the Dirichlet-Neumann elliptic problem

(2.2)

∆ϕ = 0 in Ω(t),

ϕ = −gh+ σκh on Γ(t),

∇ϕ · n = 0 on Γw(t),

and the evolution of the contact points

(2.3) ∂th(t,±1) = JγK ∓ σ
h′√

1 + (h′)2
(t,±1).

We will refer to Dirichlet-Neumann elliptic problems also as “mixed” elliptic problems.
Introducing the well-known Dirichlet-to-Neumann operator DN (see [64], [73]), which
maps the Dirichlet datum in (2.2) to the normal derivative of the solution to (2.2)
at Γ(t), (2.1)-(2.2) can be also written as

∂th = DN(−gh+ σκ) on Γ(t).

The same problem can be described in a different way. Indeed, (2.1) can be understood
as a Neumann boundary condition for ϕ if we think about ∂th as a prescribed quantity.
Then, (2.1)-(2.2) can be reformulated as

−gh+ σκh = ϕ on Γ(t)

coupled with the Neumann-Neumann elliptic problem

(2.4)

∆ϕ = 0 in Ω(t),

∇ϕ ·Nh = ∂th on Γ(t),

∇ϕ · n = 0 on Γw(t).

We will see in Section 6 that the gain of higher spatial regularity for the potential,
necessary for the closure of the scheme of a priori estimates, strongly relies on
the structure of the Neumann problem (2.4). Moreover, it allows us to avoid any
restrictions on the contact angle at the corners of the stationary domain, in terms of
which we reformulate the free-boundary problem in the next section.
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Figure 3. Plots of the different shapes of hs with zero mean in I: concave when
JγK < 0, convex when JγK > 0 and flat when JγK = 0.

2.2. Fixed-boundary formulation. As usually done in free-boundary problems,
we reformulate the problem in a fixed framework. Our choice for the reference domain
in which we recast the problem is the stationary domain. Stationary solutions to
(2.1)-(2.3) are couples (hs, ϕs), with ϕs ∈ R, that solve the elliptic problem

(2.5)

− ghs + σκhs = ϕs in I,

h′s√
1 + (h′s)

2
(±1) = ±JγK

σ
,

where κhs denotes the mean curvature (1.7) of stationary surface hs. In fact, there
exists a unique (smooth) stationary solution and we refer to Figure 3 for a qualitative
description of hs according to the sign of JγK.

Proposition 2.1. Let JγK/σ ∈ (−1, 1). For any M > 0, the stationary problem (2.5)
admits a unique solution (ϕs, hs) where ϕs ∈ R and hs is an even C∞(I) function.
In particular, hs and ϕs satisfy

ˆ
I
(hs − hw)(x)dx =M, and ϕs = JγK − g

M +
´
I hw(x)dx

2
.

Proof. The existence part follows from Theorems F.2 and F.3, while the uniqueness
part from Theorem F.1 in [52]. We point out that here, unlike in [52], the stationary
surface hs is not necessarily a positive function, but satisfies hs(x) > hw(x) for
x ∈ I. □

We then denote the stationary domain by

(2.6) Ωs := {(x, y) ∈ R2 | x ∈ I, hw(x) < y < hs(x)},
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where hs is the profile of the unique solution to (2.5). Its fluid and solid boundary
parts are, respectively,

Γ := {(x, hs(x)) | x ∈ I},

Γw := {(±1, y) | hw(±1) ≤ y < hs(±1)} ∪ {(x, hw(x)) | x ∈ I}.

Note that the partial wetting assumption JγK/σ ∈ (−1, 1) guarantees that hs is
smooth up to the boundary x = ±1, so that Ωs is a Lipschitz domain and does not
present cusps). In order to reformulate the problem as a fixed-boundary problem,
we introduce a diffeomorphism φη : (0, T )× Ωs → Ω(t) such that

(2.7) φη(t,Γw) = Γw(t), φη(t,Γ) = Γ(t) ∀t ∈ (0, T )

and the surface perturbation η = h− hs. In the next lemma we make explicit the
choice of the diffeomorphism and show its regularizing property. To this end, we
introduce a smooth cut-off function ξ : R → R with 0 ≤ ξ ≤ 1 and

(2.8)

ξ(y) = 0 for y ≤ max
I

hw + (min
I
hs −max

I
hw)/4,

ξ(y) = 1 for y ≥ min
I
hs − (min

I
hs −max

I
hw)/4.

Lemma 2.2. Let η ∈ H3/2+(I), ξ be as in (2.8) and E be a bounded extension
operator from Hs(I) to Hs(R) for any real s ≥ 0. We define the mapping

(2.9) φη(t, x, y) =
(
x, y + ξ(y)η†(t, x, y)

)
where η†(t, x, y) = P ∗ Eη(t, x, y − hs(x)) and

P (x, y) = − 1

π

y

x2 + y2

is the Poisson kernel and ∗ denotes convolution with respect to x. There exists α > 0
such that, for ∥η∥H3/2+(I) < α, the mapping φη is a C1-diffeomorphism of Ωs to Ω(t)

verifying (2.7). Furthermore, the diffeomorphism is regularizing: for any s ≥ 2, there

exists a constant C = C(s, hs) > 0 such that if η ∈ Hs−1/2(I) then

(2.10) ∥η†∥Hs(Ωs) ≤ C∥η∥Hs−1/2(I).

Proof. First, we show that the determinant of the Jacobian Jη of φη is monotone on
y and bounded for a fixed x, that is,

(2.11) c ≤ det(Jη) = 1 + ξ′(y)η†(x, y) + ξ(y)∂yη
†(x, y) ≤ 1

c
, (x, y) ∈ Ωs

for some constant c > 0. From the definition of η† and using the change of variable
z = y − hs(x), it follows that

∥η†∥L∞(Ωs) ≤ ∥P ∗ Eη∥L∞(R2
−).

Applying the convolution theorem and using the Fourier transform P̂ (ζ, y) = ey|ζ|

yield that

∥P ∗ Eη(·, y)∥L∞(R) ≤ ∥P̂ ∗ Eη(·, y)∥L1(R) = ∥ey|·|Êη∥L1(R)
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for any y ∈ R− and, after writing

|Êη(ζ)| = 1

(1 + |ζ|2)1/4+ε
(1 + |ζ|2)1/4+ε|Êη(ζ)|

for ε > 0 arbitrarily small, Cauchy-Schwarz inequality implies that there exists C > 0
such that

∥P ∗ Eη(·, y)∥L∞(R) ≤ C∥Eη∥H1/2+(R)

for any y ∈ R−. Thus, thanks to the boundedness of the extension operator, we
obtain that

(2.12) ∥η†∥L∞(Ωs) ≤ C∥Eη∥H1/2+(R) ≤ C∥η∥H1/2+(I).

Moreover, after computing that

∂xη
†(t, x, y) = ∂xP ∗ Eη(t, x, y − hs(x))− h′s(x) ∂yP ∗ Eη(t, x, y − hs(x)),

∂yη
†(t, x, y) = ∂yP ∗ Eη(t, x, y − hs(x)),

we combine the previous argument with the fact that ∇̂P (ζ, y) =
(
iζ
∂y

)
ey|ζ| and find

that there exists C = C(hs) > 0 such that

∥∇η†∥L∞(Ωs) ≤ C∥η∥H3/2+(I).

It follows from (2.11) that

(2.13) 1− C1∥η∥H3/2+(I) ≤ det(Jη) ≤ 1 + C2∥η∥H3/2+(I)

for some constants C1, C2 > 0 (depending only on ξ and hs), so that there exists
α > 0 such that

c(α) < det(Jη) <
1

c(α)
,

for some c(α) > 0 when ∥η∥H3/2+(I) < α. From the definition of the Poisson kernel,

we have that

(2.14) η†(t, x, hs(x)) = P ∗ Eη(t, x, 0) = η(t, x) for x ∈ I,
which implies

φη(t, x, hs(x)) = (x, h(t, x)) for x ∈ I,(2.15)

while using the properties of the cut-off ξ yields

(2.16)
φη(t, x, hw(x)) = (x, hw(x)) for x ∈ I,

φη(t,±1, y) = (±1, y + ξ(y)η†(t,±1, y)) for y ∈ (hw(±1), hs(±1)).

Hence, C1-regularity and monotonicity of φη together with (2.15)-(2.16) prove that
φη is a C1-diffeomorphism from Ωs to Ω(t) that satisfies (2.7).
We now show that φη is a regularizing diffeomorphism. Since Ωs is bounded, using
Hölder inequality and (2.12) we have that

∥η†∥L2(Ωs) ≤ |Ωs|1/2∥η†∥L∞(Ωs) ≤ C∥η∥H1/2+(I).

After the change of variable z = y − hs(x) and thanks to the smoothness of hs, we
have that
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∥∇η†∥2L2(Ωs)
≤
ˆ
R

ˆ Ehs(x)

−∞
|∂xP ∗ Eη(x, y − Ehs(x))|2dydx

+
(
1 + ∥h′s∥2C(I)

)ˆ
R

ˆ Ehs(x)

−∞
|∂yP ∗ Eη(x, y − Ehs(x))|2dydx

≤ C

ˆ
R

ˆ
R−

|∇P ∗ Eη(x, z)|2dzdx = C∥∇P ∗ Eη∥2L2(R2
−).

Passing to Fourier coordinates in the variable x, using Plancherel identity and the
boundedness of the extension operator yield

∥∇P ∗ Eη∥2L2(R2
−) =

ˆ
R−

ˆ
R

∣∣∣∣(iζ∂y
)
ey|ζ|Êη(ζ)

∣∣∣∣2 dζdy =

ˆ
R

ˆ
R−

2|ζ|2e2y|ζ||Êη(ζ)|2dydζ

=

ˆ
R
|ζ||Êη(ζ)|2dζ ≤ ∥Eη∥2

H1/2(R) ≤ C∥η∥2
H1/2(I)

Arguing in an analogous fashion, we can estimate also the Hk-norms for any integer
k ≥ 0. More precisely, for any integer k ≥ 0, there exists a constant C = C(k, hs) > 0
such that

∥∇η†∥Hk(Ωs) ≤ C∥η∥Hk+1/2(I).

The non-integer version of (2.10) is derived by interpolation using the equivalence
of the fractional Sobolev-Slobodeckij spaces Hk+s with s ∈ (0, 1) and the Sobolev
spaces defined as interpolation spaces. □

With the diffeomorphism (2.9) at hand, we reformulate the free boundary problem
(2.1)-(2.2) in a fixed framework. Let us define the matrices

(2.17) Ση := J−T
η =

1
−ξ∂xη†

1 + ξ′η† + ξ∂yη†

0
1

1 + ξ′η† + ξ∂yη†

 ,

(2.18) Aη := det(Jη) Σ
T
ηΣη =

1 + ξ′η† + ξ∂yη
† −ξ∂xη†

−ξ∂xη†
1 + (ξ∂xη

†)2

1 + ξ′η† + ξ∂yη†

 .

Then, (2.1)-(2.2) transforms into

(2.19) ∂th = Ση∇Φ̃ ·Nh on Γ

coupled with the mixed elliptic problem for the transformed potential Φ̃ = ϕ ◦ φη

(2.20)

∇ · (Aη∇Φ̃) = 0 in Ωs,

Φ̃ = −gh+ σκh on Γ,

Ση∇Φ̃ · n = 0 on Γw,
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In fact, (2.19)-(2.20) can be reformulated as a perturbation problem. We know from

Proposition 2.1 that the stationary solution (hs, ϕs) solves (2.5). Writing Φ̃ = ϕs+Φ,
h = hs + η and plugging into the equations, we find that the perturbation (η,Φ)
solves the evolution equation

(2.21) ∂tη = Ση∇Φ ·Nh on Γ

coupled with the mixed elliptic problem

(2.22)

∇ · (Aη∇Φ) = 0 in Ωs,

Φ = −gη + σ

(
η′

(1 + (h′s)
2)3/2

+R(h′s, η
′)

)′
on Γ,

Ση∇Φ · n = 0 on Γw.

Note that in the right-hand side of the second equation in (2.22) we have expanded
κh at first order in η′ and the remainder is given by the smooth mapping

(2.23) R(z1, z2) =
z1 + z2√

1 + (z1 + z2)2
− z1√

1 + z21
− z2

(1 + z21)
3/2

.

Moreover, the evolution equation for the contact points (2.3) becomes

(2.24) ∂tη(t,±1) = ∓σ
(

η′

(1 + (h′s)
2)3/2

+R(h′s, η
′)

)
(t,±1).

3. Basic energy-dissipation equalities

In this section we derive several energy-dissipation equalities that will be the basis of
the scheme of a priori estimates for (2.21)-(2.24). Sufficiently regular solutions to
(2.1)-(2.3) satisfy the fundamental energy-dissipation equality

(3.1)
d

dt
E(h) +

ˆ
Ω(t)

|∇ϕ|2 + (∂th)
2(t,−1) + (∂th)

2(t, 1) = 0,

with the physical energy E(h) given by

E(h) =

ˆ
I

(
g

2
h2 + σ

√
1 + (h′)2

)
dx− JγK (h(t,−1) + h(t, 1)) .

In the expression of the physical energy, in addition to the standard energy contribu-
tions related to the gravity and the surface tension, a localized energy term appears
due to the interaction at the contact points. Instead of showing the details for the
derivation of (3.1), we prove an equivalent energy-dissipation equality in terms of
the perturbation (Φ, η).

Proposition 3.1. Let hs be the stationary surface as in Proposition 2.1 and (Φ, η)
be a regular solution to (2.21)-(2.24). Then, the following equality holds:

(3.2)

d

dt

[ˆ
I

(
g

2
η2 +

σ

2

(η′)2

(1 + (h′s)
2)3/2

+ σQ0(h
′
s, η

′)

)
dx

]
+

ˆ
Ωs

det(Jη)|Ση∇Φ|2 + (∂tη)
2(t,−1) + (∂tη)

2(t, 1) = 0,
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with Q0(h
′
s, η

′) =
´ η′
0 R(h′s, z)dz and R given by (2.23).

Proof. Since Φ is regular and solves the elliptic problem (2.22), we have that

(3.3)

0 =

ˆ
Ωs

∇ · (Aη∇Φ)Φ =

ˆ
∂Ωs

Aη∇Φ · nΦ−
ˆ
Ωs

det(Jη)|Ση∇Φ|2

=

ˆ
∂Ωs

det(Jη)Ση∇Φ · ΣηnΦ−
ˆ
Ωs

det(Jη)|Ση∇Φ|2

=

ˆ
Γ
Ση∇Φ · Nh

|Nhs |
Φ−
ˆ
Ωs

det(Jη)|Ση∇Φ|2,

where Nhs(x) = (−h′s(x), 1) is the normal outward vector to Γ. In the last equality,
on the one hand, we have used that

Σηn = n on Γw

and the Neumann-type condition in (2.22) to derive that the boundary integral over
Γw vanishes. On the other hand, the chain rule applied to (2.14) implies that

det(Jη)Ση
Nhs

|Nhs |
=

Nh

|Nhs |
on Γ.

Taking the L2(I)-scalar product of (2.21) with gη, employing the Dirichlet boundary
condition in (2.22) and (3.3) yield

(3.4)

d

dt

ˆ
I

g

2
η2dx

= −
ˆ
Γ
Ση∇Φ · Nh

|Nhs |
Φ+

ˆ
I
σ

(
η′

(1 + (h′s)
2)3/2

+R(h′s, η
′)

)′
∂tηdx

= −
ˆ
Ωs

det(Jη)|Ση∇Φ|2 +
ˆ
I
σ

(
η′

(1 + (h′s)
2)3/2

+R(h′s, η
′)

)′
∂tηdx.

We focus on the second term in the last line. By integration by parts, it can be
written asˆ

I
σ

(
η′

(1 + (h′s)
2)3/2

+R(h′s, η
′)

)′
∂tηdx

= σ

(
η′

(1 + (h′s)
2)3/2

+R(h′s, η
′)

)
∂tη

∣∣∣∣1
−1

−
ˆ
I
σ

(
η′

(1 + (h′s)
2)3/2

+R(h′s, η
′)

)
∂tη

′dx

= −(∂tη)
2(t,−1)− (∂tη)

2(t, 1)− d

dt

ˆ
I
σ

(
(η′)2

2(1 + (h′s)
2)3/2

+Q0(h
′
s, η

′)

)
dx

where in the second equality we have used (2.24) and the chain rule

R(h′s, η
′)∂tη

′ = ∂z2Q0(h
′
s, η

′)∂tη
′ = ∂t(Q0(h

′
s, η

′)).

□
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Remark 3.2. Equivalently, Proposition 3.1 can be proved starting from the energy
equality (3.1), expressed in terms of the free surface h. Indeed, it can be showed that

E(h) = E(hs) +

ˆ
I

(
g

2
η2 +

σ

2

(η′)2

(1 + (h′s)
2)3/2

+ σQ0(h
′
s, η

′)

)
dx.

Hence, (3.2) follows writing the integral over Ω(t) in (3.1) as an integral over Ωs and
using the time-independence of the stationary energy E(hs).

We point out that (3.2) offers, as much, a control of the H1-norm of η. In order to
propagate higher regularity we will take derivatives on the equations and try to find
an analogous version of (3.2) for them. Due to the presence of different boundaries
and in order to maintain the structure of the equations, we apply differential operators
that are tangential to the boundaries, which turn out to be only time derivatives in
our context.
We then need to study time-differentiated versions of the problem (2.21)-(2.22).
Applying one time-derivative, we find that (∂tΦ, ∂tη) solves the evolution equation

(3.5) ∂2t η = Ση∇∂tΦ ·Nh + F 1
1 on Γ

coupled with the mixed elliptic problem

(3.6)

∇ · (Aη∇∂tΦ) = F 1
2 in Ωs,

∂tΦ = −g∂tη + σ

(
∂tη

′

(1 + (h′s)
2)3/2

+ ∂t(R(h′s, η
′))

)′
on Γ,

Ση∇∂tΦ · n = F 1
3 on Γw,

with

(3.7) F 1
1 = ∂t(Σ

T
ηNh) · ∇Φ, F 1

2 = −∇ · (∂tAη∇Φ), F 1
3 = −∂tΣη∇Φ · n.

The system is completed by the evolution equation for the contact points

(3.8) ∂2t η(t,±1) = ∓σ
(

∂tη
′

(1 + (h′s)
2)3/2

+ ∂t(R(h′s, η
′))

)
(t,±1).

We will derive an energy-dissipation equality for the time-differentiated problem
in the same fashion as for (3.2). However, we will face a structural difficulty that
prevents to control the new nonlinear terms due to the lack of regularity. Then, we
are led to apply second-order time-derivatives to (2.21)-(2.22) and study the twice
time-differentiated problem. We find that (∂2tΦ, ∂

2
t η) solves the evolution equation

(3.9) ∂3t η = Ση∇∂2tΦ ·Nh + F 2
1 on Γ

coupled with the mixed elliptic problem

(3.10)

∇ · (Aη∇∂2tΦ) = F 2
2 in Ωs,

∂2tΦ = −g∂2t η + σ

(
∂2t η

′

(1 + (h′s)
2)3/2

+ ∂2t (R(h′s, η
′))

)′
on Γ,

Ση∇∂2tΦ · en = F 2
3 on Γw,
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where

(3.11)

F 2
1 = 2∂t(Σ

T
ηNh) · ∇∂tΦ+ ∂2t (Σ

T
ηNh) · ∇Φ,

F 2
2 = −∇ · (2∂tAη∇∂tΦ+ ∂2tAη∇Φ),

F 2
3 = −

(
∂tΣη∇∂tΦ+ ∂2tΣη∇Φ

)
· n,

completed by the evolution equation for the contact points

(3.12) ∂3t η(t,±1) = ∓σ
(

∂2t η
′

(1 + (h′s)
2)3/2

+ ∂2t (R(h′s, η
′))

)
(t,±1).

We then derive the energy-dissipation equalities associated with the once and the
twice time-differentiated problems.

Proposition 3.3. Let hs be given by Proposition 2.1, let (∂jtΦ, ∂
j
t η) be a regular

solution to (2.21)-(2.24),(3.5)-(3.8) and (3.9)-(3.12), respectively, for j = 0, 1, 2.
Then, the following energy-dissipation equality holds:

(3.13)

d

dt

ˆ
I

(
g

2
(∂jt η)

2 +
σ

2

(∂jt η
′)2

(1 + (h′s)
2)3/2

+ σQj(h
′
s, η

′)

)
dx

+

ˆ
Ωs

det(Jη)|Ση∇∂jtΦ|2 + (∂j+1
t η)2(t,−1) + (∂j+1

t η)2(t, 1) = Sj ,

where the source terms are S0 = 0 and

(3.14)

Sj =−
ˆ
Ωs

F j
2∂

j
tΦ+

ˆ
Γw

det(Jη)F
j
3∂

j
tΦ

−
ˆ
Γ

1

|Nhs |
F j
1∂

j
tΦ+

ˆ
I
σFj(h

′
s, η

′)dx, j = 1, 2

with

(3.15)
F1(h

′
s, η

′) =
(∂tη

′)3

2
∂2z2R(h′s, η

′),

F2(h
′
s, η

′) =
5

2
(∂2t η

′)2∂tη
′∂2z2R(h′s, η

′) + ∂2t η
′(∂tη

′)3∂3z2R(h′s, η
′).

The residual energies are given by

Q0(h
′
s, η

′) =

ˆ η′

0
R(h′s, z)dz, Q1(h

′
s, η

′) =
(∂tη

′)2

2
∂z2R(h′s, η

′),

Q2(h
′
s, η

′) =
(∂2t η

′)2

2
∂z2R(h′s, η

′) + ∂2t η
′(∂tη

′)2∂2z2R(h′s, η
′).

Proof. The case j = 0 is exactly Proposition 3.1, while for j = 1, 2 we argue in the
same fashion. More precisely, taking the L2(I)-scalar product of (3.5), respectively
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(3.9), with g∂tη, respectively g∂
2
t η, we obtain

d

dt

ˆ
I

g

2
(∂jt η)

2dx = −
ˆ
Γ
∂jtΦΣη∇∂jtΦ · Nh

|Nhs |
+

ˆ
Γ

1

|Nhs |
g∂jt ηF

j
1dx

+

ˆ
I
σ

(
∂jt η

′

(1 + (h′s)
2)3/2

+ ∂jt (R(h′s, η
′))

)′ (
∂j+1
t η − F j

1

)
dx

= −
ˆ
Ωs

det(Jη)|Ση∇∂jtΦ|2 −
ˆ
Ωs

F j
2∂

j
tΦdX +

ˆ
Γw

det(Jη)F
j
3∂

j
tΦ

−
ˆ
Γ

1

|Nhs |
∂jtΦF

j
1 +

ˆ
I
σ

(
∂jt η

′

(1 + (h′s)
2)3/2

+ ∂jt (R(h′s, η
′))

)′

∂j+1
t ηdx

where in the last equality we have used time-differentiated versions of (3.3). In-
tegrating by parts and using the evolution equation for the contact points (3.8),
respectively (3.12), the second term in the last line can be written as

ˆ
I
σ

(
∂jt η

′

(1 + (h′s)
2)3/2

+ ∂jt (R(h′s, η
′))

)′

∂j+1
t ηdx

= σ

(
∂jt η

′

(1 + (h′s)
2)3/2

+ ∂jt (R(h′s, η
′))

)
∂j+1
t η

∣∣∣∣x=1

x=−1

−
ˆ
I
σ

(
∂jt η

′

(1 + (h′s)
2)3/2

+ ∂jt (R(h′s, η
′))

)
∂j+1
t η′dx

= −(∂j+1
t η)2(t,−1)− (∂j+1

t η)2(t, 1)− d

dt

ˆ
I

σ

2

(∂jt η
′)2

(1 + (h′s)
2)3/2

dx

−
ˆ
I
σ∂j+1

t η′∂jt (R(h′s, η
′))dx.

We show that the last integral can be written as the sum of a time-derivative and
other terms. To do that, we shall distinguish the cases j = 1 and j = 2. When j = 1,
using the chain rule yieldsˆ

I
σ∂2t η

′∂t(R(h′s, η
′))dx =

ˆ
I

σ

2
∂t(∂tη

′)2∂z2R(h′s, η
′)dx

=
d

dt

ˆ
I

σ

2
(∂tη

′)2∂z2R(h′s, η
′)dx−

ˆ
I

σ

2
(∂tη

′)3∂2z2R(h′s, η
′)dx.

When j = 2, we have

(3.16)

ˆ
I
σ∂3t η

′∂2t (R(h′s, η
′))dx =

ˆ
I
σ∂3t η

′∂2z2R(h′s, η
′)(∂tη

′)2dx

+

ˆ
I
σ∂3t η

′∂z2R(h′s, η
′)∂2t η

′dx = I + II.
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We write the first term as

I =
d

dt

ˆ
I
σ∂2t η

′(∂tη
′)2∂2z2R(h′s, η

′)dx

− 2

ˆ
I
σ(∂2t η

′)2∂tη
′∂2z2R(h′s, η

′)dx−
ˆ
I
σ∂2t η

′(∂tη
′)3∂3z2R(h′s, η

′),

and, using again the chain rule, the second term as

II =

ˆ
I

σ

2
∂t(∂

2
t η

′)2∂z2R(h′s, η
′)dx

=
d

dt

ˆ
I

σ

2
(∂2t η

′)2∂z2R(h′s, η
′)dx−

ˆ
I

σ

2
(∂2t η

′)2∂2z2R(h′s, η
′)∂tη

′dx.

Thus, the left-hand side in (3.16) readsˆ
I
σ∂3t η

′∂2t (R(h′s, η
′))dx

=
d

dt

ˆ
I
σ

(
1

2
(∂2t η

′)2∂z2R(h′s, η
′) + ∂2t η

′(∂tη
′)2∂2z2R(h′s, η

′)

)
dx

−
ˆ
I
σ

(
5

2
(∂2t η

′)2∂tη
′∂2z2R(h′s, η

′) + ∂2t η
′(∂tη

′)3∂3z2R(h′s, η
′)

)
dx.

Gathering all together and introducing the residual energies Qj(h
′
s, η

′) for j = 1, 2,
we obtain (3.13). □

4. Energies and dissipations

In this section we address the different energies and dissipations of the problem we
are studying. Before introducing their definitions, we recall the method of improved
energy and dissipation used in [52] that permits to close a scheme of a priori estimates
when the structure of the nonlinearities does not directly allow it. More precisely, let
us consider a system of PDEs that admits an energy-dissipation equality of the form

(4.1)
d

dt
E∥(t) +D∥(t) = N (t)

with some basic energy E∥ ≥ 0 and some basic dissipation D∥ ≥ 0. We assume that
the nonlinearity N has a structure that prevents a bound of the type

|N (t)| ≤ CEθ
∥ (t)D∥(t) with θ > 0,

which would be necessary to obtain a standard parabolic a priori estimate. The
impossibility to work directly with the basic energy and dissipation requires the
search of an improved energy E(t) = E∥(t) + E⊥(t) and an improved dissipation
D(t) = D∥(t) +D⊥(t) for which the analogous bound can be obtained, that is,

(4.2) |N (t)| ≤ CEθ(t)D(t) with θ > 0,

and such that the additional energy and dissipation E⊥ and D⊥ verify the bounds

(4.3)
d

dt
E⊥(t) ≤ CD(t) and D⊥(t) ≤ C

(
D∥(t) + Eθ(t)D(t)

)
.
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Indeed, the basic energy-dissipation equality (4.1) combined with (4.3) and the
control (4.2) imply that

d

dt
E(t) + CD(t) ≤ CEθ(t)D(t).

Consequently, assuming E(t) sufficiently small then yields the desired parabolic a
priori estimate

(4.4)
d

dt
E(t) + CD(t) ≤ 0.

The crucial point of this improved energy-dissipation method is to find suitable
additional energy E⊥ and dissipation D⊥ that obey the structure (4.3). Note that
the first bound in (4.3) can be reformulated in the case when E⊥ is a finite sum of
squares of Hilbert norms. Indeed, given a Hilbert space H endowed with the norm
∥ · ∥H and the scalar product (·, ·)H, Cauchy-Swartz and Young’s inequalities yield
the bound

d

dt
∥f(t)∥2H = 2(f(t), ∂tf(t))H ≤ ∥f(t)∥2H + ∥∂tf(t)∥2H.

Therefore, we can replace the first bound in (4.3) by

∥f(t)∥2H + ∥∂tf(t)∥2H ≤ CD(t).

One way to verify the previous bound is to consider an improved dissipation that
contains both E⊥ and its time-derivative analogous. Nevertheless, in the case that
these terms are not already contained in the basic dissipation D∥, they have to verify
the second bound in (4.3).

The goal of this paper is to derive an estimate of the type (4.4). As a first step, we
reformulate the energy-dissipation equations, obtained in the previous section, in the
form (4.1). To this end, we introduce the basic energy

(4.5) E∥(t) :=
2∑

j=0

∥∂jt η(t)∥2H1(I)

and the basic dissipation

(4.6) D∥(t) :=
2∑

j=0

(
∥∇∂jtΦ(t)∥2L2(Ωs)

+ |∂j+1
t η(t,−1)|2 + |∂j+1

t η(t, 1)|2
)
.

Note that the norms in these basic energy and dissipation are not exactly the ones
appearing in (3.2) and (3.13). We will show later that the two formulations are
equivalent, allowing us to work directly with the quantities in (4.5)-(4.6). From
Proposition 3.3 we know that

d

dt
E∥(t) +D∥(t) = S1(t) + S2(t)

with Sj as in (3.14). The structure of these terms will require a higher regularity
than the one provided at the basic level. Our strategy is to bootstrap from the
control of E∥ and D∥ to higher spatial regularity by employing elliptic estimates,
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derived in Section 6, necessary to close the scheme of a priori estimates. This extra
control is encoded in the improved energy

(4.7) E(t) := E∥(t) + ∥η(t)∥2
H3/2+(I) + ∥∂tη(t)∥2H3/2(I)

and in the improved dissipation

(4.8) D(t) := D∥(t) +

2∑
j=0

(
∥∂jtΦ(t)∥2L2(Ωs)

+ ∥∂jt η(t)∥2H5/2(I)

)
+ ∥∂tΦ(t)∥2H̊2(Ωs)

.

5. Additional dissipation

5.1. Control of the L2-norm of ∂jtΦ. The energy-dissipation equalities derived
in Section 3 show that using the equations we can control only the transformed
Dirichlet norm of the velocity potential but not its L2-norm. Although the latter
is finite since we are dealing with a bounded domain, we cannot apply Poincaré
inequality to control it because neither the potential vanish on the boundary ∂Ωs

nor it has zero-mean in Ωs. Differently from the Stokes case studied in [52], here
we do not have a condition on the tangential component of the potential on the
boundary that gives an additional term in the basic dissipation and allows to obtain
the desired control. Nevertheless, we are able to control the L2-norm of the potential
with the entire basic dissipation D∥ by estimating the mean of the potential in the
fluid-domain using the Dirichlet boundary condition at Γ and resorting to a crucial
homogeneous trace inequality. This type of trace inequality has been recently studied
in [70] for infinite strip-like domains and in [66] for the floating structures problem
with a bounded or unbounded fluid domain. The authors showed that the range of
the trace mapping defined on the homogeneous space Ḣ1 do not coincide in general
with the homogeneous fractional space Ḣ1/2 but depends on whether the boundary
is bounded or not. Since ∂Ωs is bounded, the answer is positive. More precisely, let
us consider the homogeneous fractional Sobolev space

Ḣ1/2(Γ) = {Φ ∈ L1(Γ), Φ(·, hs(·)) ∈ Ḣ1/2(I)}

endowed with the semi-norm

∥Φ∥Ḣ1/2(Γ) =

(ˆ
I

ˆ
I

|Φ(x, hs(x))− Φ(x′, hs(x
′))|2

|x− x′|2
dx′dx

)1/2

.

We then have the following continuity result for the trace mapping on Γ:

Proposition 5.1. There exists a constant C > 0, depending only on hs, such that

∥Φ∥Ḣ1/2(Γ) ≤ C∥∇Φ∥L2(Ωs).

In addition, the trace mapping is onto and admits a right inverse.

Proof. The proof follows from [66, Theorem 1] and the smoothness of the stationary
surface hs. Indeed, in [66] the authors derived the homogeneous trace inequality
in the case when the boundary is a part of the horizontal line {y = 0}. We then

introduce the function Φ̃(x, y) := Φ(x, hs(x) − y), which is defined on a suitable
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domain Ω̃ contained in the upper half-space. Applying the theorem at the boundary
Γh = {x ∈ I, y = 0} implies that

∥Φ∥Ḣ1/2(Γ) = ∥Φ̃∥Ḣ1/2(Γh)
≤ C∥∇Φ̃∥

L2(Ω̃)
≤ C

(
∥hs∥W 1,∞(I)

)
∥∇Φ∥L2(Ωs),

where in the last inequality we have used the chain rule. □

Remark 5.2. Although this result is analogous to its non-homogeneous counterpart,
it ceases to hold when dealing with unbounded boundaries. Indeed, in this case, the
range of the trace operator defined on Ḣ1 is the so-called screened homogeneous
Sobolev space of order 1/2, which is strictly larger than Ḣ1/2. For instance, in the
case when I = R+, it is defined by

Ḧ1/2(Γ) = {ϕ ∈ L1
loc(Γ), ϕ(·, hs(·)) ∈ Ḧ1/2(R+)},

endowed with the semi-norm

∥ϕ∥Ḧ1/2(Γ) =

(ˆ
R+

ˆ
R+∩B1(x)

|ϕ(x′, hs(x′))− ϕ(x, hs(x))

|x′ − x|2
dx′dx

)1/2

,

where B1(x) is the one-dimensional screening ball centered in x with radius 1. We
refer the interested reader to [66,70] for the definition of homogeneous Sobolev spaces
in a general framework and for their properties. We know from [66, Theorem 1] that

the trace mapping from Ḣ1(Ωs) to Ḧ
1/2(Γ) is continuous and onto in the unbounded

case. With such a result at hand, one might expect to to extend our analysis to
unbounded configurations, for instance when the fluid touches one vertical wall at
x = 0 and it is free to flow in the right half-space x > 0. However, this is not possible
because classical Sobolev embeddings, which we strongly use in the estimates of the
nonlinear terms, cease to hold for these screened spaces and our analysis cannot be
carried out. Indeed, there exists a function in Ḧ1/2(Γ) that does not belong to Lp(Γ)
for any 1 ≤ p ≤ ∞, see Theorem 3.11 and Remark 3.12 in [70]. As suggested by
the authors, embeddings into other types of spaces, for instance weighted Lebesgue
spaces, may hold but, up to now, this interesting question is open.

We now show that the L2-norms of the velocity potential and its time-derivatives
are controlled by the basic dissipation.

Proposition 5.3. Let (∂jt η, ∂
j
tΦ) satisfy (2.22)-(2.24), (3.6)-(3.8) and (3.10)-(3.12),

respectively for j = 0, 1, 2. If η has zero mean in I, then there exists a constant
C > 0, depending only on the domain Ωs, such that

(5.1) ∥Φ∥2L2(Ωs)
+ ∥∂tΦ∥2L2(Ωs)

+ ∥∂2tΦ∥2L2(Ωs)
≤ CD∥.

with D∥ defined in (4.6).

Proof. First, using the Dirichlet condition in (2.22) and (2.24), we have that
ˆ
I
Φ(x, hs(x))dx = −g

ˆ
I
η(x)dx+ σ

(
η′

(1 + (h′s)
2)3/2

+R(h′s, η
′)

) ∣∣∣∣x=1

x=−1

= −g
ˆ
I
η(x)dx− ∂tη(t,−1)− ∂tη(t, 1).
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Let us denote by f the mean of a one-dimensional function f in I. Then, the
zero-mean assumption on η implies that

(5.2)
∣∣∣Φ(·, hs(·))∣∣∣ ≤ |∂tη(t,−1)|+ |∂tη(t, 1)|.

Note that both ∂tη and ∂2t η have zero mean in I since η has zero mean in I. Then,
we combine the Dirichlet conditions in (3.6) and (3.10) with (3.8) and (3.12) to
obtain that

(5.3)

∣∣∣∂tΦ(·, hs(·))∣∣∣ ≤ |∂2t η(t,−1)|+ |∂2t η(t, 1)|,∣∣∣∂2tΦ(·, hs(·))∣∣∣ ≤ |∂3t η(t,−1)|+ |∂3t η(t, 1)|.

Since for any (x, y) ∈ Ωs we can write

Φ(x, y) = Φ(x, hs(x))−
ˆ hs(x)

y
∂zΦ(x, z)dz,

integrating the identity above over Ωs and using the boundedness of hs − hw yield
that ˆ

Ωs

Φ(x, y)dxdy

=

ˆ
I
Φ(x, hs(x))(hs − hw)(x)dx−

ˆ
I

ˆ hs(x)

hw(x)

ˆ hs(x)

y
∂zΦ(x, z)dzdydx

=

ˆ
I

(
Φ(x, hs(x))− Φ(·, hs(·))

)
(hs − hw)(x)dx

+Φ(·, hs(·))
ˆ
I
(hs − hw)(x)dx−

ˆ
I

ˆ hs(x)

hw(x)

ˆ hs(x)

y
∂zΦ(x, z)dzdydx

≤ Cs,w

(∥∥∥Φ(·, hs(·))− Φ(·, hs(·))
∥∥∥
L2(I)

+
∣∣∣Φ(·, hs(·))∣∣∣+ ∥∇Φ∥L2(Ωs)

)
with Cs,w > 0 depending only on hs − hw. Note that∥∥∥Φ(·, hs(·))− Φ(·, hs(·))

∥∥∥2
L2(I)

=
1

|I|2

ˆ
I

∣∣∣∣ˆ
I

(
Φ(x, hs(x))− Φ(x′, hs(x

′))
)
dx′
∣∣∣∣2 dx

≤ 1

|I|

ˆ
I

ˆ
I
|Φ(x, hs(x))− Φ(x′, hs(x

′)|2dx′dx

≤ C

ˆ
I

ˆ
I

|Φ(x, hs(x))− Φ(x′, hs(x
′)|2

|x− x′|2
dx′dx = C∥Φ∥2

Ḣ1/2(Γ)
,

where in the last inequality we have used that, for any x, x′ ∈ I, there exists a
constant C > 0 such that |x − x′|α ≤ C with α > 0. Combining the last two
inequalities with (5.2) and using the homogeneous trace inequality in Proposition
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5.1, we obtain

(5.4)

ˆ
Ωs

Φ(x, y)dxdy ≤ C
(
∥Φ|Γ∥Ḣ1/2(Γ) + |∂tη(t,−1)|+ |∂tη(t, 1)|+ ∥∇Φ∥L2(Ωs)

)
≤ C

(
∥∇Φ∥L2(Ωs) + |∂tη(t,−1)|+ |∂tη(t, 1)|

)
.

Finally, after denoting the mean of Φ in Ωs by ΦΩs , we use Poincaré-Wirtinger
inequality and (5.4) to get

∥Φ∥2L2(Ωs)
= ∥Φ− ΦΩs∥2L2(Ωs)

+
1

|Ωs|

∣∣∣∣ˆ
Ωs

Φ(x, y)dxdy

∣∣∣∣2
≤ C

(
∥∇Φ∥2L2(Ωs)

+ |∂tη(t,−1)|2 + |∂tη(t, 1)|2
)
≤ CD∥.

Arguing in the same way using (5.3), we derive the analogous bounds for the mean
of ∂tΦ and ∂2tΦ in Ωs and, consequently,

∥∂tΦ∥2L2(Ωs)
≤ C

(
∥∇∂tΦ∥2L2(Ωs)

+ |∂2t η(t,−1)|2 + |∂2t η(t, 1)|2
)
≤ CD∥,

∥∂2tΦ∥2L2(Ωs)
≤ C

(
∥∇∂2tΦ∥2L2(Ωs)

+ |∂3t η(t,−1)|2 + |∂3t η(t, 1)|2
)
≤ CD∥.

This concludes the proof. □

5.2. Higher regularity for ∂jt η. We focus now on the elliptic problems in Γ solved

by ∂jt η for j = 0, 1, 2. Our aim is to gain spatial regularity taking advantage of the
ellipticity and using the control on the time derivatives.
Let us consider the abstract 1D elliptic problem

(5.5)

−gψ + σ

(
ψ′

(1 + (h′s)
2)3/2

)′
= Ψ|Γ + g3 in I,

σ
ψ′

(1 + (h′s)
2)3/2

(t,±1) = g±4 .

It is clear that the operator associated with (5.5) is uniformly elliptic. We then have
the following regularity result:

Proposition 5.4. Let Ψ ∈ H1(Ωs), g3 ∈ H1/2(I) and g±4 ∈ R. Then, (5.5) admits

a unique solution ψ ∈ H5/2(I) and there exists a constant C > 0 such that

∥ψ∥H5/2(I) ≤ C
(
∥Ψ∥H1(Ωs) + ∥g3∥H1/2(I) + |g−4 |+ |g+4 |

)
.

Proof. Since Ψ ∈ H1(Ω), we know that its trace Ψ|Γ ∈ H1/2(Γ). Standard elliptic
regularity theory then implies the existence and uniqueness of the solution ψ ∈
H5/2(Γ) to (5.5). Moreover, there exists a constant C > 0 such that

∥ψ∥H5/2(I) ≤ C
(
∥Ψ|Γ + g3∥H1/2(I) + |g−4 |+ |g+4 |

)
≤ C

(
∥Ψ∥H1(Ωs) + ∥g3∥H1/2(I) + |g−4 |+ |g+4 |

)
.

□
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We want to apply Proposition 5.4 to the elliptic problems in Γ solved by ∂jt η for

j = 0, 1, 2. The elliptic problem solved by ∂jt η is formed by the second line in (2.22)
with (2.24) for j = 0, the second line in (3.6) with (3.8) for j = 1 and the second
line in (3.10) with (3.12) for j = 2. They can be all written in the form (5.5) with

ψ = ∂jt η, Ψ = ∂jtΦ and

(5.6) g3 = −σ(∂jtR(h′s, η
′))′, g±4 = ∓∂j+1

t η(t,±1)− σ∂jtR(h′s, η
′)(t,±1)

for j = 0, 1, 2. We then state the following elliptic regularity result:

Proposition 5.5. Let R(h′s, η
′) be given by (2.23). For j = 0, 1, 2, the elliptic

problem (5.5) with data (5.6) admits a unique solution ∂jt η ∈ H5/2(I). Moreover,
there exists a constant C > 0 such that

∥η∥2
H5/2(I) + ∥∂tη∥2H5/2(I) + ∥∂2t η∥2H5/2(I) ≤ C

(
D∥ + ED

)
.

Proof. We start by estimating the terms in (5.6) in the case j = 0. By means of the
chain rule, we have that

g3 = −σ∂z1R(h′s, η
′)h′′s − σ∂z2R(h′s, η

′)η′′.

Using the critical product estimate in Lemma A.1 then yields

∥g3∥2H1/2(Γ)
≤ C

(
∥∂z1R(h′s, η

′)∥2H1(I)∥h
′′
s∥2H1/2(I) + ∥∂z2R(h′s, η

′)∥2H1(I)∥η
′′∥2

H1/2(I)

)
for some constant C > 0. Applying again the chain rule and combining the bounds
in Lemma A.2 with the smoothness of hs, thanks to the continuous embedding
H3/2+(I) ⊂ C1(I) we obtain the estimate

∥g3∥2H1/2(Γ)
≤ C

(
∥(η′)2∥2L2(I) + ∥η′η′′∥2L2(I)

)
≤ C∥η∥2

H3/2+(I)∥η∥
2
H2(I) ≤ CED.

Using again the same embedding and Lemma A.2, we infer that

|g±4 |
2 ≤ |∂tη(t,±1)|2 + C|η′(t,±1)|4 ≤ |∂tη(t,±1)|2 + C∥η∥4

H3/2+(I) ≤ D∥ + CED

Due to the chain rules

∂tR(h′s, η
′) = ∂z2R(h′s, η

′)∂tη
′

and

∂2tR(h′s, η
′) = ∂2z2R(h′s, η

′)(∂tη
′)2 + ∂z2R(h′s, η

′)∂2t η
′,

we use again the bounds in Lemma A.2 and argue as in the case j = 0 in order to
derive the same type of bounds in the cases j = 1 and j = 2. In addition, combining
Proposition 5.3 with the trace inequality yields

(5.7) ∥∂jtΦ|Γ∥
2
H1/2(Γ)

≤ ∥∂jtΦ∥2H1(Ωs)
≤ CD∥ for j = 0, 1, 2.

Therefore, applying Proposition 5.4 we obtain that ∂jt η belongs to H5/2(I) for
j = 0, 1, 2. In particular, due to the previous bounds, there exists a constant C > 0
such that

(5.8) ∥η∥2
H5/2(I) + ∥∂tη∥2H5/2(I) + ∥∂2t η∥2H5/2(I) ≤ C

(
D∥ + ED

)
.

□
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6. Elliptic estimates in Ωs

We know from Section 5.1 that the improved dissipation provides a control of ∂jtΦ in
H1(Ωs) for j = 0, 1, 2. To estimate the nonlinear terms in Section 7, the controlled
regularity is not sufficient to derive bounds having the desired structure EθD with
θ > 0. However, we manage to gain the necessary regularity by leveraging elliptic
estimates for both the potential and its time derivative in the same spirit as [52].
Here, the fluid domain Ωs is only Lipschitz due to presence of corners and standard
elliptic regularity theory [1] cannot be applied. Instead, we rely on the theory in
[50, Section 4] for elliptic boundary value problems in non-smooth domains. The key
tool will be Theorem 6.4 where solvability in H2 of the Neumann problem in convex
curvilinear plane domains is derived. This result was already used in [34, 66, 76].
Here we detail the proof for the sake of completeness.
To this end, given a bounded domain D ⊂ R2, we introduce the quotient space
H̊2(D) = H2(D)/R endowed with the norm

∥Ψ∥H̊2(D) = ∥∇Ψ∥H1(D).

6.1. Neumann problem in a polygon. First, we look at a simple model of this
problem to understand how the opening angle at the corners affects the formation
and behavior of singularities in the solution. Let P be a plane bounded domain
with a polygonal boundary with angles ωj at each vertex. We denote by Γj for
j = 1, . . . , N the sides of the polygon and by nj the outward unit normal vector to
Γj . We consider the case of an exact polygon, that is, nj is not parallel to nj+1 for
all j. This excludes the case of mixed problems on a flat boundary. We consider the
Neumann problem

(6.1)

{
∆Ψ = f in P

∇Ψ · nj = gj on Γj .

In the next proposition, we state a second-order regularity assertion:

Proposition 6.1. Let f ∈ L2(P) and gj ∈ H1/2(Γj) for j = 1, . . . , N satisfy the
compatibility condition

(6.2)

ˆ
P
f =

N∑
j=1

ˆ
Γj

gj .

Assume that ωj ∈ (0, π) for all j. Then, (6.1) admits a solution Ψ ∈ H2(P), unique
up to an additive constant, and there exists a constant C > 0 such that

(6.3) ∥Ψ∥H̊2(P) ≤ C
(
∥f∥L2(G) +

N∑
j=1

∥gj∥H1/2(Γj)

)
.

Proof. The existence and uniqueness up to an additive constant of a variational
solution Ψ ∈ H1(P) to (6.1) are standard and hold regardless of the sizes of ωj . The
H2-regularity directly follows from Theorem 4.4.3.7 and Corollary 4.4.3.8 in [50] for
the solvability of (6.1) in H2(P) with homogeneous and non-homogeneous boundary
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conditions, respectively. Indeed, it is shown there that the variational solution admits
the decomposition

(6.4) Ψ = Ψreg +
∑

1≤j≤N

−1<λj,m<0

Cj,mS(λj,m).

Above, Ψreg ∈ H2(P) is the regular part and S(λj,m) ∈ H1(P) \H2(P) are singular
functions that depend on the eigenvalues λj,m of an operator associated with the
Laplace operator, also called pencil operator [63], that captures its behavior at the
corners. These eigenvalues depend on the boundary conditions considered for the
Laplace equation and, in the Neumann case, they read

(6.5) λj,m = m
π

ωj
, m ∈ Z, j = 1, . . . , N.

Since ωj ∈ (0, π) for all j, the summation in (6.4) disappears and Ψ ∈ H2(P). Once
we have established the existence of a H2-regular solution, unique up to an additive
constant, provided that the compatibility condition (6.2) holds, we know that the
image of H2(P) through the operator ∆n = (∆, n1 ·∇, . . . , nN ·∇) is a closed subspace

of codimension 1 in L2(P)×
∏N

j=1H
1/2(Γj) and that the mapping

∆n : H̊2(P) → Im∆n

is a continuous isomorphism of Banach spaces. Then, by applying the bounded
inverse theorem, we obtain the regularity estimate (6.3). □

Proposition 6.1 implies that the solution to the Neumann problem belongs to H2 in
convex polygons. In general, the same regularity is not achieved when we consider
mixed Dirichlet-Neumann boundary conditions, even if the data are regular. In this
case, the eigenvalues of the pencil operator read

λj,m = (2m+ 1)
π

2ωj
, m ∈ Z, j = 1, . . . , N.

Then, the summation in (6.4) disappears only if ωj ∈ (0, π/2), while singularities
arise if ωj ∈ [π/2, π). Therefore, the solution is H2-regular only for polygons with
acute angles, otherwise it is only H1-regular. In this sense, we infer that the mixed
Dirichlet-Neumann problem is more singular than the Neumann problem.
We would like to apply the previous regularity assertion for the transformed Neumann
problems that the potential and its time derivative solve. The gain of H2- regularity
will be sufficient to derive bounds for the nonlinear terms in Section 7 necessary
to close the scheme of a priori estimates. However, Proposition 6.1 deals only with
plane domains with polygonal boundary; this is not the case in our configuration, as
Γ is curvilinear close to the contact points. For this reason, in the next section we
study the Neumann problem in the curvilinear domain Ωs.

6.2. Neumann problem in Ωs. Here we argue as in [50, Section 5.2] and [52, Section
5], where solvability for the Dirichlet problem and the Stokes problem in curvilinear
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domains were studied, respectively. Our goal is to derive a second-order regularity
estimate for the Neumann problem

(6.6)


∆Ψ = f in Ωs,

∇Ψ · Nhs
|Nhs |

= g1 on Γ,

∇Ψ · n = g2 on Γw.

In order to obtain such an estimate, we introduce the following map, which transforms
the neighborhood of the contact points of Ωs into a neighborhood of the vertex (0, 0)
in the polygon G previously introduced. Due to the symmetry of Ωs with respect
to the y-axis, we do this only for the point (−1, hs(−1)). Let us consider the plane
cone of opening ω ∈ (0, π)

(6.7) Kω =
{
(x, y) ∈ R2 | 0 < r <∞, −π

2
< θ < −π

2
+ ω

}
,

where (r, θ) are standard polar variables, with sides

(6.8) Γ− =
{
r > 0, θ = −π

2
+ ω

}
and Γ+ =

{
r > 0, θ = −π

2

}
.

We define the angle ω ∈ (0, π) formed by the stationary surface at the corners of Ωs

through the relation

(6.9) −cotan(ω) = h′s(−1).

Note that the assumption JγK/σ ∈ (−1, 1) in Proposition 2.1 guarantees that h′s(−1)
is finite, which, in turn, implies that ω ∈ (0, π).

Proposition 6.2. Let ω be as in (6.9), Kω, Γ± be as in (6.7)-(6.8) and

(6.10) 0 < r < min

{
1,
hs(−1)−maxI hw

2

}
.

There exists a smooth diffeomorphism T : Kω → T (Kω) ⊂ R2 satisfying the following
properties:

(1) T is smooth up to Kω.
(2) Γ− = T −1{(x, y) ∈ R2 : x = −1, y < hs(−1)};
(3) T −1(Γ∩Br((−1, hs(−1))) ⊆ Γ+∩BR(0, 0) and T −1(Ωs∩Br((−1, hs(−1)))) ⊆

Kω ∩BR(0, 0) for R =
√

2r2 + 2r4∥hs∥2C2;

(4) U = (∇T )−T is smooth on Kω and all its derivatives are bounded;
(5) det(U) = 1 and ∂xUi1 + ∂yUi2 = 0, for i = 1, 2;

(6) UTU is uniformly elliptic on Kω;
(7) UTU−I, U−I are supported in Kω∩S2r, with S2r = {(x, y) ∈ R2 | 0 ≤ x ≤ 2r},

and satisfy the bounds

∥UTU− I∥L∞(Kω∩S2r(0,0)) ≤ Cr,

∥U− I∥C0,γ(∂Kω∩S2r(0,0)) ≤ Cr with 1/2 < γ ≤ 1.

Proof. We introduce the diffeomorphism T : Kω → T (Kω) ⊂ R2 given by

(6.11) T (x, y) =
(
x− 1, y + hs(−1) + χ(x)(hs(−1 + x)− hs(−1)− h′s(−1)x)

)
.
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where χ : [0,+∞) → R is a cut-off function with 0 ≤ χ ≤ 1 such that χ = 1 in [0, r]
and χ = 0 in [0,+∞) \ [0, 2r], where r satisfies (6.10). The associated matrix-valued
function U = (∇T )−T : Kω → R2×2 reads

(6.12) U(x, y) =

(
1 −

(
χ(x)(hs(−1 + x)− hs(−1)− h′s(−1)x)

)′
0 1

)
.

Properties (1)-(6) are direct or can be shown as in Proposition 5.5 in [52]. Due to the
behavior of χ, we have that UTU− I and U− I are supported in Kω ∩ S2r. Moreover,
I− U vanishes on Γ− and, thanks to the Taylor expansions

∥hs(−1 + ·)− hs(−1)− h′s(−1) · ∥L∞(0,2r) ≤ Cr2,

∥h′s(−1 + ·)− h′s(−1)∥L∞(0,2r) ≤ Cr,

we find property (7). □

We first prove an a priori estimate in H2 for a general boundary value problem in
a bounded open domain G ⊂ R2 whose boundary is a curvilinear convex polygon.
For simplicity, we address the case where G has only one corner at (x0, l(x0)), that
is, ∂G \ (x0, l(x0)) is smooth. Moreover, we assume that ∂G is the union of the
vertical line {x = x0} and the surface parametrized by a smooth function l(x) in a
neighborhood of (x0, l(x0)). We consider the boundary value problem

(6.13)

∇ · (ATA∇Ψ) = f in G,

A∇Ψ · AN
|AN | = g on ∂G,

where N is the normal outward vetcor to ∂G and A is a smooth matrix-valued
function in G with all its derivatives bounded such that A(x0, l(x0)) = I and ATA is
uniformly elliptic in G.

Proposition 6.3. Let f ∈ L2(G) and g ∈ H1/2(∂G). There exists a constant C > 0
such that a solution Ψ ∈ H2(G) to (6.13) satisfies

(6.14) ∥Ψ∥H̊2(G) ≤ C
(
∥f∥L2(G) + ∥g∥H1/2(∂G)

)
.

Proof. The proof is an adaptation of Lemma 5.2.3 in [50] to the Neumann case
with non-homogeneous boundary data. Let us consider the smooth diffeomorphism
O : Kω → O(Kω) ⊂ R2 given by

O(x, y) = (x− x0, y + l(x0) + η(x)(l(x0 + x)− l(x0)− l′(x0)x))

where η : [0,+∞) → R is a cut-off function with 0 ≤ η ≤ 1 such that η = 1 in [0, r]
and η = 0 in [0,+∞)\[0, 2r], with r sufficiently small. Note that O is analogous to the
diffeomorphism T introduced in Proposition 6.2, hence the corresponding properties
also hold for O. From properties (2)-(3), we know that O−1(∂G ∩Br(x0, l(x0))) is
the union of two straight segments contained in ∂Kω and O−1(G ∩ Br(x0, l(x0)))
coincides with Kω, with −cotan(ω) = l′(x0), near (0, 0). Then, we introduce a smooth
cut-off function χ : G → R with 0 ≤ χ ≤ 1 such that χ = 1 in Br/4(x0, l(x0)), χ = 0
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in G \ Br/2(x0, l(x0)) and ∂nχ = 0 on ∂G. Note that the support of χ is strictly
contained in G ∩Br/2(x0, l(x0)). Then, Ψ

∗ = (χΨ) ◦ O solves the Neumann problem

(6.15)


∆Ψ∗ = f∗ +∇ ·

(
(I−OTO)∇Ψ∗) in P,

∇Ψ∗ · n = g∗ + (I −O)∇Ψ∗ · ON
|N | +∇Ψ∗ · (I −O)n on ∂P ∩ ∂Kω,

∇Ψ∗ · n = 0 elsewhere on ∂P,

with O = (∇O)−T , f∗ =
(
∇ · (ATA∇(χΨ)) +∇ · ((I−ATA)∇(χΨ))

)
◦ O and

g∗ = |ON |
|N |

(
A∇(χΨ) · AN

|AN | + (I−A)∇(χΨ) · AN
|AN | +∇(χΨ) ·

(
N
|N | −

AN
|AN |

))
◦ O,

where P is a convex polygon such that P ⊂ O−1(G ∩ Br(−1, hs(−1))), P contains
the support of Ψ∗ and ∂P coincides with ∂Kω near (0, 0). Thanks to the smoothness
of A and O, the one-dimensional product estimate

∥h1h2∥H1/2 ≤ C∥h1∥C0,γ∥h2∥H1/2 for 1/2 < γ ≤ 1

and a trace theorem, the right-hand sides in (6.15) belongs to L2(P) and H1/2(∂P ∩
∂Kω), respectively. Since all the angles of P are less than π, we use (6.3) and obtain

∥Ψ∗∥H̊2(P) ≤ C
(
∥f∗∥L2(P) + ∥g∗∥H1/2(∂P∩Kω)

+ ∥∇Ψ∗∥L2(P)

+ ∥I−OTO∥L∞(P∩S2r)∥∇
2Ψ∗∥L2(P) + ∥I−O∥C0,γ(∂P∩∂Kω∩S2r)∥∇Ψ∗∥H1(P)

)
,

where C > 0 is a constant independent of r. Note that we have used the fact that
OTO − I and O − I are supported in S2r. Due to property (7) in Proposition 6.2
choosing r sufficiently small yields that

∥Ψ∗∥H̊2(P) ≤ C
(
∥f∗∥L2(P) + ∥g∗∥H1/2(∂P∩Kω)

+ ∥∇Ψ∗∥L2(P)

)
and changing coordinates back to G implies that

∥χΨ∥H̊2(G) ≤ C
(
∥∇ · (ATA∇(χΨ))∥L2(G) + ∥A∇(χΨ) · AN

|AN |∥H1/2(∂G)

+ ∥I−ATA∥L∞(suppχ∩G)∥∇2(χΨ)∥L2(G) + ∥∇(χΨ)∥L2(G)

+
(
∥I−A∥C0,γ(suppχ∩∂G) + ∥ N

|N | −
AN
|AN |∥C0,γ(suppχ∩∂G)

)
∥∇(χΨ)∥H1(G)

)
.

Exploiting the fact that A is smooth and A(x0, l(x0)) = I, we choose a possibly
smaller r and obtain

∥χΨ∥H̊2(G)

≤ C
(
∥∇ · (ATA∇(χΨ))∥L2(G) + ∥A∇(χΨ) · AN

|AN |∥H1/2(∂G) + ∥∇(χΨ)∥L2(G)
)
.

Since ∂G is smooth away from the corners, we know from standard elliptic theory
that (1 − χ)Ψ ∈ H2(U) where U is a C2-domain contained in G whose boundary
coincides with ∂G away from the region {χ = 1}. Moreover, we have that

∥(1− χ)Ψ∥H̊2(G) ≤ C
(
∥∇ · (ATA∇((1− χ)Ψ))∥L2(G)

+ ∥A∇((1− χ)Ψ) · AN
|AN |∥H1/2(∂G) + ∥∇((1− χ)Ψ)∥L2(G)

)
.
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Gathering the previous estimates together yields that

(6.16) ∥Ψ∥H̊2(G) ≤ C
(
∥f∥L2(G) + ∥g∥H1/2(∂G) + ∥∇Ψ∥L2(G)

)
and combining (6.16) with a standard variational estimate gives (6.14). □

We now state the solvability result for the Neumann problem in H2(Ωs).

Theorem 6.4. Let f ∈ L2(Ωs), g1 ∈ H1/2(Γ), g2 ∈ H1/2(Γw) satisfyˆ
Ωs

f =

ˆ
Γ
g1 +

ˆ
Γw

g2.

Then, (6.6) admits a solution Ψ ∈ H2(Ωs) to (6.6), unique up to an additive constant.
Moreover, it satisfies the regularity estimate (6.14).

Proof. The proof is an adaptation of Theorem 5.2.2 in [50] to the Neumann case.
The existence and uniqueness up to an additive constant of a variational solution
Ψ ∈ H1(Ωs) to (6.6) are standard. Since ∂Ωs is smooth away from the corners, we
use standard elliptic theory [1] to infer that Ψ ∈ H2(U) where U is a C2-domain
contained in Ωs whose boundary coincides with ∂Ωs except close to (±1, hs(±1)).
We now address the regularity issue near the corners of Ωs. Let χ : Ωs → R be
a smooth cut-off function with 0 ≤ χ ≤ 1 such that χ = 1 in Br/4(−1, hs(−1)),
χ = 0 in Ωs \Br/2(−1, hs(−1)) with radius r satisfying (6.10) and ∂nχ = 0 on ∂Ωs.
Note that the support of χ is strictly contained in Ωs ∩ Br/2(−1, hs(−1)). Then,

Ψ̃ = χΨ ∈ H1(W ) satisfies {
∆Ψ̃ = f̃ in W,

∇Ψ̃ · n = g̃ on ∂W,

with f̃ = ∆(χΨ) ∈ L2(W ) and g̃ ∈ H1/2(∂W ) such that

g̃ = χg1 on ∂W ∩ Γ, g̃ = χg2 on ∂W ∩ Γw, g̃ = 0 elsewhere on ∂W,

where
Ωs ∩Br/2(−1, hs(−1)) ⊂W ⊂ Ωs ∩Br(−1, hs(−1))

is a curvilinear polygon of class C2 with only one angular point such that its
boundary coincides with ∂Ωs near (−1, hs(−1)). We now consider the smooth
diffeomorphism T −1 introduced in Proposition 6.2. From properties (2)-(3), we
know that T −1(Γ ∩W ) ⊂ Γ+, T −1(Γw ∩W ) ⊂ Γ− with Γ± as in (6.8) and T −1(W )

coincides with Kω, with ω as in (6.9), near (0, 0). Then, Ψ̂ = Ψ̃ ◦ T ∈ H1(T −1(W ))
satisfies

(6.17)

∇ · (UTU∇Ψ̂) = f̂ in T −1(W ),

U∇Ψ̂ · UN
|UN | = ĝ on ∂T −1(W ),

where N is the normal outward vector, U = (∇T )−T given by (6.12), f̂ = f̃ ◦ T ∈
L2(T −1(W )) and ĝ = g̃ ◦ T ∈ H1/2(∂T −1(W )). Denoting by LU the operator
associated with (6.17)

LU :=
(
∇ · (UTU∇), UN

|UN | · U∇
)
: H2(T −1(W )) → L2(T −1(W ))×H1/2(∂T −1(W )),
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the properties of U imply that the principal part of LU with coefficients frozen at
(0, 0) is exactly the Neumann operator

∆N = (∆, n · ∇) : H2(T −1(W )) → L2(T −1(W ))×H1/2(∂T −1(W )).

We now focus on the boundary value problem{
∆Ψ̂ = f̂ in T −1(W ),

∇Ψ̂ · n = ĝ on ∂T −1(W ).

Arguing as before, we introduce a smooth cut-off function ζ, such that ζ = 1 near
(0, 0) and ∂nζ = 0 on ∂T −1(W ), and choose its support small enough in such a way

that (1− ζ)Ψ̂ ∈ H2(T −1(W )) and ζΨ̂ ∈ H1(P) solves

(6.18)

{
∆(ζΨ̂) = ζf̂ +∆ζΨ̂ + 2∇ζ · ∇Ψ̂ in P,

∇(ζΨ̂) · n = ζĝ on ∂P,

where P is a convex polygon that coincides with ∂T −1(W ) near (0, 0). Clearly, the

data in (6.18) belong to L2(P) and H1/2(P), respectively. Applying Proposition

6.1, we have that ζΨ̂ ∈ H2(P) provided that the data satisfies the corresponding

compatibility condition. We conclude that Ψ̂ ∈ H2(T −1(W )) provided that

(6.19)

ˆ
T −1(W )

f̂ =

ˆ
∂T −1(W )

ĝ,

and it is unique up to an additive constant. Thus, the kernel of ∆N is one-dimensional,
the image of H2(T −1(W )) through ∆N is a closed subspace of codimension 1 and
its index is

(6.20) ind ∆N = dim Ker∆N − codim Im∆N = 1− 1 = 0.

Returning to the boundary-value problem (6.17), let us introduce the family of

operators from H2(T −1(W )) to L2(T −1(W ))×H1/2(∂T −1(W ))

A(τ) = τLU + (1− τ)∆N , τ ∈ [0, 1],

that continuously depends on τ . Proposition 6.3 yields that dim KerA(τ) = 1 and
that A(τ) is a semi-Fredholm operator for all τ ∈ [0, 1]. Hence we known from
Theorem IV.5.17 in [58] that its index is independent of τ and (6.20) yields

ind LU = ind A(1) = ind A(0) = ind ∆N = 0.

Since dim KerLU = 1 due to Proposition 6.3, we obtain that the image ofH2(T −1(W ))

through LU is a closed subspace of codimension 1 in L2(T −1(W ))×H1/2(∂T −1(W ))

formed by the pairs (f̂ , ĝ) that satisfy (6.19). Changing coordinates back to Ωs, this

implies that Ψ̃ ∈ H2(W ) provided thatˆ
W
f̃ =

ˆ
∂W

g̃.

Due to the symmetry of Ωs with respect to the y-axis, after introducing a reflection,
the same analysis can be developed in a neighborhood of the contact point (1, hs(1)).
Gathering together with the regularity assertion away from the corners, we conclude
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that the image of H2(Ωs) through the operator
(
∆,

Nhs
|Nhs |

· ∇, n · ∇
)

is a closed

subspace of codimension 1 in L2(Ωs) ×H1/2(Γ) ×H1/2(Γw) formed by the triples
(f, g1, g2) that satisfy

(6.21)

ˆ
Ωs

f =

ˆ
Γ
g1 +

ˆ
Γw

g2.

In other words, there exists a solution Ψ ∈ H2(Ωs) to (6.6) provided that (6.21)
holds. Moreover, by Proposition 6.3 it is unique up to an additive constant and there
exists a constant C > 0 such that

∥Ψ∥H̊2(Ωs)
≤ C

(
∥f∥L2(Ωs) + ∥g1∥H1/2(Γ) + ∥g2∥H1/2(Γw)

)
.

□

6.3. Transformed Neumann problem in Ωs. We now consider the transformed
Neumann problem

(6.22)


∇ · (Aη∇Ψ) = f in Ωs,

Ση∇Ψ ·Nh = g1 on Γ,

Ση∇Ψ · n = g2 on Γw,

with Ση and Aη given by (2.17)-(2.18). Throughout the rest of this section, we

assume that η ∈ H3/2+(I). The following second-order regularity assertion holds:

Proposition 6.5. Let f ∈ L2(Ωs), g1 ∈ H1/2(Γ), g2 ∈ H1/2(Γw) satisfyˆ
Ωs

f =

ˆ
Γ
g1 +

ˆ
Γw

det(Jη)g2

and ω ∈ (0, π) be as in (6.9). There exists α > 0 such that, for ∥η∥H3/2+(I) < α,

(6.22) admits a unique solution Ψ ∈ H2(Ωs) up to an additive constant. Moreover,
there exists a constant C > 0 such that

(6.23) ∥Ψ∥H̊2(Ωs)
≤ C

(
∥f∥L2(Ωs) + ∥g1∥H1/2(Γ) + ∥g2∥H1/2(Γw)

)
.

Proof. Let us define the mapping

L : H̊2(Ωs) → L2(Ωs)×H1/2(Γ)×H1/2(Γw)

Ψ 7→
(
∆Ψ,∇Ψ · Nhs

|Nhs |
,∇Ψ · n

)
.

Then, (6.22) can be recast as the Neumann problem

(6.24) L(Ψ) = (F (Ψ), G1(Ψ), G2(Ψ))

with
F (Ψ) = f +∇ · ((I−Aη)∇Ψ) ,

G1(Ψ) = 1
|Nhs |

(
g1 + (I− Ση)∇Ψ ·Nh + ∂xΨ η′

)
,

G2(Ψ) = g2 + (I− Ση)∇Ψ · n.
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For ∥η∥H3/2+(I) < α with α as in Lemma 2.2, we know from Lemma A.1 and the

regularizing property (2.10) that

Ψ ∈ H̊2(Ωs) ⇒ (F (Ψ), G1(Ψ), G2(Ψ)) ∈ L2(Ωs)×H1/2(Γ)×H1/2(Γw).

Since ω ∈ (0, π), we apply Theorem 6.4 to (6.24) and obtain that L is an isomorphism.
Hence, (6.24) is equivalent to

(6.25) Ψ = L−1 (F (Ψ), G1(Ψ), G2(Ψ)) .

Moreover, Lemma A.1 and a trace inequality yields the existence of a polynomial P
with non-negative coefficients and P (0) = 0 such that

(6.26)
∥F (Ψ)∥L2(Ωs) + ∥G1(Ψ)∥H1/2(Γ) + ∥G2(Ψ)∥H1/2(Γw)

≤ ∥f∥L2(Ωs) + C∥g1∥H1/2(Γ) + ∥g2∥H1/2(Γw) + P (∥η∥H3/2+(I))∥Ψ∥H̊2(Ωs)

and

(6.27)

∥F (Ψ1)− F (Ψ2)∥L2(Ωs) + ∥G1(Ψ1)−G1(Ψ2)∥H1/2(Γ)

+ ∥G2(Ψ1)−G2(Ψ2)∥H1/2(Γw) ≤ P (∥η∥H3/2+(I))∥Ψ1 −Ψ2∥H̊2(Ωs)
.

Due to (6.26)-(6.27), choosing a possibly smaller α implies that the mapping

Ψ 7→ L−1 (F (Ψ), G1(Ψ), G2(Ψ))

is a contraction. Then, (6.25) admits a unique fixed point in H2(Ωs) or, equivalently,
(6.22) admits a unique solution Ψ ∈ H2(Ωs) up to an additive constant. In addition,
combining (6.25) with (6.26) yields the regularity estimate (6.23). □

6.4. Elliptic estimates for Φ and ∂tΦ. We want to apply Proposition 6.5 to the
elliptic problems in Ωs for Φ and ∂tΦ, respectively. Recall that the elliptic problem
solved by Φ is given by (2.21), the first and the third lines in (2.22), namely,

(6.28)

∇ · (Aη∇Φ) = 0 in Ωs,

Ση∇Φ ·Nh = ∂tη on Γ,

Ση∇Φ · en = 0 on Γw.

We directly obtain the following second-order estimate:

Proposition 6.6. Let ω ∈ (0, π) be as in (6.9) and assume that ∥η∥H3/2+(I) < α

with α as in Proposition 6.5. Then, the solution Φ to (6.28) belongs to H2(Ωs) and
there exists a constant C > 0 such that

∥Φ∥2
H̊2(Ωs)

≤ CE∥.

Proof. Combining the definition of E∥ in (4.5) with Proposition 6.5, it follows that

Φ ∈ H2(Ωs) and there exists a constant C > 0 such that

∥Φ∥2
H̊2(Ωs)

≤ C∥∂tη∥2H1/2(I) ≤ CE∥.

□
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Recall that the elliptic problem for ∂tΦ is given by (3.5), the first and the third lines
in (3.6), namely,

(6.29)

∇ · (Aη∇∂tΦ) = F 1
2 in Ωs,

Ση∇∂tΦ ·Nh = ∂2t η − F 1
1 on Γ,

Ση∇∂tΦ · en = F 1
3 on Γw,

with F 1
i as in (3.7). Then, we derive the following second-order estimate:

Proposition 6.7. Let ω ∈ (0, π) be as in (6.9) and assume that ∥η∥H3/2+(I) < α

with α as in Proposition 6.5. Then, the solution ∂tΦ to (6.29) belongs to H2(Ωs)
and there exists a constant C > 0 such that

∥∂tΦ∥2H̊2(Ωs)
≤ C

(
D∥ + ED

)
.

Proof. On the one hand, combining the product estimate (A.1) with the regularizing
property (2.10), the fact that ∥η∥H3/2+(I) < α, and Proposition 6.6 yields

∥F 1
2 ∥2L2(Ωs)

= ∥∇ · (∂tAη∇Φ)∥L2(Ωs) ≤ ∥∂tAη∇Φ∥2H1(Ωs)

≤ C∥∂tAη∥2H1+(Ωs)
∥∇Φ∥2H1(Ωs)

≤ C∥∂tη†∥2H2+(Ωs)
∥Φ∥2

H̊2(Ωs)

≤ C∥∂tη∥2H3/2+(I)∥Φ∥
2
H̊2(Ωs)

≤ CED.

On the other hand, arguing as before but using the product estimate (A.2) instead
of (A.1) gives the estimates

∥F 1
3 ∥2H1/2(Γw)

= ∥∂tΣη∇Φ · n∥2
H1/2(Γw)

≤ C∥∂tΣη∥2H1/2+(Γw)
∥∇Φ∥2

H1/2(Γw)

≤ C∥∂tη†∥2H2+(Ωs)
∥∇Φ∥2H1(Ωs)

≤ C∥∂tη∥2H3/2+(I)∥Φ∥
2
H̊2(Ωs)

≤ CED

and

∥F 1
1 ∥2H1/2(Γ)

= ∥∂t(ΣT
ηNh) · ∇Φ∥H1/2(Γ)

≤ C
(
∥∂tΣηNh∥2H1/2+(Γ)

+ ∥Ση∂tNh∥2H1/2+(Γ)

)
∥∇Φ∥2

H1/2(Γ)

≤ C
(
∥∂tη†∥2H2+(Ωs)

(1 + ∥η∥2
H3/2+(I)) + ∥η†∥2H2+(Ωs)

∥∂tη∥2H3/2+(I)

)
∥∇Φ∥2H1(Ωs)

≤ C
(
1 + ∥η∥2

H3/2+(I)

)
∥∂tη∥2H3/2+(I)∥Φ∥

2
H̊2(Ωs)

≤ CED.

Furthermore, we recall that Proposition 5.5 yields the control

∥∂2t η∥2H5/2(I) ≤ C
(
D∥ + ED

)
.

Thus, applying Proposition 6.5, the solution ∂tΦ belongs to H2(Ωs) and there exists
a constant C > 0 such that

∥∂tΦ∥2H̊2(Ωs)
≤ C

(
∥F 1

2 ∥2L2(Ωs)
+ ∥F 1

3 ∥2H1/2(Γw)
+ ∥∂2t η − F 1

1 ∥2H1/2(Γ)

)
≤ C(D∥ + ED).

□
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7. Terms in the energy-dissipation equalities

With the bounds derived in Sections 5 and 6 at hand, we now estimate one by one
the nonlinear terms appearing on the right-hand side of the basic energy-dissipation
equations in Section 3. For the sake of brevity, we will assume throughout the section
that η has zero mean in I and

(7.1) ∥η∥H3/2+(I) < α

with α as in Proposition 6.5.

Proposition 7.1. Let S1 be given by (3.14). Then, there exists a constant C > 0
such that

|S1| ≤ C
√
ED.

Proof. Recall from (3.14) that

(7.2) S1 = −
ˆ
Ωs

F 1
2 ∂tΦ−

ˆ
Γ
F 1
1 ∂tΦ+

ˆ
Γw

det(Jη)F
1
3 ∂tΦ+

ˆ
I
σF1(h

′
s, η

′)dx

with F 1
j as in (3.7) for j = 1, 2, 3 and F1 as in (3.15). We proceed by estimating

each term. Using Hölder inequality, the explicit expression (2.18) of Aη and the
continuous embedding H1(Ωs) ⊂ L4(Ωs) yield that

ˆ
Ωs

F 1
2 ∂tΦ =

ˆ
Ωs

∇ · (∂tAη∇Φ)∂tΦ

≤
(
∥∇∂tAη∥L2(Ωs)∥∇Φ∥L4(Ωs) + ∥∂tAη∥L4(Ωs)∥∇

2Φ∥L2(Ωs)

)
∥∂tΦ∥L4(Ωs)

≤ C∥∂tη†∥H2(Ωs)∥∇Φ∥H1(Ωs)∥∂tΦ∥H1(Ωs).

Using the regularizing property (2.10) for s = 2 and the control provided by Proposi-
tion 6.6, we find that

ˆ
Ωs

F 1
2 ∂tΦdX ≤ C∥∂tη∥H3/2(I)∥Φ∥H̊2(Ωs)

∥∂tΦ∥H1(Ωs) ≤ C
√
ED.

Let us write the second term in (7.2) as the sum of two terms, namely,

(7.3)

ˆ
Γ
F 1
1 ∂tΦ =

ˆ
Γ
∂t(Σ

T
ηNh) · ∇Φ∂tΦ

=

ˆ
Γ
∂tΣ

T
ηNh · ∇Φ∂tΦ+

ˆ
Γ
ΣT
η ∂tNh · ∇Φ∂tΦ = I + II.

Recall that Nh = (−(hs + η)′, 1)T , so that ∂tNh = (−∂tη′, 0)T . We combine the

continuous embedding H1/2(Γ) ⊂ L3(Γ), the product estimate (A.2) on Γ, the trace
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inequality in H1(Ωs) and the regularizing property (2.10) to obtain

|I| ≤ ∥∂tΣT
ηNh∥L3(Γ)∥∇Φ∥L3(Γ)∥∂tΦ∥L3(Γ)

≤ C∥∂tΣT
ηNh∥H1/2(Γ)∥∇Φ∥H1/2(Γ)∥∂tΦ∥H1/2(Γ)

≤ C∥Nh∥H1/2+(Γ)∥∂tΣη∥H1/2(Γ)∥∇Φ∥H1(Ωs)∥∂tΦ∥H1(Ωs)

≤ C(1 + ∥η∥H3/2+(I))∥∂tη
†∥H2(Ωs)∥Φ∥H̊2(Ωs)

∥∂tΦ∥H1(Ωs)

≤ C∥∂tη∥H3/2(I)∥Φ∥H̊2(Ωs)
∥∂tΦ∥H1(Ωs) ≤ C

√
ED.

Note that we have used the smoothness of hs and (7.1). Analogously, we have that

|II| ≤ C∥ΣT
η ∂tNh∥H1/2(Γ)∥∇Φ∥H1/2(Γ)∥∂tΦ∥H1/2(Γ)

≤ C∥Ση∥H1/2+(Γ)∥∂tη
′∥H1/2(I)∥∇Φ∥H1(Ωs)∥∂tΦ∥H1(Ωs)

≤ C∥η†∥H2+(Ωs)∥∂tη∥H3/2(I)∥Φ∥H̊2(Ωs)
∥∂tΦ∥H1(Ωs)

≤ C∥η∥H3/2+(I)∥∂tη∥H3/2(I)∥Φ∥H̊2(Ωs)
∥∂tΦ∥H1(Ωs) ≤ C

√
ED.

For the third term in (7.2), we combine the product estimate (A.2) on Γw with the
previous arguments to derive

(7.4)

ˆ
Γw

det(Jη)F
1
3 ∂tΦ =

ˆ
Γw

det(Jη)∂tΣη∇Φ · n∂tΦ

≤ C∥det(Jη)∂tΣη∥H1/2(Γw)∥∇Φ∥H1/2(Γw)∥∂tΦ∥H1/2(Γw)

≤ C∥det(Jη)∥H1+(Ωs)∥∂tΣη∥H1(Ωs)∥∇Φ∥H1(Ωs)∥∂tΦ∥H1(Ωs)

≤ C(1 + ∥η†∥H2+(Ωs))∥∂tη
†∥H2(Ωs)∥Φ∥H̊2(Ωs)

∥∂tΦ∥H1(Ωs)

≤ C(1 + ∥η∥H3/2+(I))∥∂tη∥H3/2(I)∥Φ∥H̊2(Ωs)
∥∂tΦ∥H1(Ωs) ≤ C

√
ED.

Thanks to Lemma A.2 and the continuous embedding H1/2(I) ⊂ L4(I), the last
term in (7.2) has the control

ˆ
I
σF1(h

′
s, η

′)dx =

ˆ
I
σ
(∂tη

′)3

2
∂2z2R(h′s, η

′)dx

≤ C∥∂tη′∥L2(I)∥∂tη′∥2L4(I)
∥∥∂2z2R∥∥L∞(R2)

≤ C∥∂tη∥H1(I)∥∂tη∥2H3/2(I) ≤ C
√
ED.

□

Proposition 7.2. Let S2 be given by (3.14). Then, there exists a constant C > 0
such that

|S2| ≤ C(
√
E + E)D.
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Proof. Recall from (3.14) that

(7.5) S2 =−
ˆ
Ωs

F 2
2 ∂

2
tΦ−

ˆ
Γ
F 2
1 ∂

2
tΦ+

ˆ
Γw

det(Jη)F
2
3 ∂

2
tΦ+

ˆ
I
σF2(h

′
s, η

′)dx.

with F 2
j as in (3.11) for j = 1, 2, 3 and F2 as in (3.15). To estimate the first term

in (7.5), we combine the continuous embedding H1(Ωs) ⊂ L4(Ωs), the regularizing
property (2.10) and the trace inequality to get
ˆ
Ωs

F 2
2 ∂

2
tΦ = −

ˆ
Ωs

(
2∇ · (∂tAη∇∂tΦ) +∇ · (∂2tAη∇Φ)

)
∂2tΦ

≤ C
(
∥∂tAη∥H1(Ωs)∥∇∂tΦ∥H1(Ωs) + ∥∇∂2tAη∥H1(Ωs)∥∇Φ∥H1(Ωs)

)
∥∂2tΦ∥L4(Ωs)

≤ C
(
∥∂tη†∥H2(Ωs)∥∂tΦ∥H̊2(Ωs)

+ ∥∂2t η†∥H2(Ωs)∥Φ∥H̊2(Ωs)

)
∥∂2tΦ∥H1(Ωs)

≤ C
(
∥∂tη∥H3/2(I)∥∂tΦ∥H̊2(Ωs)

+ ∥∂2t η∥H3/2(I)∥Φ∥H̊2(Ωs)

)
∥∂2tΦ∥H1(Ωs)

≤ C
(√

ED +
√
DE
)
∥∂2tΦ∥H1(Ωs) ≤ C

√
ED.

Let us write the second term in (7.5) as the sum of two:
ˆ
Γ
F 2
1 ∂

2
tΦ = −

ˆ
Γ

(
2∂t(Σ

T
ηNh) · ∇∂tΦ+ ∂2t (Σ

T
ηNh) · ∇Φ

)
∂2tΦ = I + II.

Since I has the same structure as (7.3), we infer that

|I| ≤ C∥∂tη∥H3/2(I)∥∂tΦ∥H̊2(Ωs)
∥∂2tΦ∥H1(Ωs) ≤ C

√
ED.

Note that ∂tΣη∂tNh = (0, 0)T and ∂2tNh = (−∂2t η′, 0)T . Hence we use the continuous

embedding H1/2(Γ) ⊂ L3(Γ) and argue as before to get the estimate

|II| =
∣∣∣∣ˆ

Γ

(
∂2tΣ

T
η · ∇Φ− ∂2t η

′∂xΦ
)
∂2tΦ

∣∣∣∣
≤ C

(
∥∂2tΣη∥L3(Γ)∥∇Φ∥L3(Γ) + ∥∂2t η′∥L3(I)∥∂xΦ∥L3(Γ)

)
∥∂2tΦ∥L3(Γ)

≤ C
(
∥∂2t η†∥H2(Ωs) + ∥∂2t η∥H3/2(Ωs)

)
∥∇Φ∥H1(Ωs)∥∂

2
tΦ∥H1(Ωs)

≤ C∥∂2t η∥H3/2(I)∥Φ∥H̊2(Ωs)
∥∂2tΦ∥H1(Ωs) ≤ C

√
ED.

The third term in (7.5), given by the boundary integral on Γw, readsˆ
Γw

det(Jη)F
2
3 ∂

2
tΦ = −

ˆ
Γw

det(Jη)
(
∂tΣη∇∂tΦ+ ∂2tΣη∇Φ

)
· n∂2tΦ = I + II.

Note that the first term of the sum has the same structure as (7.4), hence we have

|I| ≤ C∥∂tη∥H3/2(I)∥∂tΦ∥H̊2(Ωs)
∥∂2tΦ∥H1(Ωs) ≤ C

√
ED.
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The estimate of the second term follows using the product estimate (A.2) on Γw and
arguing as before:

|II| ≤ C∥det(Jη)∂2tΣη∥H1/2(Γw)∥∇Φ∥H1/2(Γw)∥∂
2
tΦ∥H1/2(Γw)

≤ C∥det(Jη)∥H1+(Ωs)∥∂
2
tΣη∥H1(Ωs)∥∇Φ∥H1(Ωs)∥∂

2
tΦ∥H1(Ωs)

≤ C(1 + ∥η†∥H2+(Ωs))∥∂
2
t η

†∥H2(Ωs)∥Φ∥H̊2(Ωs)
∥∂2tΦ∥H1(Ωs)

≤ C(1 + ∥η∥H3/2+(I))∥∂
2
t η∥H3/2(I)∥Φ∥H̊2(Ωs)

∥∂2tΦ∥H1(Ωs) ≤ C
√
ED.

Gathering the last two inequalities together gives the desired bound for the third
term in (7.5). Thanks to Lemma A.2 and the continuous embedding H1/2(I) ⊂ Lq(I)
with 1 ≤ q <∞, we estimate the last term in (7.5) byˆ

I
σF2(h

′
s, η

′)dx =

ˆ
I
σ
(
(∂2t η

′)2∂tη
′∂2z2R(h′s, η

′) + ∂2t η
′(∂tη

′)3∂3z2R(h′s, η
′)
)
dx

≤ σ
(
∥∂tη′∥L2(I)∥∂2t η′∥2L4(I)

∥∥∂2z2R∥∥L∞(R2)
+ ∥∂2t η′∥L2(I)∥∂tη′∥3L6(I)

∥∥∂3z2R∥∥L∞(R2)

)
≤ C

(
∥∂tη∥H1(I)∥∂2t η∥2H3/2(I) + ∥∂2t η∥H1(I)∥∂tη∥3H3/2(I)

)
≤ C(

√
E + E)D.

□

8. Main results

In this section we close the scheme of energy estimates and show the main results of
the paper. First of all, let us define the following energies and dissipation

(8.1)

E(t) =
2∑

j=0

ˆ
I

(
g
(∂jt η)

2

2
+
σ

2

(∂jt η
′)2

(1 + (h′s)
2)3/2

)
dx, F(t) =

2∑
j=0

ˆ
I
σQj(h

′
s, η

′)dx

D(t) =
2∑

j=0

ˆ
Ωs

det(Jη)|Ση∇∂jtΦ|2 + (∂j+1
t η)2(t,−1) + (∂j+1

t η)2(t, 1),

with

Q0(h
′
s, η

′) =

ˆ η′

0
R(h′s, z)dz, Q1(h

′
s, η

′) =
(∂tη

′)2

2
∂z2R(h′s, η

′),

Q2(h
′
s, η

′) =
(∂2t η

′)2

2
∂z2R(h′s, η

′) + ∂2t η
′(∂tη

′)2∂2z2R(h′s, η
′),

with R given by (2.23). Note that, thanks to Propositions 3.3, 7.1 and 7.2, we derive
the estimate

d

dt
(E(t) + F(t)) +D(t) ≤ C

(√
E(t) + E(t)

)
D(t).(8.2)

From (8.2) we see that, in order to close the energy estimate, we need to compare
the improved energy E(t) with E(t) + F(t) and the improved dissipation D(t) with
D(t). This is done in the following lemma, whose proof follows steps similar to those
in Section 8 of [52].
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Lemma 8.1. Let E(t), F(t) and D(t) be given by (8.1). There exists a constant
α∗ > 0 such that, if

sup
t∈[0,T ]

E(t) ≤ α∗,

then, for any t ∈ [0, T ],

(8.3) E(t) ≲ E∥(t) ≲ E(t), D(t) ≲ D∥(t) ≲ D(t) and |F(t)| ≤ 1

2
E(t).

Proof. The first chain of inequalities in (8.3) is directly derived from the fact that
the stationary surface hs is smooth. For the second one, we know from (2.13) that

∥ det(Jη)− 1∥L∞(Ωs) ≤ C∥η∥H3/2+(I)

and, arguing similarly, also that

∥Ση − I∥L∞(Ωs) ≤ C∥η∥H3/2+(I).

Since ∥η(t)∥2
H3/2+(I) ≤ E(t), there exists α∗ > 0 such that, if supt∈[0,T ] E(t) ≤ α∗,

then

(8.4) ∥ det(Jη)− 1∥L∞(Ωs) ≤
1

4
, ∥Ση − I∥L∞(Ωs) ≤

1

4
.

Together, these two inequalities yield the second chain of inequalities in (8.3).
Finally, we prove the third inequality in (8.3). Combining the first bound in Lemma

A.2 with the continuous embedding H3/2+(I) ⊂ W 1,∞(I), we estimate the term
with Q0 by ˆ

I
σQ0(h

′
s, η

′)dx ≤ C

ˆ
I
|η′|3dx ≤ C∥η′∥L∞(I)∥η′∥2L2(I)

≤ C∥η∥H3/2+(I)∥η
′∥2L2(I) ≤ C

√
EE∥.

Analogously, other bounds in Lemma A.2 yieldˆ
I
Q1(hs, η

′)dx ≤ C

ˆ
I
|η′||∂tη′|2dx ≤ C

√
EE∥,

ˆ
I
Q2(hs, η

′)dx ≤ C

ˆ
I

(
|η′||∂2t η′|2 + |∂2t η′||∂tη′|2

)
dx ≤ C

√
EE∥.

Note that in the last inequality we have used the continuous embedding H1/4(I) ⊂
L4(I) together with an interpolation inequality to obtain the bound

∥∂tη′∥2L4(I) ≤ C∥∂tη′∥2H1/4(I) ≤ C∥∂tη′∥L2(I)∥∂tη′∥H1/2(I)

≤ C∥∂tη∥H1(I)∥∂tη∥H3/2(I).

Gathering all estimates and considering a possibly smaller α∗ yields the third in-
equality in (8.3). □

We now state the main results of the paper, which consist of a global-in-time higher-
order bound and a decay estimate.
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Theorem 8.2. Assume that η have zero mean in I. Given T > 0, there exists a
constant α̃ > 0 such that, if

(8.5) sup
t∈[0,T ]

E(t) +
ˆ T

0
D(t)dt ≤ α̃,

then, for any t ∈ [0, T ],

E(t) +
ˆ t

0
D(s)ds ≤ CE(0).

In addition, there exists a constant λ > 0 such that, for any t ∈ [0, T ],

E∥(t) +
ˆ
Ωs

|∇Φ|2(t) + (∂tη)
2(t,−1) + (∂tη)

2(t, 1) ≤ CE∥(0)e−λt.

Proof. Define α̃ = min(α, α∗) with α and α∗ as in Proposition 6.5 and Lemma 8.1.
After integrating (8.2) in (0, t) with t ∈ (0, T ), we obtain that

E(t) + F(t) +

ˆ t

0
D(s)ds ≤ C

(
E(0) +

ˆ t

0

(√
E(s) + E(s)

)
D(s)ds

)
,

and, due to (8.3), we get

(8.6) E∥(t) +
ˆ t

0
D∥(s)ds ≤ C

(
E∥(0) +

ˆ t

0

(√
E(s) + E(s)

)
D(s)ds

)
.

Recalling that

D⊥(t) =
2∑

j=0

(
∥∂jtΦ(t)∥2L2(Ωs)

+ ∥∂jt η(t)∥2H5/2(I)

)
+ ∥∂tΦ(t)∥2H̊2(Ωs)

,

a consequence of Propositions 5.3, 5.5 and 6.7 is that

(8.7) D(t) ≤ C
(
D∥(t) + E(t)D(t)

)
.

Combining the last inequality with (8.6) and the bound (8.5), up to taking a smaller
α̃, we infer that there exists C = C(α̃) > 0 such that, for any t ∈ (0, T ),

(8.8) E∥(t) +
ˆ t

0
D(s)ds ≤ CE∥(0).

We know from (4.7) that the improved energy E = E∥+E⊥ with the additional energy
given by

E⊥ = ∥η∥2
H3/2+(I) + ∥∂tη∥2H3/2(I).

As mentioned in Section 4, exploiting the fact that H3/2+(I) and H3/2(I) are Hilbert
spaces and using Cauchy-Schwarz inequality, we find that

d

dt
E⊥ = 2 (η, ∂tη)H3/2+(I) + 2

(
∂tη, ∂

2
t η
)
H3/2(I)

≤ ∥η∥2
H3/2+(I) + 2∥∂tη∥2H3/2+(I) + ∥∂2t η∥2H3/2(I) ≤ 2D
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and integrating the previous inequality in (0, t) yields

(8.9) E⊥(t) ≤ E⊥(0) + 2

ˆ t

0
D(s)ds.

Gathering (8.8)-(8.9) together gives the desired higher-order a priori estimate, namely,
for any t ∈ [0, T ],

E(t) +
ˆ t

0
D(s)ds ≤ CE(0).

We now derive the decay estimate. Combining (8.2) with (8.3), (8.7) and the smallness
condition (8.5) yields

d

dt
(E(t) + F(t)) + CD(t) ≤ 0.

By definition, we directly have that E ≤ CD and since the third inequality in (8.3)
implies

(8.10)
1

2
E(t) ≤ E(t) + F(t) ≤ 3

2
E(t)

for any t ∈ [0, T ], we infer that there exists a constant λ > 0 such that

d

dt
(E(t) + F(t)) + λ (E(t) + F(t)) ≤ 0.

After integrating this differential inequality in time and using again (8.3) and the
first chain of inequalities in (8.3), we end up with the decay estimate

(8.11) E∥(t) ≤ CE∥(0)e−λt

for any t ∈ [0, T ]. In addition, we know from the energy-dissipation equality (3.2)
that ˆ

Ωs

det(Jη)|Ση∇Φ|2 + (∂tη)
2(t,−1) + (∂tη)

2(t, 1)

= −
ˆ
I

(
gη∂tη + σ

η′∂tη
′

(1 + (h′s)
2)3/2

+ σR(h′s, η
′)∂tη

′
)
dx.

Therefore, using Lemma A.2 and the continuous embedding H3/2+(I) ⊂ L∞(I), we
get the estimate

(8.12)

ˆ
Ωs

det(Jη)|Ση∇Φ|2 + (∂tη)
2(t,−1) + (∂tη)

2(t, 1)

≤ C
(
1 + ∥η′∥L∞(I)

)
∥η∥H1(I)∥∂tη∥H1(I) ≤ C

(
1 +

√
E
)
E∥ ≤ CE∥,

where the last inequality follows from (8.5). Gathering (8.11) and (8.12) together
and employing (8.4), we conclude that, for any t ∈ [0, T ],

E∥(t) + ∥∇Φ(t)∥2L2(Ωs)
+ (∂tη)

2(t,−1) + (∂tη)
2(t, 1) ≤ CE∥(0)e−λt.

□
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Appendix A. Technical estimates

Lemma A.1. Let D ⊂ R2 be a bounded Lipschitz domain and F ∈ H1(D), G ∈
H1+(D) be scalar functions. Then, FG ∈ H1(D) and there exists C = C(D) > 0
such that

(A.1) ∥FG∥H1(D) ≤ C∥F∥H1(D)∥G∥H1+(D).

Let γ ⊂ ∂D and f ∈ H1/2(γ), g ∈ H1/2+(γ) be scalar functions. Then, fg ∈ H1/2(γ)
and there exists C = C(D) > 0 such that

(A.2) ∥fg∥H1/2(γ) ≤ C∥f∥H1/2(γ)∥g∥H1/2+(γ).

Proof. First of all, note that ∇(FG) = ∇FG + F∇G. Hölder inequality and the
embedding H1+(D) ⊂ L∞(D) imply

∥FG∥L2(D) + ∥∇FG∥L2(D) ≤ C∥F∥H1(D)∥G∥L∞(D) ≤ C∥F∥H1(D)∥G∥H1+(D)

where C = C(D) > 0. Furthermore, we recall the embedding Hε(D) ⊂ L2/(1−ε) for
any ε ∈ (0, 1) and the embedding H1(D) ⊂ Lq(D) for any q ∈ (1,∞). Therefore,
using again Hölder inequality with exponents (2/ε, 2/(1− ε)) yields

∥F∇G∥L2(D) ≤ ∥F∥L2/ε(D)∥∇G∥L2/(1−ε)(D)

≤ C∥F∥H1(D)∥∇G∥Hε(D) ≤ C∥F∥H1(D)∥G∥H1+(D).

Thus, (A.1) is proved. Let us now introduce the extensions to D of f and g,

respectively denoted by f̃ and g̃. Then, f̃ ∈ H1(D), g̃ ∈ H1+(D) and

∥f̃∥H1(D) ≤ C∥f∥H1/2(γ), ∥g̃∥H1+(D) ≤ C∥g∥H1/2+(γ).
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The first part of the lemma implies that f̃ g̃ ∈ H1(D) and the product estimate (A.1)

holds. Since (f̃ g̃)|γ = fg, we conclude that fg ∈ H1/2(γ) and

∥fg∥H1/2(γ) ≤ C∥f̃ g̃∥H1(D) ≤ C∥f̃∥H1(D)∥g̃∥H1+(D) ≤ C∥f∥H1/2(γ)∥g∥H1/2+(γ),

which proves (A.2). □

Next, we state the estimates for R in (2.23) that we have used throughout the paper
to bound the source terms in (3.13) and to derive elliptic estimates.

Lemma A.2. [52, Proposition B.1] Let R be the mapping given by (2.23). Then,
there exists a constant C > 0 such that∣∣∣∣ 1z32

ˆ z2

0
R(z1, s)ds

∣∣∣∣+ ∣∣∣∣R(z1, z2)

z22

∣∣∣∣+ ∣∣∣∣∂z2R(z1, z2)

z2

∣∣∣∣+ ∣∣∣∣∂z1R(z1, z2)

z22

∣∣∣∣
+
∣∣∂2z2R(z1, z2)

∣∣+ ∣∣∣∣∂2z1R(z1, z2)

z22

∣∣∣∣+ ∣∣∣∣∂z1∂z2R(z1, z2)

z2

∣∣∣∣
+
∣∣∂3z2R(z1, z2)

∣∣+ ∣∣∂2z2∂z1R(z1, z2)
∣∣ ≤ C

for any (z1, z2) ∈ R2.

Proof. We observe that

R(z1, z2) =
z1 + z2√

1 + (z1 + z2)2
− z1√

1 + z21
− z2

(1 + z21)
3/2

can be also written in the integral form

R(z1, z2) = −z22
ˆ 1

0
s

ˆ 1

0
(z1 + sµz2)

(
1

(1 + sµz2)
3
2

− 2

1 + z21

)
dµds = z22 r(z1, z2),

where |r(z1, z2)| ≤ C for any (z1, z2) ∈ R2. Using analogous integral versions for the
first-order derivatives of R, we obtain that

∂z2R(z1, z2) = z2 r1(z1, z2), ∂2z2R(z1, z2) = r2(z1, z2),

where |ri(z1, z2)| ≤ C for i = 1, 2 and any (z1, z2) ∈ R2. The rest of the bounds
follows by repeating the same argument. □
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[21] Ángel Castro, Diego Córdoba, Charles Fefferman, and Francisco Gancedo, Breakdown of
smoothness for the Muskat problem, Arch. Ration. Mech. Anal. 208 (2013), no. 3, 805–909.
MR3048596
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