
TRAVELING WAVES NEAR COUETTE FLOW

FOR THE 2D EULER EQUATION

ÁNGEL CASTRO AND DANIEL LEAR

Abstract. In this paper we reveal the existence of a large family of new, nontrivial and smooth
traveling waves for the 2D Euler equation at an arbitrarily small distance from the Couette flow
in Hs, with s < 3/2, at the level of the vorticity. The speed of these waves is of order 1 with
respect to this distance. This result strongly contrasts with the setting of very high regularity in
Gevrey spaces (see [7]), where the problem exhibits an inviscid damping mechanism that leads to
relaxation of perturbations back to nearby shear flows. It also complements the fact that there not

exist nontrivial traveling waves in the H
3
2
+ neighborhoods of Couette flow (see [51]).
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1. Introduction and main result

In this paper we deal with the incompressible Euler equations in the two-dimensional space
D := T× R. In the vorticity formulation 2D Euler is given by the transport equation

(1) (x, t) ∈ D × R+,


∂tw + v · ∇w = 0,

v = ∇⊥∆−1w,

w|t=0 = w0,

where v = (v1, v2) denotes the velocity field and w = ∂xv2 − ∂yv1 its vorticity. The starting point
of this paper is the fact that the Couette flow, given by v = (y, 0) and w = −1, is a steady state
for (1). We are interested in perturbations of the form v(x, t) := (y, 0) +u(x, t) with total vorticity
w(x, t) := −1 + ω(x, t), where ω = curl(u). The equations for a perturbation around the Couette
flow are given by

(2)


∂tω + y∂xω + u · ∇ω = 0,

u = ∇⊥∆−1ω,

ω|t=0 = ω0.

Here, the operator ∆−1 is given by expression (6).

Stability of shear flows, to which the Couette flow belongs, is a widely investigated problem in
the context of hydrodynamic stability, a field where many questions still remain unanswered. We
refer to [8, 30] for an overview of this topic and a detailed list of references.

The Couette flow is one of the simplest shear flows if not the simplest one, however, it poses several
long-standing puzzles in hydrodynamics. The issue that Couette flow is known to be spectrally
stable for all Reynolds numbers in contradiction with instabilities observed in experiments is now
often referred as the Sommerfeld paradox or turbulence paradox. There have been many attempts
in the literature to find an explanation to this paradox starting in the nineteenth century with
Stokes, Helmholtz, Reynolds, Rayleigh, Kelvin, Orr, Sommerfeld and many others.

The linear analysis for the Couette flow has been obtained via an eigenvalue analysis, however, the
classical stability analysis in general does not agree with the numerical and physical observations. A
key observation was made by Trefethen et al. [60], where it has been shown that a pure eigenvalues
analysis could hide several problems. These problems are due to the fact that the operators involved
in the linearization around a shear flow are in general non-normal. Nowadays, the idea that the
interaction between nonlinear effects and non-normal transient growth can lead to instabilities is
classical in fluid mechanics, see [59, 60]. We refer to [50] and the references therein for a modern
approach and a mathematical treatment to the problem.

There were many attempts to find an explanation to the Sommerfeld paradox. One of the first
attempt might be due to Orr, who studied the linear stability directly by considering the initial
value problem. In this case, the problem reduces to a simple transport equation for the vorticity.
By recovering the velocity via the Biot-Savart law, Orr observed that the velocity may experience
a transient growth, suggesting that this phenomenon may be a possible source of instabilities in
the nonlinear problem. In fact, one can see assuming enough regularity on the initial perturbation
that the vertical velocity tends to zero when times goes to infinity. This convergence back to
equilibrium, despite time reversibility and the lack of dissipative mechanisms, is now referred as
inviscid damping. This phenomenon share analogies with the Landau damping in the kinetic theory
of plasma physics, see the paper of Mohout–Villani [57] and references therein.

Despite the understanding of the linear setting, the nonlinear problem is substantially harder
and remained unresolved until the breakthrough of Bedrossian–Masmoudi [7]. They established
that sufficiently small perturbations in the Gevrey spaces Gs, with s > 1/2, converge strongly in
L2 (of velocity) to a shear flow near Couette as times goes to infinity in T× R.
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As it was shown in [22] by Deng–Masmoudi, the Gevrey regularity requirement s > 1/2 is crucial.

Indeed, Deng and Masmoudi prove long time instabilities in G1/2− .
In very recent works Ionescu–Jia [44, 45] and Masmoudi–Zhao [56] proved that nonlinear as-

ymptotic stability holds true also for perturbations around the Couette flow and more general
monotonic shear flows, with compactly supported vorticity, in the periodic channel T× [−1, 1].

Motivated by these results, the linearized equations around more general shear flows solutions
were investigated intensely in the last few years, and linear inviscid damping and decay was proven
in many cases of physical interest, see for example [6, 11, 20, 23, 24, 38, 48, 49, 61, 62, 63, 64, 65].
For the analogous problem in the viscous setting or even in the compressible case, we refer to
[5, 3, 4, 19, 53, 18, 1] for a comprehensive but not exhaustive list of references. Similar analysis
have been also carried out recently for the Boussinesq system, see for example [9, 10, 25, 55, 66, 67].

For the most up-to-date overview of this subject, see [8] and references therein.

By all the above, an important direction to explore further is the role of nonlinear instabilities,
and moreover, how the regularity of initial data may or may not affect the dynamics.

Nonlinear long time dynamics near Couette flow is related to the existence of nontrivial invariant
structures as steady-states, traveling waves, etc. Non existence of nontrivial invariant structures
near Couette flow is necessary for nonlinear inviscid damping. Conversely, their existence means
nonlinear inviscid damping is not true, and long time dynamics near Couette flow may be richer.

In this direction we refer to the work of Lin–Zeng [51], where the authors construct nontrivial
steady flows arbitrarily close to Couette flow in Hs, with s < 3/2, in a finite channel T× [−1, 1]. In
addition, the non existence of nontrivial traveling waves close to the Couette in Hs, with s > 3/2,
is proved in this paper. Here and in the rest of the paper “trivial” means independent of x.

It is important to emphasize that the steady cat’s eyes structure near Couette flow, constructed
in the aforementioned paper [51], can be used to obtain traveling waves using the symmetries
of the system (1). Note that, by Galilean invariance, if v(x, t) solves 2D Euler equation then
v̄(x, t) := v(x+ λt, y, t)− (λ, 0) also solves it. Therefore, if v(x) is a steady solution from [51], we
get that v̄(x, t) := v(x+ λt, y)− (λ, 0) is a traveling wave solution of 2D Euler.

Since steady solutions in [51] satisfy v1(x) = y + O(ε), where ε measure the distance to the
Couette flow, the size of v̄1 − y will be λ. So, in order to obtain a traveling wave ε−close to the
Couette flow, the speed of the wave must be of the same order, i.e., λ = O(ε).

In the present paper we are concerned with the existence of nontrivial and smooth traveling

waves close to Couette flow in the H3/2− topology with speed λ of order 1 and with v1 = y+O(ε).
Then our solutions are of a different nature that those of [51].

It is necessary to mention here also the result of Li–Lin [50], where the authors prove the existence
of traveling waves bifurcating from the sequence, vn(y) := y + A

n sin(4nπy) for 1
8π < A < 1

4π . As

n → ∞, the oscillatory shears approach the Couette flow, i.e., vn(y) → y in L2 and L∞. On
the other hand, in the vorticity variable, the oscillatory shears do not approach the Couette since
∂yvn(y) = 1 + 4Aπ cos(4nπy) 6→ 1 in any Lebesgue norm.

Recently, there has been a growing interest in the study of existence or not of invariant structures
as steady-states and traveling waves for the incompressible 2D Euler equations near other shear
flows and for related equations. For example, we refer to [52, 54] for the 2D Euler equation with
Coriolis force or [19] for the case of Kolmogorov and Poiseuille flows.

For the sake of clarity we shall now give an elementary statement of our main result.

Theorem 1.1. For any 1 ≤ s < 3/2 and ε > 0, the perturbed 2D Euler system (2) admits a
nontrivial traveling wave solution that satisfies the smallness condition

‖w + 1‖Hs(T×R) ≡ ‖ω‖Hs(T×R) < ε,

with ω ∈ C∞(T× R) compactly supported, and whose speed is O(1) with respect to ε.
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This result will be the consequence of Theorems 6.1, 6.2 and 6.4 where one can get a deeper
insight on the properties of these solutions. See also Corollary 2.1.

An important tool behind the proof will be the bifucartion theory, which has been very useful to
prove the existence of solutions with a global structure in several equations arising in the field of
fluid mechanics. Following the approach of Burbea [12], there has been several works concerning
the existence of single or multiple patches moving without changing shape, not only for 2D Euler
equation but also for the generalized Surface Quasi-Geostrophic equations (SQG)β where 0 < β < 2.
We refer to [13, 14, 40, 43] for single rotating patches, [26, 27] for doubly connected V-states,
[42, 39] for corotating and counter-rotating vortex pairs and [33] for steady states. See [34] for
further properties of rotating solutions and [35, 36] for the case of the vortex-sheet problem. See
[29, 41, 58] for related constructions.

The existence of smooth rotating vortices is more intricate due to the higher dimension of the
space on which the linear part of the equation acts. In spite of this, in [15, 16] smooth rotating
solutions were constructed for SGQ equation and for 2D Euler equation, respectively. See also [2] for
the construction of a different type of smooth rotating solutions for SQG and [37] for the existence
of traveling waves also for SQG. The existence of non-smooth rotating vortices with non-uniform
densities can be found in [32] for 2D Euler.

In a broad sense, these results connect with that developed in [6], where the authors analyze
the incompressible 2D Euler equation linearized around a radially symmetric, strictly monotone
decreasing vorticity distribution. For sufficiently regular data some interesting phenomena appear,
such as vortex axysimmetrization (the vorticity weakly converges back to radial symmetry) and
vorticity depletion (faster inviscid damping rates than those possible with passive scalar evolution).
Finally, for perturbations around coherent vortex structures we also refer to [20, 31, 46, 47, 61] and
references therein.

1.1. Sketch of the proof. We will assume that the level sets of the vorticity are given by the
family of graphs (x, f(x, t)), i.e.,

ω(x, f(x, t), t) = $(y).

Then, all the information of the problem is encoded in the time-evolution of level curves f(x, t) and
in the profile function $. After some algebraic manipulations the problem reduces to the equation:

(3)
d

dt
f(x, t) + f(x, t)∂xf(x, t) = U$[f ](x, t), for x ∈ T× supp($′),

where U$[·] is a nonlocal and nonlinear functional defined below in (13).
In order to look for traveling wave solutions we will take

f(x, t) := y + f(x+ λt, y),

which will lead to an equation for (λ, f(x)) of the form,

(4) F$[λ, f](x) = 0, for x ∈ T× supp($′).

with F$[λ, f] given in (17). This equation we will be solved by using the Crandall-Rabinowitz
theorem (C-R). Note that F$[λ, 0] = 0 for all λ ∈ R and one can expect to bifurcate from zero for
some values of λ. We also be able to get enough information on f(x) ≡ f(x, y) to guarantee that it
depend on the horizontal variable x in a nontrivial way.

The size of our solution ω in Hs(T × R), 0 < s < 3
2 , which coincide with the distance of our

solutions w = −1+ω to the Couette flow, will be given by the size of the profile $ in Hs(R). Thus,
we have to found a small enough profile $ for which we can solve (4). A full description of $ will
be given in Section 2.3. At this point let us says that it will be a κ−regularization of the profile of
size ε we see in Figure 1:
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Figure 1. Profile $ε, 0.

The core of the paper will be to study the spectral properties of the operator

L[λ] := DfF$ε,κ [λ, 0].

This analysis will be made by an asymptotic analysis on ε.

1.2. Organization. The remainder of the paper is organized as follows. In Section 2, we shall
write the equation for the level curves of the vorticity through the Biot-Savart law. In Section 3,
we shall introduce and review some background material on the bifurcation theory and Crandall-
Rabinowitz theorem. In Section 4, we will define the spaces we will work with in order to apply
the C-R theorem and study the regularity of the nonlinear functional. In Section 5, we conduct the
spectral study and check that our equation satisfies the hypotheses of the C-R theorem. In Section
6.1, we obtain quantitative bounds for the Hs-norm in terms of all the parameters involved in the
problem. We address the full regularity of the traveling wave solution in Section 6.2. Finally, in
the last section, in order to facilitate the presentation, we collect in the Appendix the proofs of all
technical lemmas used in the paper.

2. Formulation of the problem

In this section it will be obtained an equation whose solutions yield traveling waves of (2).

2.1. The 2D Euler as an equation for the level curves of the vorticity. We will obtain the
equation for the level curves of the vorticity of a solution of the 2D Euler equation (2). We will use
the stream function ψ, which satisfies

(5) u = ∇⊥ψ, ∆ψ = ω.

The Green function for the Laplacian in the strip T×R is given (see [17]) by the convolution with
the kernel

K(x̄) =
1

4π
log[cosh(ȳ)− cos(x̄)].

Consequently, the stream function ψ = K ∗ ω is given by the expression

(6) ψ(x, t) =
1

4π

∫
T×R

log (cosh (y − ȳ)− cos(x− x̄))ω(x̄, t)dx̄.

We will find solutions of (2) by looking to the level curves of ω. Assuming that these level curves
can be parameterized by the family of graphs (x, f(x, t)), with ∂yf(x, t) > 0, we have that

ω(x, f(x, t), t) = $(y),(7)

for some smooth and even profile function $. We remark that equation (2) is a transport type
equation, then the profile $ can be taken independent on t without any loss of generality.

By straightforward computations, we get

(8) ∇ω(x, f(x, t), t) =
$′(y)

∂yf(x, t)
(−∂xf(x, t), 1).
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It is easily seen that taking a time derivative on (7) and using (2) yields

(9) ∂tf(x, t)∂yω(x, f(x, t), t) = f(x, t)∂xω(x, f(x, t), t) + u(x, f(x, t), t) · ∇ω(x, f(x, t), t).

Plugging (8) into (9) we obtain

(10) [∂tf(x, t) + f(x, t)∂xf(x, t)−U[f ](x, t)]
$′(y)

∂yf(x, t)
= 0,

where

(11) U[f ](x, t) := u(x, f(x, t), t) · (−∂xf(x, t), 1).

Next we obtain an expression for U[f ](x, t). Taking ∇⊥ on (6) we have that

u(x, t) =
1

4π

∫
T×R

log (cosh(y − ȳ)− cos(x− x̄))∇⊥ω(x̄, t)dx̄

=
1

4π

∫
supp(∇⊥ω)

log (cosh(y − ȳ)− cos(x− x̄))∇⊥ω(x̄, t)dx̄.

Making the change of variable x̄ = (x̃, f(x̃, t)) and using expression (8) we have that

u(x, y, t) = − 1

4π

∫
T×supp($′)

log (cosh(y − f(x̃, t))− cos(x− x̃)) (1, ∂xf(x̃, t))$′(ỹ)dx̃,(12)

and

u(x, f(x, t), t) = − 1

4π

∫
T×supp($′)

log (cosh(f(x, t)− f(x̃, t))− cos(x− x̃)) (1, ∂xf(x̃, t))$′(ỹ)dx̃.

Thus

U[f ](x, t)(13)

=
1

4π

∫
T×supp($′)

log (cosh(f(x, t)− f(x̄, t))− cos(x− x̄)) (∂xf(x, t)− ∂1f(x̄, t))$′(ȳ)dx̄

=
1

4π

∫
T×supp($′(y−·))

$′(y − ȳ) log (cosh(∆x̄[f ](x, t))− cos(x̄)) ∆x̄[∂xf ](x, t)dx̄,

where in the sequel we shall use the notation

∆x̄[f ](x, t) := f(x, t)− f(x− x̄, t).

Since equation (10) is multiplied by $′(y) and in order to compute U[f ](x, t) in T × supp($′)
one just needs to know f(x, t) in T× supp($′), we have to solve

(14) ∂tf(x, t) + f(x, t)∂xf(x, t) = U[f ](x, t), x = (x, y) ∈ T× ◦
supp ($′).

Conversely, if f(·, t) ∈ C∞(T × supp($′)), with ∂yf > 0, satisfies the previous equation (14) on

T× ◦
supp ($′) for some $ ∈ C∞c (R), we can prove that the function ω(·, t) defined by

ω(x, f(x, t), t) = $′(y) on T× supp($′),

and extended by suitable constants to the complementary of

{(x, y) ∈ T× R : (x, y) = (x̄, f(x̄, t)) with (x̄, ȳ) ∈ T× supp($′)},

is a smooth solution of the original problem (2) on T× R.
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2.2. The equation for the traveling wave. We will look for solutions of the form

(15) f(x, t) = y + f(x+ λt, y).

Putting the above ansatz (15) into (14) our problem reduces to solve the time independent equation

λ∂xf(x) + (y + f(x))∂xf(x) = U[y + f](x),

or equivalently

(16) F [λ, f](x) = 0, x ∈ T× ◦
supp ($′),

where

(17) F [λ, f](x) := λ∂xf(x) + (y + f(x))∂xf(x)

− 1

4π

∫
T×supp($′)

$′(ȳ) log [cosh(y − ȳ + f(x)− f(x̄))− cos(x− x̄)] (∂xf(x)− ∂xf(x̄))dx̄,

It is easy to check that f(x) = 0 is a trivial solution of (16) whose velocity and vorticiy are given
by u(x, t) = (u1(y), 0) and ω(x, t) = −∂yu1(y) where −∂yu1(y) = $(y). Consequently, f(x, t) = y
is a solution of (14) whose velocity is a degenerate shear flow. To prove our goal, we will need to
show the existence of nontrivial solutions of the equation (14). More specifically, we will prove the
existence of traveling wave solutions of (14) bifurcating from the trivial one f(x, t) = y.

Corollary 2.1. The solutions given by ω(x, y+ f(x+λt, y), t) = $(y) give rise, by expression (12)
and an appropriate change of variables, to solutions of 2D Euler

∂tu + y∂xu + (u2, 0) + (u · ∇)u +∇p = 0, in T× R,(18)

of the form

u(x, t) = (u1(x, y, t), u2(x, y, t)) = (ū1(x+ λt, y), ū2(x+ λt, y)),

with

u1(x, y) = O(ε), u2(x, y) = O(ε),

in L∞(T× R).

Proof. We have that

∇⊥ · F(x, y, t) = 0,(19)

where

F(x, y, t) := ∂tu + y∂xu + (u2, 0) + (u · ∇)u = λ∂xū + y∂xū + (ū2, 0) + (ū · ∇)ū.

In addition, by (6) and u = ∇⊥ψ we have that

ū1(x, y) =− 1

4π

∫
T×R

sinh(y − y′)
cosh(y − y′)− cos(x− x′)

ω(x′, y′)dx′dy′

= − 1

4π

∫
T×R

log
(
cosh(y − y′)− cos(x− x′)

)
∂y′ω(x′, y′)dx′dy′,

ū2(x, y) =
1

4π

∫
T×R

sin(x− x′)
cosh(y − y′)− cos(x− x′)

ω(x′, y′)dx′dy′,

∂xū1(x, y) =− 1

4π

∫
T×R

sin(x− x′)
cosh(y − y′)− cos(x− x′)

∂y′ω(x′, y′)dx′dy′,

where ω(x, y, t) = ω(x+ λt, y).
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Thus, ∂xū, y∂xū, ū2, ū1∂xū1, ū2∂yū1, ū1∂xū2 and ū2∂yū2 tend to zero as y tends to ±∞ (we do
not have decay of ū1 but we do not need it). Then

lim
y→±∞

F(x, y, t) = 0.(20)

Expression (19) and the limits (20) imply that there exists a scalar function p(x, y, t), 2π−periodic
on x, such that

F(x, y, t) = ∇p(x, y, t),

what proves (18).
In addition, one can check that

‖ū1‖L∞(T×R), ‖ū2‖L∞(T×R) ≤ Cε,

since ‖ω‖L∞(T×R) ≤ Cε and ω is compactly supported. �

2.3. The profile function $ε,κ. To continue, we define the profile function $ ∈ C∞c (R) that will
be used in Section 5 to solve the functional equation (16).

To start with let us construct first a profile $ ∈ W 1,∞(R) ∩H
3
2

−
(R). This profile will be even

and compactly supported. Let us consider the auxiliary function

ϕ(z) =
1− z

2
, z ∈ [−1, 1].

Let ε > 0, we define $ε(y) in the following way

$ε(y) =


0 y > 1 + ε,

εϕ
(
y−1
ε

)
1− ε ≤ y ≤ 1 + ε,

ε 0 < y < 1− ε.

Notice that $ε(y) is extended as an even function for y < 0.
Since we are interested in smooth solutions, we need to consider a smooth profile function $.

We will use a κ-regularization of ϕ, note that ϕ′ = −1
2 . The function ϕκ will be defined by

ϕ′κ(z) = − ψ′κ(z)∫ 1
−1 ψ

′
κ(z̄)dz̄

, for |z| < 1,

with

ψ′κ(z) =

∫ 1

−1
χ[−1+κ,1−κ](z̄)Θκ(z − z̄)dz̄ =

∫ 1−κ

−1+κ
Θκ(z − z̄)dz̄,

where Θ is a mollifier, i.e a smooth, positive function, with supp(Θ) ⊂ (−1, 1) and
∫ 1
−1 Θ(z̄)dz̄ = 1.

Then, for each κ > 0 we define

Θκ(z) =
1

κ
Θ
( z
κ

)
.

Notice that, since Θ is smooth then ψ′κ is also smooth. Moreover, since supp(Θκ) ⊂ (−κ, κ) we have
that ψ′κ(z) = 0 for |z| > 1 and it is easy to check that ψ′κ(z) = 1 for −1 + 2κ < z < 1− 2κ. Then,

ψ′κ → 1 as κ → 0. This convergence holds in L1([−1, 1]) and actually ψ′κ → χ[−1,1] in H
3
2
−(R).

Furthermore, one can check that∫ 1

−1

∣∣ψ′κ(z̄)− 1
∣∣dz̄ =

∫ −1+2κ

−1

∣∣ψ′κ(z̄)− 1
∣∣ dz̄ +

∫ 1

1−2κ

∣∣ψ′κ(z̄)− 1
∣∣dz̄ ≤ Cκ,∣∣∣∣∫ 1

−1
ψ′κ(z̄)dz̄ − 2

∣∣∣∣ =

∣∣∣∣∫ 1

−1

(
ψ′κ(z̄)− 1

)
dz̄

∣∣∣∣ ≤ ∫ 1

−1

∣∣ψ′κ(z̄)− 1
∣∣dz̄ ≤ Cκ,
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and then∫ 1

−1

∣∣∣∣∣ ψ′κ(z̄)∫ 1
−1 ψ

′
κ(z̄)dz̄

− 1

2

∣∣∣∣∣dz̄ =
1∣∣∣2 ∫ 1

−1 ψ
′
κ(z̄)dz̄

∣∣∣
∫ 1

−1

∣∣∣∣2 (ψ′κ(z̄)− 1
)

+

(
2−

∫ 1

−1
ψ′κ(z̄)dz̄

)∣∣∣∣dz̄ ≤ Cκ.
We will take

ϕκ(z) = 1 +

∫ z

−1
ϕ′κ(z̄)dz̄ = 1−

∫ z
−1 ψ

′
κ(z̄)dz̄∫ 1

−1 ψ
′
κ(z̄)dz̄

.(21)

We summarize the properties of this function in the following lemma.

Lemma 2.2. The function ϕκ given by (21) satisfies

(1) ϕκ(−1) = 1, ϕκ(1) = 0, (∂nz ϕκ)(±1) = 0, for n = 1, 2, . . .
(2) ϕ′κ(z) < 0, for |z| < 1.
(3) ‖ϕ′κ + 1

2‖L1([−1,1]) ≤ Cκ.

The profile $ that will be used in this manuscript is given by

$ε,κ(y) :=


0 y > 1 + ε,

εϕκ

(
y−1
ε

)
1− ε ≤ y ≤ 1 + ε,

ε 0 < y < 1− ε.
(22)

Notice that $ε(y) is extended as an even function, i.e. for any y < 0 we take $ε,κ(y) = $ε,κ(−y).
Let us point out that the support of ω′ε,κ will be the domain

Iε = [−1− ε,−1 + ε] ∪ [1− ε, 1 + ε].

The rest of the paper consists in finding a nontrivial solution of (16) with $ ≡ $ε,κ in (17) for
parameters ε and κ small enough. It will be done using the bifurcation theory through Crandall-
Rabinowitz theorem [21]. For the completeness of the paper we recall this basic theorem and it will
referred to as sometimes by C-R theorem.

3. Bifurcation theory and Crandall-Rabinowitz

Before going into details, we shall first fix some notations that we will used later. For a linear
mapping L we will denote by N (L) and R(L) the kernel and range of L respectively. If Y is a
vector space and S is a subspace, then Y/S denotes the quotient space.

Now, we intend to give some formal explanations and general picture of the bifurcation theory.
This brief discussion will be closed by stating the details of the C-R theorem. Roughly speaking,
the main objective of this theory is to look for the solutions of the functional equation

F [λ, f] = 0,

where F : R×X → Y is a smooth continuous function between Banach spaces X and Y . We assume
in addition that f = 0 is a trivial solution for any λ ∈ R, that is, F [λ, 0] = 0. Whether close to the
trivial solution (λ?, 0) one can find a branch of nontrivial ones is the main aim of this theory. If this
is the case we say that there is a bifurcation at the point (λ?, 0). As the Implicit Function Theorem
tells us, the first idea is to study the linear operator Lλ := DfF [λ, 0] : X → Y . In principle, the
involved Banach spaces X and Y are infinite-dimensional and thus the bifurcation analysis is in
general complex. However, if the linearized operator around this point (λ?, 0) generates a Fredholm
type operator, then one can use the so-called Lyapunov-Schmidt reduction in order to reduce the
infinite-dimensional problem to a finite-dimensional one. Finally, for this last problem we just need
some concrete transversal conditions so that the Implicit Function Theorem can be applied.
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To sum up, this is the classical result proved by Crandall and Rabinowitz which is a basic tool in
the bifurcation theory and that will be used in this manuscript. Now, we recall here the statement
of this theorem from [21] for expository purposes.

Theorem 3.1. Let X,Y be two Banach spaces, V a neighborhood of 0 in X and let F : R×V → Y
with the following properties:

(1) F [λ, 0] = 0 for any λ ∈ R.
(2) The partial derivatives DλF , DfF and D2

λ,fF exist and are continuous.

(3) There exists λ? such that if L? = DfF [λ?, 0] then N (L?) and Y/R(L?) are one-dimensional.
(4) Transversality assumption: D2

λ,fF [λ?, 0]h? 6∈ R(L?), where

N (L?) = span{h?}.
If Z is any complement of N (L?) in X, then there is a neighborhood U of (λ?, 0) in R × X, an
interval (−σ0, σ0), and continuous functions ϕ : (−σ0, σ0) → R, ψ : (−σ0, σ0) → Z such that
ϕ(0) = 0, ψ(0) = 0 and

F−1(0) ∩ U =
{(
λ? + ϕ(σ), σh? + σψ(σ)

)
; |σ| < σ0

}
∪
{

(λ, 0) ; (λ, 0) ∈ U
}
.

The bulk of the paper consists in checking all the assumptions of Theorem 3.1. This will be done
in details in the next sections.

4. Functional setting and regularity

Note that our functional can be written as

(23) F [λ, f](x) = λ∂xf(x) + (y + f(x))∂xf(x)− 1

4π

∫
Dε(y)

$′(y − ȳ)K[f](x, x̄)∆x̄[∂xf](x)dx̄,

where the kernel is given by the following expression

K[g](x, x̄) := log [cosh(ȳ + ∆x̄[g](x))− cos(x̄)] .

Recall that the finite difference is given by

∆x̄[g](x) = g(x)− g(x− x̄),

and the domain of integration is just

Dε(y) = T× Iε(y), with Iε(y) = y + Iε.

For simplicity, we will use the notation Dε = Dε(0) = T× Iε.
Remark 4.1. In all this section we will assume that $ ≡ $ε,κ ∈ C∞(R) as in Section 2.3.

4.1. The functional setting. In order to apply C-R theorem we need first to fix the function
spaces. We should look for Banach spaces X and Y such that F : R×X → Y is well-defined and
satisfies the required assumptions.

Our first step is to define the spaces we will work with in order to apply the Crandall-Rabinowitz
theorem. The spaces X and Y will be given by

X(Dε) :=

{
g ∈ H4,3(Dε) : g is even in x with

∫ π

−π
g(x, y) dx = 0

}
,(24)

and

Y (Dε) :=
{
g ∈ H3(Dε) : g is odd in x

}
.(25)

Here H4,3(Dε) is the Sobolev-Leibnitz space of 2π-periocic functions in the x-variable with norm

‖g‖H4,3(Dε) :=

4∑
i=0

3−i∑
j=0

‖∂ix∂jyg‖L2(Dε).
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After that the main purpose will be to prove next lemma.

Lemma 4.2. For all 0 < ε < 1, there exist 0 < δ(ε)� 1 small enough such that

F : R× Bδ(X(Dε))→ Y (Dε),

(λ, f)→ F [λ, f]

where

Bδ(X(Dε)) := {g ∈ X(Dε) : ‖g‖H4,3(Dε) < δ}.

Proof. Let f ∈ X(Dε), the evenness in the x-direction translates into the oddness of F [λ, f] just
by definition of the functional (23). Moreover, the non-integral part of the RHS of (23) maps
H4,3(Dε) into H3(Dε) trivially as a direct consequence of the algebraic property of the Sobolev
space H3(Dε). Therefore, we will focus our attention into the integral part of (23). In addition,
as the profile function $ is smooth, our functional is well-defined if each of the next terms are
bounded as follow:∥∥∥∥∥

∫
Dε(y)

∂ixK[f](x, x̄)∆x̄[∂3−i
x ∂xf](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ C(ε, ‖f‖H4,3(Dε)) (0 ≤ i ≤ 3).(26)

Note that by definition of ∆x̄[g](x) we have

(27)

∫
Dε

(∫
Dε(y)

|∆x̄[g](x)|2dx̄

)
dx ≤ 4|Dε|‖g‖2L2(Dε)

.

For the case i = 0 or i = 1, as f ∈ H4,3(Dε) implies ∂2
x∂xf, ∂

3
x∂xf ∈ L2(Dε), we obtain∥∥∥∥∥

∫
Dε(y)

K[f](x, x̄)∆x̄[∂3
x∂xf](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ 4|Dε|2‖f‖2H4,3(Dε)
sup
x∈Dε

(
sup

x̄∈Dε(y)
|K[f](x, x̄)|2

)
,

and∥∥∥∥∥
∫
Dε(y)

∂xK[f](x, x̄)∆x̄[∂2
x∂xf](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ 4|Dε|‖f‖2H4,3(Dε)
sup
x∈Dε

(∫
Dε(y)

|∂xK[f](x, x̄)|2 dx̄

)
.

For the case i = 2, as f ∈ H4,3(Dε) we get ∂x∂xf ∈ H2(Dε) ⊂ Cγ(Dε) for 0 < γ < 1, which give us∥∥∥∥∥
∫
Dε(y)

∂2
xK[f](x, x̄)∆x̄[∂x∂xf](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ |Dε|‖f‖2H4,3(Dε)

∫
Dε

(∫
Dε(y)

∣∣∂2
xK[f](x, x̄)

∣∣2 |x̄|2γdx̄

)
dx.

For the last case i = 3, as ∂xf ∈ H3(Dε) ⊂ C1(Dε), we obtain∥∥∥∥∥
∫
Dε(y)

∂3
xK[f](x, x̄)∆x̄[∂xf](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ |Dε|‖f‖2H4,3(Dε)

∫
Dε

(∫
Dε(y)

∣∣∂3
xK[f](x, x̄)

∣∣2 |x̄|2dx̄

)
dx.
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Finally, for the sake of brevity and clarity we will refer to Lemma 7.4, where the last term of each
of the above expressions is bounded. �

4.2. Hypothesis 1 and 2. On one hand, the hypothesis 1 in the C-R theorem is trivial to check.
On the other hand, the hypothesis 2 has to do with the regularity of the functional F [λ, f] with
respect to f and λ.

We present the regularity of the functional in the following proposition.

Proposition 4.3. For all 0 < ε < 1, there exist 0 < δ(ε)� 1 small enough such that the following
holds true:

(1) The functional F : R× Bδ(X(Dε))→ Y (Dε) is of class C1.
(2) The partial derivative D2

λ,fF : R× Bδ(X(Dε))→ Y (Dε) is continuous.

Proof. The proof of this proposition is rather standard. We include the main details here for sake
of completeness.

The continuity of the functional is trivial for any derivative involving Dλ. Consequently, the
result reduces to check that DfF : R × Bδ(X(Dε)) → Y (Dε) is continuous at the origin. This
will be done by showing first the existence of the Gâteaux derivative and second its continuity in
the strong topology. A refined analysis concerning its connection with Fréchet derivative will be
developed in the next section. The Gâteaux differential of F [λ, ·] at f ∈ Bδ(X(Dε)) in the direction
h ∈ X(Dε) is defined as

DfF [λ, f]h :=
d

dτ
F [λ, f + τh]|τ=0 = lim

τ→0

F [λ, f + τh]− F [λ, f]

τ
.

A formal straightforward computation show that this derivative is given by

DfF [λ, f]h(x) =λ∂xh(x) + (y + f(x))∂xh(x) + h(x)∂xf(x)(28)

− 1

4π

∫
Dε(y)

$′(y − ȳ)K[f](x, x̄)∆x̄[∂xh](x)dx̄

− 1

4π

∫
Dε(y)

$′(y − ȳ)(∂xK)[f](x, x̄)∆x̄[h](x)dx̄.

To prove this rigorously, we need to get

lim
τ→0

∥∥∥∥F [λ, f + τh]− F [λ, f]

τ
−DfF [λ, f]h

∥∥∥∥
H3(Dε)

= 0.

By virtue of (28) it is enough to prove that

lim
τ→0

∥∥∥∥∥
∫
Dε(y)

$′(y − ȳ)K[f + τh, f](x, x̄)∆x̄[∂xh](x)dx̄

∥∥∥∥∥
H3(Dε)

= 0,(29)

lim
τ→0

∥∥∥∥∥
∫
Dε(y)

$′(y − ȳ)

(
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

)
∆x̄[∂xf](x)dx̄

∥∥∥∥∥
H3(Dε)

= 0,(30)

where the new kernel is

(31) K[f ′, f ′′](x, x̄) := K[f ′](x, x̄)−K[f ′′](x, x̄) = log

[
cosh (ȳ + ∆x̄[f ′](x))− cos(x̄)

cosh (ȳ + ∆x̄[f ′′](x))− cos(x̄)

]
,

and the auxiliary functions Ψ1,Ψ2 are given respectively by

Ψ1[g](x, x̄) :=
sinh(ȳ + ∆x̄[g](x))

cosh(ȳ + ∆x̄[g](x))− cos(x̄)
,

Ψ2[g](x, x̄) :=
cosh(ȳ + ∆x̄[g](x))

cosh(ȳ + ∆x̄[g](x))− cos(x̄)
.
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In order to do the manuscript more readable, we redirect the reader to the next subsection for
precise proofs of each of the above limits (29), (30). As we can imagine the computations are very
long and tedious but share lot of similarities.

4.2.1. Computation of (29). As the profile $ is a smooth and compactly supported function,
condition (29) reduces to check

lim
τ→0

∥∥∥∥∥
∫
Dε(y)

K[f + τh, f](x, x̄)∆x̄[∂xh](x)dx̄

∥∥∥∥∥
H3(Dε)

= 0.

Remark: There are not boundary terms to handle due to the support of $ and definition of Dε(y).
Consequently, the above reduces to prove that each of the terms of H3(Dε)−norm tends to zero.
In the same spirit of (26), the proof of (29) reduces to check that

(32)

∥∥∥∥∥
∫
Dε(y)

∂ixK[f + τh, f](x, x̄)∆x̄[∂3−i
x ∂xh](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ C(ε, ‖f‖H4,3(Dε))τ
2 (0 ≤ i ≤ 3).

To do that, we will use repeatedly inequality (27) and the fact that, without lost of generality, the
direction h ∈ H4,3(Dε) can be taken with norm ‖h‖H4,3(Dε) = 1.

For the case i = 0 or i = 1, as h ∈ H4,3(Dε) implies ∂3
x∂xh, ∂

2
x∂xh ∈ L2(Dε), we obtain∥∥∥∥∥

∫
Dε(y)

K[f + τh, f](x, x̄)∆x̄[∂3
x∂xh](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ 4|Dε|2 sup
x∈Dε

(
sup

x̄∈Dε(y)
|K[f + τh, f](x, x̄)|2

)
,

and∥∥∥∥∥
∫
Dε(y)

∂xK[f + τh, f](x, x̄)∆x̄[∂2
x∂xh](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ 4|Dε| sup
x∈Dε

(∫
Dε(y)

|∂xK[f + τh, f](x, x̄)|2 dx̄

)
.

For the case i = 2, as h ∈ H4,3(Dε) we get ∂x∂xh ∈ H2(Dε) ⊂ Cγ(Dε) for 0 < γ < 1, which give us∥∥∥∥∥
∫
Dε(y)

∂2
xK[f + τh, f](x, x̄)∆x̄[∂x∂xh](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ |Dε|
∫
Dε

(∫
Dε(y)

∣∣∂2
xK[f + τh, f](x, x̄)

∣∣2 |x̄|2γdx̄

)
dx.

For the last case i = 3, as ∂xh ∈ H3(Dε) ⊂ C1(Dε), we obtain∥∥∥∥∥
∫
Dε(y)

∂3
xK[f + τh, f](x, x̄)∆x̄[∂xh](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ |Dε|
∫
Dε

(∫
Dε(y)

∣∣∂3
xK[f + τh, f](x, x̄)

∣∣2 |x̄|2dx̄

)
dx.

As f ∈ Bδ(X(Dε)) and our goal is to compute the limit as τ → 0, we can assume without loss of
generality that 0 < τ � 1 is small enough such that f + τh ∈ Bδ(X(Dε)). Consequently, the last
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term of each of the above expressions can be handle applying auxiliary Lemma 7.5 with

f ′ := f + τh,

f ′′ := f.

Finally, as by hypothesis ‖h‖H3(Dε) = 1, we get∥∥∥∥∥
∫
Dε(y)

K[f + τh, f](x, x̄)∆x̄[∂xh](x)dx̄

∥∥∥∥∥
H3(Dε)

≤ C(ε, ‖f‖H3(Dε))τ
2,

and taking the limit as τ → 0 we have proved (29) .

4.2.2. Computation of (30). Similarly, since the profile $ is a smooth and compactly supported
function, condition (30) reduces to check

lim
τ→0

∥∥∥∥∥
∫
Dε(y)

(
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

)
∆x̄[∂xf](x)dx̄

∥∥∥∥∥
H3(Dε)

= 0.

As before, there are not boundary terms to handle due to the support of $ and definition Dε(y).
Consequently, the above reduces to prove that each of the terms of H3(Dε)−norm tends to zero.
In the same spirit of (26) or (29), the proof of (30) reduces to check that
(33)∥∥∥∥∥
∫
Dε(y)

∂ix

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}
∆x̄[∂3−i

x ∂xf](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ C(ε, ‖f‖H4,3(Dε))τ
2,

for 0 ≤ i ≤ 3 and f ∈ Bδ(H4,3(Dε)) with δ(ε) small enough and h ∈ H4,3(Dε) with ‖h‖H4,3(Dε) = 1.
Now proceeding as before, we use repeatedly inequality (27) and the fact that ‖h‖H4,3(Dε) = 1.

For the case i = 0 or i = 1, as f ∈ H4,3(Dε) implies ∂xf, ∂
2
x∂xf ∈ L2(Dε), we obtain∥∥∥∥∥

∫
Dε(y)

(
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

)
∆x̄[∂xf](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ 4|Dε|2‖f‖2H4,3(Dε)
sup
x∈Dε

(
sup

x̄∈Dε(y)

∣∣∣∣K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

∣∣∣∣2
)
,

and∥∥∥∥∥
∫
Dε(y)

∂x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}
∆x̄[∂2

x∂xf](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ 4|Dε|‖f‖2H4,3(Dε)
sup
x∈Dε

(∫
Dε(y)

∣∣∣∣∂x{K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}∣∣∣∣2 dx̄

)
.

For the case i = 2, as f ∈ H4,3(Dε) we get ∂x∂xf ∈ H2(Dε) ⊂ Cγ(Dε) for 0 < γ < 1, which give us∥∥∥∥∥
∫
Dε(y)

∂2
x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}
∆x̄[∂x∂xf](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ |Dε|‖f‖2H4,3(Dε)

∫
Dε

(∫
Dε(y)

∣∣∣∣∂2
x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}∣∣∣∣2 |x̄|2γdx̄

)
dx.
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For the last case i = 3, as ∂xf ∈ H3(Dε) ⊂ C1(Dε), we obtain∥∥∥∥∥
∫
Dε(y)

∂3
x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}
∆x̄[∂xf](x)dx̄

∥∥∥∥∥
2

L2(Dε)

≤ |Dε|‖f‖2H4,3(Dε)

∫
Dε

(∫
Dε(y)

∣∣∣∣∂3
x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}∣∣∣∣2 |x̄|2dx̄

)
dx.

For the sake of clarity, the last term of each of the above expressions can be handle using auxiliary
Lemma 7.6. After that, collecting all we get∥∥∥∥∥
∫
Dε(y)

(
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

)
∆x̄[∂xf](x)dx̄

∥∥∥∥∥
2

H3(Dε)

≤ C(ε, ‖f‖H4,3(Dε))τ
2,

and taking the limit as τ → 0 we have proved (30).

This shows the existence of Gâteaux derivative and now we intend to prove the continuity of the
map f → DfF [λ, f] from X(Dε) to the space L(X(Dε), Y (Dε)) of all bounded linear operators from
X(Dε) to Y (Dε). This is a consequence of the following estimate:

(34) ‖DfF [λ, f ′]h−DfF [λ, f ′′]h‖H3(Dε) . ‖f
′ − f ′′‖H4,3(Dε),

for any pair f ′, f ′′ ∈ Bδ(X(Dε)) and h ∈ X(Dε). As the profile function $ is smooth it is easy to
check that condition (34) holds if and only if the following bounds are satisfied∥∥∥∥∥

∫
Dε(y)

K[f ′, f ′′](x, x̄)∆x̄[∂xh](x)dx̄

∥∥∥∥∥
H3(Dε)

. ‖f ′ − f ′′‖H4,3(Dε),(35)

∥∥∥∥∥
∫
Dε(y)

(∂xK[f ′]− ∂xK[f ′′])(x, x̄)∆x̄[h](x)dx̄

∥∥∥∥∥
H3(Dε)

. ‖f ′ − f ′′‖H4,3(Dε).(36)

Note that (35) follows by direct application of Lemma 7.5. In order to obtain (36), we just need to
note that adding and subtracting appropriate terms we have

(∂xK[f ′]− ∂xK[f ′′])(x, x̄) = Ψ1[f ′](x, x̄)∆x̄[∂x(f ′ − f ′′)](x) + (Ψ1[f ′]−Ψ1[f ′′])(x, x̄)∆x̄[∂xf
′′](x).

The first term of the above expression is trivially bounded and for the other one we just need to use
auxiliary Lemma 7.3. Consequently, we have obtained that the Gâteaux derivatives are continuous
with respect to the strong topology and hence they are in fact Fréchet derivatives. Therefore, we
can conclude that the Fréchet derivative exists and coincides with the Gâteaux derivative. See [28]
for more details. �

5. Analysis of the linear part

Hypothesis 3 and 4 in the C-R theorem have to do with the linear part of equation (16).
Recall that the linearization of (23) around f = 0, thanks to the expression (28), is given by

L[λ]h := DfF [λ, 0]h.

That is,

L[λ]h(x) = (λ+ y)∂xh(x)(37)

− 1

4π

∫
T×Iε

$′ε,κ(ȳ) log [cosh(ȳ − ȳ)− cos(x̄− x̄)] (∂xh(x)− ∂xh(x̄))dx̄.

In order to study both the kernel and image of L[λ] we will introduce some modification which
allows us to realize an asymptotic analysis on ε.
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5.1. Decomposition of the linear operator. In first place, we define a primitive function Ωε,κ

of the profile function $ε,κ by

Ωε,κ(y) :=

∫ y

0
$ε,κ(ȳ)dȳ.

Then

(38)
1

4π

∫
T×Iε

$′ε,κ(ȳ) log [cosh(y − ȳ)− cos(x− x̄)] dx̄ = Ωε,κ(y).

Proof of (38). Since
1

4π

∫
T

log [cosh(ȳ)− cos(x̄)] dx̄ =
1

2
(|ȳ| − log 2) ,

we have that

1

4π

∫
T×Iε

$′ε,κ(ȳ) log [cosh(y − ȳ)− cos(x− x̄)] dx̄ =
1

2

∫
R
|y − ȳ|$′ε,κ(ȳ)dȳ(39)

=
1

2

∫
R

sgn(y − ȳ)$ε,κ(ȳ)dȳ =
1

2

∫
R

sgn(y − ȳ)Ω′ε,κ(ȳ)dȳ

= Ωε,κ(y) + lim
R→0

(sgn(y −R)Ωε,κ(R)− sgn(y +R)Ωε,κ(−R)) .

Since $ε,κ is even, their primitive Ωε,κ is odd. Thus the limit in the last line of (39) is zero. �

Using (38) one learns that

L[λ]h(x) = (λ+ y − Ωε,κ(y))∂xh(x)(40)

+
1

4π

∫
T×Iε

$′ε,κ(ȳ) log [cosh(ȳ − ȳ)− cos(x̄− x̄)] ∂xh(x̄))dx̄.

Now, recalling that h ∈ X(Dε), we can use the expansion

(41) h(x) =

∞∑
n=1

hn(y) cos(nx),

with

∞∑
n=1

3∑
j=0

4−j∑
k=0

n2k‖∂jyhn‖2L2(R) <∞,(42)

which give us that

(43) L[λ]

( ∞∑
n=1

hn(y) cos(nx)

)

=

∞∑
n=1

(−1)n sin(nx)

(
(λ+ y − Ωε,κ(y))hn(y)− 1

2

∫
Iε

$′ε,κ(ȳ)hn(ȳ)e−n|y−ȳ|dȳ

)
.

Proof of (43). We compute L[λ] acting on the mode hn(y) cos(nx):

L[λ](hn(y) cos(nx)) =− n sin(nx)(λ+ y − Ωε,κ(y))hn(y)

− n

4π

∫
T×Iε

$′ε,κ(ȳ) log (cosh(y − ȳ)− cos(x− x̄))hn(ȳ) sin(nx̄)dx̄.
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Now, we integrate in the x̄−variable on the above double integral, which give us

1

4π

∫
T

log [cosh(y − ȳ)− cos(x− x̄)] sin(nx̄)dx̄ =
1

4π

∫
T

log [cosh(y − ȳ)− cos(x̄)] sin(n(x− x̄))dx̄

=
sin(nx)

4π

∫
T

log [cosh(y − ȳ)− cos(x̄)] cos(nx̄)dx̄,

where the last step is due to trigonometric identities and the parity of the integrands. In addition,
last integral can be written as

sin(nx)

n

1

4π

∫
T

log [cosh(y − ȳ)− cos(x̄)] (sin(nx̄))′dx̄

= −sin(nx)

n

1

4π

∫
T

sin(x̄) sin(nx̄)

cosh(y − ȳ)− cos(x̄)
dx̄ = −sin(nx)

n

1

2
e−n|y−ȳ|.

This last integral can be computed, for example, by using residues. These last computations yield

L[λ] (hn(y) cos(nx)) = −n sin(nx)

(
(λ+ y − Ωε,κ(y))hn(y)− 1

2n

∫
Iε

ω′ε,κ(ȳ)h(ȳ)e−n|y−ȳ|dȳ

)
.

Combining everything we obtain that L[λ]h(x) admits an expansion given by

∞∑
n=1

(−1)n sin(nx)

[
(λ+ y)hn(y)− Ωε,κ(y)hn(y)− 1

2n

∫
Iε

ω′ε,κ(ȳ)hn(ȳ)e−n|y−ȳ|dȳ

]
.

�

To sum up, for any h ∈ H3(Iε) the operators Ln[λ] will be define as

Ln[λ]h(y) := −n(λ+ y − Ωε,κ(y))h(y) +
1

2

∫
Iε

$′ε,κ(ȳ)h(ȳ)e−n|y−ȳ|dȳ,

in such a way that, in X(Dε), the full operator is

L[λ] =

∞∑
n=1

sin(nx)Ln[λ]Πn,

where Πn is just the projector onto cos(nx).

5.2. Rescaling of the decomposition. Since Iε = [−1− ε,−1 + ε]∪ [1− ε, 1 + ε], we will make a
reflection to consider just the domain y ∈ [1−ε, 1+ε]. Recall that $′ε,κ and Ωε,κ are odd functions,
then we have that

Ln[λ]hn(+y) = −n(λ+ y −Ωε,κ(y))hn(+y) +
1

2

∫
R
$′ε,κ(ȳ)hn(ȳ)e−n|y−ȳ|dȳ, on y ∈ (1− ε, 1 + ε) ,

and

Ln[λ]hn(−y) = −n(λ− y + Ωε,κ(y))hn(−y) +
1

2

∫
R
$′ε,κ(ȳ)hn(ȳ)e−n|y+ȳ|dȳ, on y ∈ (1− ε, 1 + ε) .

In addition, the integral part can be write as∫
R
$′ε,κ(ȳ)hn(ȳ)e−n|y−ȳ|dȳ =

∫ 1+ε

1−ε
$′ε,κ(ȳ)

(
hn(y)e−n|y−ȳ| − hn(−y)e−n|y+ȳ|

)
dȳ,

and ∫
R
$′ε,κ(ȳ)hn(ȳ)e−n|y+ȳ|dȳ =

∫ 1+ε

1−ε
$′ε,κ(ȳ)

(
hn(y)e−n|y+ȳ| − hn(−y)e−n|y−ȳ|

)
dȳ.
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Thus, if we define on y ∈ (1− ε, 1 + ε) the auxiliary functions

h+
n (y) := hn(+y),

L+
n [λ]

(
h+
n

h−n

)
(y) := Ln[λ]hn(+y),

h−n (y) := hn(−y),

L−n [λ]

(
h+
n

h−n

)
(y) := Ln[λ]hn(−y),

we find on y ∈ (1− ε, 1 + ε) that

L+
n [λ]

(
h+
n

h−n

)
(y) = −n(λ+y−Ωε,κ(y))h+

n (y)+
1

2

∫ 1+ε

1−ε
$′ε,κ(ȳ)

(
h+
n (ȳ)e−n|y−ȳ| − h−n (ȳ)e−n|y+ȳ|

)
dȳ,

and

L−n [λ]

(
h+
n

h−n

)
(y) = −n(λ−y+Ωε,κ(y))h−n (y)+

1

2

∫ 1+ε

1−ε
$′ε,κ(ȳ)

(
h+
n (ȳ)e−n|y+ȳ| − h−n (ȳ)e−n|y−ȳ|

)
dȳ.

Now, we make the change of variables z = ȳ−1
ε or ȳ = 1 + εz inside of the integrals to get

1

2

∫ 1

−1
ε$′ε,κ (1 + εz)

(
h+
n (1 + εz) e−n|y−(1+εz)| − h−n (1 + εz) e−n|y+(1+εz)|

)
dz,

and
1

2

∫ 1

−1
ε$′ε,κ (1 + εz)

(
h+
n (1 + εz) e−n|y+(1+εz)| − h−n (1 + εz) e−n|y−(1+εz)|

)
dz

We define on z ∈ (−1, 1) the auxiliary functions

w+
n (z) := h+

n (1 + εz) ,

L+
n [λ]

(
w+
n

w−n

)
(z) := L+

n [λ]

(
h+
n

h−n

)
(1 + εz),

w−n (z) := h−n (1 + εz) ,

L−n [λ]

(
w+
n

w−n

)
(z) := L−n [λ]

(
h+
n

h−n

)
(1 + εz).

Now, recalling that $ε,κ(y) = εϕκ((y − 1)/ε), we find that

L+
n [λ]

(
w+
n

w−n

)
=− n (λ+ 1 + εz − Ωε,κ (1 + εz))w+

n (z)

+
1

2

∫ 1

−1
εϕ′κ(z̄)

(
w+
n (z̄)e−nε|z−z̄| − w−n (z̄) e−n|2+ε(z+z̄)|

)
dz̄,

and

L−n [λ]

(
w+
n

w−n

)
=− n (λ− 1− εz + Ωε,κ (1 + εz))w−n (z)

+
1

2

∫ 1

−1
εϕ′κ(z̄)

(
w+
n (z̄) e−n|2+ε(z+z̄)| − w−n (z̄) e−nε|z−z̄|

)
dz̄.

In addition, one can compute that

Ωε,κ(y) =

∫ y

0
$ε,κ(ȳ)dȳ =

∫ 1−ε

0
$ε,κ(ȳ)dȳ +

∫ y

1−ε
$ε,κ(ȳ)dȳ = ε(1− ε) +

∫ y

1−ε
$ε,κ(ȳ)dȳ.

Thus, the primitive can be write in a more convenient way as

Ωε,κ(1 + εz) = ε(1− ε) +

∫ 1+εz

−1
εϕκ

(
ȳ − 1

ε

)
dȳ

= ε(1− ε) + ε2

∫ z

−1
ϕκ(z̄)dz̄ = ε+ ε2

(
−1 +

∫ z

−1
ϕκ(z̄)dz̄

)
.

Therefore, we have

Ωε,κ (1 + εz) = ε+ ε2Φκ(z),
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where

Φκ(z) := −1 +

∫ z

−1
ϕκ(z̄)dz̄.

Combining all we have proved that

L+
n [λ]

(
w+
n

w−n

)
=− n

(
λ+ 1− ε+ εz − ε2Φκ(z)

)
w+
n (z)(44)

+
ε

2

∫ 1

−1
ϕ′κ(z̄)

(
w+
n (z̄)e−nε|z−z̄| − w−n (z̄) e−n|2+ε(z+z̄)|

)
dz̄,

L−n [λ]

(
w+
n

w−n

)
=− n

(
λ− 1 + ε− εz + ε2Φκ(z)

)
w−n (z)(45)

+
ε

2

∫ 1

−1
ϕ′κ(z̄)

(
w+
n (z̄) e−n|2+ε(z+z̄)| − w−n (z̄) e−nε|z−z̄|

)
dz̄.

5.3. One dimensionality of the kernel of the linear operator. The following section consists
on two well-differentiated parts. On one hand, we will prove that there exists an element in the
kernel of the linear operator. On the other hand, we will prove that the kernel is the span of this
element. To sum up, the main result of this section is to prove the following result:

Theorem 5.1. For any M > 1, there exist positive κ0 = κ0(M) and positive ε0 = ε0(M) such
that for all 0 < ε < ε0, 0 ≤ κ < κ0 and m ∈ N such that m < M , we can find λε,κ,m ∈ R and a
2π
m−periodic and non-identically zero function hε,κ,m ∈ X(Dε) solving

Lε,κ[λε,κ,m]hε,κ,m = 0,

where the functional Lε,κ[λ] is given in (37). In addition, the kernel Lε,κ[λε,κ,m] on X(Dε) is the
span of hε,κ,m and the regularity of the solution is in fact hε,κ,m ∈ C∞(Dε).

Importantly, hε,κ,m(x, y), with x ∈ T and y ∈ Iε, depends non trivially on x.

Remark 5.2. In the statement of the theorem it has been made explicit the dependence of L[λ]
on the parameters ε and κ although it has not been in (37). It is easy to check that L[λ] in (37)
depends on ε and κ through Ωε,κ and $ε,κ.

Remark 5.3. It is important to emphasize that parameter ε does not depend on κ.

Remark 5.4. The speed of the traveling wave λε,κ,m satisfies the expansion in terms of ε-parameter:

λε,κ,m = 1 + λ1
κ,mε+ λ2

ε,κ,mε
2,(46)

where

λ1
κ,m = O(1),

and

|λ2
ε,κ,m| ≤ C(M).

Remark 5.5. In the rest of the section 5 we avoid to use subscripts ε, κ,m in expression (46), which
we will ignore in favor of readability. We write with abuse of notation λ = 1 + λ1ε+ λε2ε

2.

Remark 5.6. For the degenerate case (κ = 0), the same result works line by line for all m ∈ N.
That is, all the computations can be taken independent of M.
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5.3.1. Proof of existence. In order to show the existence of (λε,κ,m, hε,κ,m) solving

L[λε,κ,m]hε,κ,m = 0,

we fix m ∈ N with m < M , and take

w+
n (z) =

{
0 n 6= m,

a(z) n = m,
(47)

w−n (z) =

{
0 n 6= m,
b(z) n = m,

(48)

where a and b depend on ε, κ and m but we do not make this dependence explicit for sake of
simplicity. Thus, we have to find (λ, a, b) ∈ R×H3([−1, 1]×H3([−1, 1]) solving

L+
m[λ]

(
a
b

)
= 0,(49)

L−m[λ]

(
a
b

)
= 0,(50)

where L±m are given in (44) and (45). After that, the solution (λε,κ,m, hε,κ,m) will be given by

λε,κ,m = λ,

hε,κ,m(x, y) = a

(
y − 1

ε

)
cos(mx) for y ∈ [+1− ε,+1 + ε],

hε,κ,m(x, y) = b

(
−y − 1

ε

)
cos(mx) for y ∈ [−1− ε,−1 + ε].

In order to solve (49) and (50) we introduce the ansatzs

a(z) = a1(z)ε+ aε2(z)ε2,

b(z) = b0(z) + bε1(z)ε,

and

λ = 1 + λ1ε+ λε2ε
2,

where a1, b0 and λ1 will depend on κ and m but they will not depend on ε. In addition, the
remaining terms aε2, bε1) and λε2 depend on ε, κ and m. Imposing the equations

(1 + λ1 − z)b0(z) = − 1

2m

∫ 1

−1
ϕ′κ(z̄)b0(z̄)dz̄,(51)

2a1 = − 1

2m
e−2m

∫ 1

−1
ϕ′κ(z̄)b0(z̄)dz̄,(52)

we get for (λε2, a
ε
2, b

ε
1) the system

2aε2(z) +
e−2m

2m

∫ 1

−1
ϕ′κ(z̄)bε1(z̄)e−mε(z+z̄)dz̄ = A0[a1, b0](z) + εA1[aε2, λ

ε
2; a1, b0, λ1](z),(53)

(1 + λ1 − z)bε1(z) +
1

2m

∫ 1

−1
ϕ′κ(z̄)bε1(z̄)dz̄ + λε2b0(z) = B0[a1, b0](z) + εB1[aε2, b

ε
1, λ

ε
2](z),(54)
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where

A0[a1, b0](z) =
1

2m

∫ 1

−1
ϕ′κ(z̄)a1(z̄)e−mε|z−z̄|dz̄ − e−2m

2m

∫ 1

−1
ϕ′κ(z̄)b0(z̄)

e−mε(z+z̄) − 1

ε
dz̄ + εa1Φκ(z),

B0[a1, b0](z) = −Φκ(z)b0(z) +
e−2m

2m

∫ 1

−1
ϕ′κ(z̄)a1(z̄)e−mε(z+z̄)dz̄,

and

A1[aε2, λ
ε
2; a1, λ1](z) = −(−1 + λ1 + z)aε2(z)− a1λ

ε
2 − ε(λε2 − Φκ(z))aε2(z)

+
1

2m

∫ 1

−1
ϕ′κ(z̄)aε2(z̄)e−mε|z−z̄|dz̄,

B1[aε2, b
ε
1, λ

ε
2](z) = −(Φκ(z) + λε2)bε1(z) +

e−2m

2m

∫ 1

−1
ϕ′κ(z̄)aε2(z̄)e−mε(z+z̄)dz̄

− 1

2m

∫ 1

−1
ϕ′κ(z̄)bε1(z̄)

e−mε|z−z̄| − 1

ε
dz̄.

Here, we note that

‖A0‖L2 ≤C (|a1|+ ‖b0‖L2) ,

‖A1‖L2 ≤C (1 + |λ1|) ‖aε2‖L2 + C|a1||λε2|+ C|λε2|‖aε2‖L2 + C(1 + ε)‖aε2‖L2 ,

‖B0‖L2 ≤C (|a1|+ ‖b0‖L2) ,

‖B1‖L2 ≤C‖bε1‖L2 + C‖bε1‖L2 |λε2|+ C (‖aε2‖L2 + ‖bε1‖L2) ,

where the constant C does not depend on neither ε, κ or m, and ‖ · ‖L2 = ‖ · ‖L2([−1,1]).
So first we will solve (51) on b0 by choosing λ1 in a suitable way. This will give a1 in (52). Then,

equations (53) and (54) will be written to be able to determine aε2, bε1 and λε2 by a contraction
argument in ε.

We deal with equation (51) in the following proposition.

Proposition 5.7. For any M > 1, there exists κ0 = κ0(M) such that for all 1 ≤ m < M and
0 ≤ κ < κ0, we can find a solution (λ1, b0) ∈ R× C∞([−1, 1]) of equation (51). In addition, fixed
m and κ, this solution is unique (modulo multiplication by constant) and satisfies

b0(z) =
1

1 + λ1 − z
,(55)

λ1 =
2

e4m − 1
+ error,(56)

where

|error| ≤ C(M)κ.

Moreover, we get

‖b0‖L2([−1,1]) ≤ C(M), ‖∂k)
z b0‖L∞([−1, 1]) ≤ C(k,M), k = 0, 1, 2, ... a1 =

1

2
e−2m.

Remark 5.8. It is important to emphasize that constant C(M) depend on M but it does not depend
on neither m or κ, for 0 ≤ κ < κ0 and 1 ≤ m < M .
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Before prove the previous result, we pick λ1 appropriately. Notice that from (51) we see that b0
must be of the form

b0(z) =
C

1 + λ1 − z
,(57)

for some free constant C. Plugging (57) into (51) one finds that

1 =
1

2m

∫ 1

−1

−ϕ′κ(z̄)

1 + λ1 − z̄
dz̄,

which is an equation for λ1.

Lemma 5.9. For any M > 1, there exist κ′0 = κ′0(M) such that for all 0 ≤ κ ≤ κ′0 and 1 ≤ m < M ,
we can find λ1 > 0 (depending on κ and m) such that

1 =
1

2m

∫ 1

−1

−ϕ′κ(z̄)

1 + λ1 − z̄
dz̄.(58)

In addition, fixed m and κ this solution is unique and satisfies

λ1 ≥ λ∗(M) > 0,

where λ∗(M) just depends on M (it does not depend on either κ or m).

Proof. We will use the properties of ϕκ stated in Lemma 2.2. Firstly, we define the function

I(λ) :=
1

2m

∫ 1

−1

−ϕ′κ(z̄)

1 + λ− z̄
dz̄,

for λ ≥ 0. We have that I(λ) is positive, continuous, decreasing with I ′(λ) < 0 and satisfying

(59) lim
λ→+∞

I(λ) = 0.

In addition, using Lemma 2.2 we obtain the following lower bound:

I(λ) =
1

2m

∫ 1

−1

−ϕ′κ(z̄)

1 + λ− z̄
dz̄ ≥ 1

2M

∫ 1

−1

−ϕ′κ(z̄)

1 + λ− z̄
dz̄ ≥ 1

2M

∫ 1−κ

−1

−ϕ′κ(z̄)

1 + λ− z̄
dz̄

=
1

2M

∫ 1−κ

−1

−ϕ′κ(z̄)− 1
2

1 + λ− z̄
dz̄ +

1

4M

∫ 1−κ

−1

1

1 + λ− z̄
dz̄

≥ − 1

2M

1

λ+ κ
‖ϕ′κ + 1

2‖L1([−1,1−κ]) +
1

4M
(log(2 + λ)− log(λ+ κ))

≥ − C

2M

κ

λ+ κ
+

1

4M
log(2 + λ)− 1

4M
log(λ+ κ),

≥ − C

2M
− 1

4M
log(λ+ κ).

Let γ be small enough such that

1 ≤ − C

2M
− 1

4M
log(γ).

Notice that γ only depends on M . Then, taking κ′0 = γ/2 and λ∗ = γ/2, we have proved that

I(λ∗) ≥ − C

2M
− 1

4M
log(γ/2 + κ) ≥ − C

2M
− 1

4M
log(γ/2 + κ′0) ≥ 1.

for any 0 ≤ κ ≤ κ′0 = γ/2 and 1 ≤ m ≤M .
Combining the lower bound with (59) and the fact that I(λ) is strictly decreasing, we can

conclude that there exists a unique λ1 ≥ λ∗ solving (58) for all 0 ≤ κ < κ′0 and 1 ≤ m ≤M . �

After choose a suitable λ1 > λ∗(M) by Lemma 5.9, we obtain b0 through equation (57). Now,
we have all the ingredients to check the conclusions of Proposition 5.7.
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Proof of Proposition 5.7. Notice that

b0(z) =
1

1 + λ1 − z
,

solves (51) and ‖b0‖L2([−1,1]) =
√

2
(2+λ1)λ1

<
√

1
λ1
≤
√

1
λ∗(M) , with λ∗(M) given by Lemma 5.9.

We also have that ‖∂k)
z b0‖L∞([−1,1]) ≤ C(k,M). From (52) and (58) we have that a1 = 1

2e
−2m.

In order to get (56) we proceed as follow. From the identity (58) we get

1 =
1

2m

∫ 1

−1

−ϕ′κ(z̄)− 1/2

1 + λ1 − z̄
dz̄ +

1

4m

∫ 1

−1

1

1 + λ1 − z̄
dz̄ =

1

4m

(
Λ1 + log

(
2 + λ1

λ1

))
,(60)

where

Λ1 := 2

∫ 1

−1

−ϕ′κ(z̄)− 1/2

1 + λ1 − z̄
dz̄.

Solving (60) we obtain that

λ1 =
2

e4m−Λ1 − 1
,

and consequently ∣∣∣∣λ1 −
2

e4m − 1

∣∣∣∣ ≤ 2e4m

∣∣1− e−Λ1
∣∣

|e4m−Λ1 − 1| (e4m − 1)
.

One can estimate each of the terms of the last factor. Notice that numerator can be written as

|1− e−Λ1 | =
∣∣∣∣∫ 0

−1

(
d

ds
esΛ1

)
ds

∣∣∣∣ =

∣∣∣∣Λ1

∫ 1

0
e−sΛ1ds

∣∣∣∣ ≤ |Λ1|e|Λ1|.

In addition

|Λ1| ≤ 2

∫ 1

−1

|ϕ′κ(z̄) + 1
2 |

1 + λ1 − z̄
dz̄ ≤ Cκ

λ1
≤ Cκ

λ∗(M)
,

where C is a universal constant coming from Lemma 2.2. For the denominator we just note that

e4m−Λ1 − 1 ≥ e4− Cκ
λ∗(M) − 1 ≥ e2 − 1 > 1 if Cκ

λ∗(M) < 2.

Then, taking κ < κ0 ≡ min(κ′0, κ
′′
0), where κ′0 is given by Lemma 5.9 and κ′′0 = 2λ∗(M)

C , we find that∣∣∣∣λ1 −
2

e4m − 1

∣∣∣∣ ≤ C(M)κ.

for all 0 ≤ κ < κ0 and 1 ≤ m < M . �

To sum up, Proposition 5.7 shows that

‖A0‖L2 ≤C(M),

‖A1‖L2 ≤C(M) (‖aε2‖L2 + |λε2|+ |λε2|‖aε2‖L2) ,

‖B0‖L2 ≤C(M),

‖B1‖L2 ≤C(M) (‖bε1‖L2 + ‖bε1‖L2 |λε2|+ ‖aε2‖L2) .

In the following two lemmas we are going to learn how to invert the left hand side of (54).

Lemma 5.10. Let λ1 be as in Lemma 5.9 and let F ∈ L2([−1, 1]) satisfying (F,ϕ′κb0)L2 = 0. Then

f(z) := F (z)b0(z) =
F (z)

1 + λ1 − z
,

solves

(1 + λ1 − z)f(z) +
1

2m

∫ 1

−1
ϕ′κ(z̄)f(z̄)dz̄ = F (z).
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Proof. Direct computation. �

Lemma 5.11. Let λ1 be as in Lemma 5.9 and let G ∈ L2([−1, 1]). Then, if

λ :=

∫ 1
−1G(z̄)b0(z̄)ϕ′κ(z̄)dz̄∫ 1
−1 b0(z̄)b0(z̄)ϕ′κ(z̄)dz̄

,

the function

f(z) := (G(z)− λb0(z))b0(z) =
G(z)− λb0(z)

1 + λ1 − z
,

solves

(1 + λ1 − z)f(z) +
1

2m

∫ 1

−1
ϕ′κ(z̄)f(z̄)dz̄ + λb0(z) = G(z).(61)

In addition,

|λ| ≤ C(M)‖G‖L2([−1,1]).(62)

Proof. It is easy to check that F (z) := G(z) − λb0 satisfies (F,ϕ′κb0)L2 = 0 by the definition of λ.
Then, we can apply directly Lemma 5.10 to obtain (61). To conclude (62), we note that∣∣∣∣∫ 1

−1
G(z̄)b0(z̄)ϕ′κ(z̄)dz̄

∣∣∣∣ ≤ ‖G‖L2([−1,1])‖b0‖L2([−1,1])‖ϕ′κ‖L∞([−1,1]) ≤ C(M)‖G‖L2([−1,1]),

and since b0(z) > (2 + λ1)−1 we get∣∣∣∣∫ 1

−1
b0(z̄)b0(z̄)ϕ′κ(z̄)dz

∣∣∣∣ ≥ 1

2 + λ1

∫ 1

−1
−ϕ′κ(z)b0(z)dz =

2m

2 + λ1
,

where in the last step we have used (58). Combining both we have

|λ| ≤ 2 + λ1

2m
C(M)‖G‖L2([−1,1]) ≤ C(M)‖G‖L2([−1,1]).

Here we have used that λ1 < C where C is a universal constant. This is easy to check from

I(µ) =
1

2m

∫ 1

−1

−ϕ′κ(z̄)

1 + µ− z̄
dz̄ ≤ C log

(
1 +

2

µ

)
,

since for µ big enough we get that I(µ) < 1. Recall that λ1 solves the equation I(µ) = 1. �

Lemma 5.11 implies that if we solve

2aε2(z) +
e−2m

2m

∫ 1

−1
ϕ′κ(z̄)bε1(z̄)e−mε(z+z̄)dz̄ = A0[a1, b0](z) + εA1[aε2, λ

ε
2; a1, b0, λ1](z),(63)

bε1(z) = (B0[a1, b0](z) + εB1[aε2, b
ε
1, λ

ε
2](z)− λε2b0(z)) b0(z),(64)

λε2 =

∫ 1
−1(B0[a1, b0](z̄) + εB1[aε2, b

ε
1, λ

ε
2](z̄))b0(z̄)ϕ′κ(z̄)dz̄∫ 1

−1 b0(z̄)b0(z̄)ϕ′κ(z̄)dz̄
,(65)

we find a solution of (53) and (54). Now, to obtain a solution of (63), (64) and (65) we firstly
introduce (64) and (65) in the second term of the left hand side of (63) and (65) in the right hand
side of (64). In this way, a solution of
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2aε2(z) = Ã0[a1, b0](z) + εÃ1[aε2, b
ε
1, λ

ε
2; a1, b0, λ1](z),(66)

bε1(z) = B̃0[a1, b0](z) + εB̃1[aε2, b
ε
1, λ

ε
2](z),(67)

λε2 =

∫ 1
−1(B0[a1, b0](z̄) + εB1[aε2, b

ε
1, λ

ε
2](z̄))b0(z̄)ϕ′κ(z̄)dz̄∫ 1

−1 b0(z̄)b0(z̄)ϕ′κ(z̄)dz̄
,(68)

where

Ã0[a1, b0](z) = A0[a1, b0](z)− e−2m

2m

∫ 1

−1
ϕ′κ(z̄)b0(z̄)B0[a1, b0](z̄)e−mε(z+z̄)dz̄

+
e−2m

2m

∫ 1
−1B0[a1, b0](z̄)b0(z̄)ϕ′κ(z̄)dz̄∫ 1

−1 b0(z̄)b0(z̄)ϕ′κ(z̄)dz̄

(∫ 1

−1
b0(z̄)b0(z̄)ϕ′κ(z̄)e−mε(z+z̄)dz̄

)
,

Ã1[aε2, b
ε
1, λ

ε
2; a1, b0](z) = A1[aε2, b

ε
1, λ

ε
2; a1, b0](z)− e−2m

2m

∫ 1

−1
ϕ′z(z̄)b0(z̄)B1[aε2, b

ε
1, λ

ε
2](z̄)e−εm(z+z̄)dz̄

+
e−2m

2m

∫ 1
−1B1[aε2, b

ε
1, λ

ε
2](z̄)b0(z̄)ϕ′κ(z̄)dz̄∫ 1

−1 b0(z̄)b0(z̄)ϕ′κ(z̄)dz̄

(∫ 1

−1
b0(z̄)b0(z̄)ϕ′κ(z̄)e−mε(z+z̄)dz̄

)
,

and

B̃0[a1, b0](z) = b0(z)

(
B0[a1, b0](z)− b0(z)

∫ 1
−1B0[a1, b0](z̄)b0(z̄)ϕ′κ(z̄)dz̄∫ 1

−1 b0(z̄)b0(z̄)ϕ′κ(z̄)dz̄

)

B̃1[aε2, b
ε
1, λ

ε
2](z) = b0(z)

(
B1[aε2, b

ε
1, λ

ε
2](z)− b0(z)

∫ 1
−1B1[aε2, b

ε
1, λ

ε
2](z̄)b0(z̄)ϕ′κ(z̄)dz̄∫ 1

−1 b0(z̄)b0(z̄)ϕ′κ(z̄)dz̄

)
,

will give us a solution of (63), (64) and (65).

Finally, in order to solve (66), (67) and (68) we can use a contraction argument on parameter ε.
Indeed, let us call FA[aε2, b

ε
1, λ

ε
2; a1, b0](z), FB[aε2, b

ε
1, λ

ε
2; a1, b0](z), Fλ[aε2, b

ε
1, λ

ε
2; a1, b0](z) to the right

hand side of (66), (67) and (68) respectively. We define the constants values

CA := ‖Ã0[a1, b0]‖L2([−1,1]), CB := ‖B̃0[a1, b0]‖L2([−1,1]),

and

Cλ :=

∣∣∣∣∣
∫ 1
−1B0[a1, b0](z̄)b0(z̄)ϕ′κ(z̄)dz̄∫ 1

−1 b0(z̄)b0(z̄)ϕ′κ(z̄)dz̄

∣∣∣∣∣ ≤ C(M).

Note that the system (66), (67) and (68) is quadratic because of the products λε2a
ε
2 and λε2b

ε
1.

Thus, we first check that, if ‖2aε2‖L2([−1,1]) < 2CA, ‖bε1‖L2([−1,1]) < 2CB and |λε2| < 2Cλ for ε small
enough (with respect to a constant that just depends on M), then

‖FA[aε2, b
ε
1, λ

ε
2; a1, b0]‖L2([−1,1]) < 2CA,

‖FB[aε2, b
ε
1, λ

ε
2; a1, b0]‖L2([−1,1]) < 2CB,

|Fλ[aε2, b
ε
1, λ

ε
2; a1, b0]| < 2Cλ.
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In addition, for any pair u = (2aε2, b
ε
1, λ

ε
2) and ũ = (2ãε2, b̃

ε
1, λ̃

ε
2) satisfying ‖2aε2, 2ãε‖L2([−1,1]) < 2CA,

‖bε1, b̃ε1‖L2([−1,1]) < 2CB and |λε2, λ̃ε2| < 2Cλ we have that

‖FA[u; a1, b0]− FA[ũ; a1, b0]‖L2([−1,1]) ≤ εC(M)‖u− ũ‖L2([−1,1])×L2([−1,1])×R,

‖FB[u; a1, b0]− FB[ũ; a1, b0]‖L2([−1,1]) ≤ εC(M)‖u− ũ‖L2([−1,1])×L2([−1,1])×R,

|Fλ[u; a1, b0]− Fλ[ũ; a1, b0]| ≤ εC(M)‖u− ũ‖L2([−1,1])×L2([−1,1])×R.

Taking ε0 := C(M)−1, we have that right hand side of (63), (64), (65) is a contraction mapping
for all 0 < ε < ε0(M). This implies that there exist (aε2, b

ε
1, λ

ε
2) ∈ L2([−1, 1]) × L2([−1, 1]) × R,

with ‖2aε2‖L2([−1,1]) < 2CA, ‖bε1‖L2([−1,1]) < 2CB and |λε2| < 2Cλ solving (66), (67) and (68), for all
0 < ε < ε0(M).

Remark 5.12. Let us emphasize that CA, CB and Cλ are uniformly bounded by some C(M).

Therefore, we have shown the existence of a solution (λ, a, b) ∈ R × L2([−1, 1]) × L2([−1, 1])
solving (49) and (50), with

a(z) = a1ε+ aε2(z)ε2,(69)

b(z) = b0(z) + bε1(z)ε,(70)

λ = 1 + λ1ε+ λε2ε
2,(71)

and

‖aε2‖L2([−1,1]) ≤ C(M), ‖bε1‖L2([−1,1]) ≤ C(M), |λε2| ≤ C(M).(72)

Next we shall show that this solution is smooth.

5.3.2. Regularity. In order to determine the precise regularity of the constructed solution (a, b) we
proceed as follows. In first place, we recall that the system (49), (50) can be written as

(λ+ 1− ε+ εz − ε2Φκ(z))a(z) =
ε

2m

∫ 1

−1
ϕ′κ(z̄)

(
a(z̄)e−mε|z−z̄| − b(z̄)e−m|2+ε(z+z̄)|

)
dz̄,(73)

(λ− 1 + ε− εz + ε2Φκ(z))b(z) =
ε

2m

∫ 1

−1
ϕ′κ(z̄)

(
a(z̄)e−m|2+ε(z+z̄)| − b(z̄)e−mε|z−z̄|

)
dz̄.(74)

Notice that neither λ + 1 − ε + εz − ε2Φκ(z) nor λ − 1 + ε − εz + ε2Φκ(z) have zeros on the unit
interval. More specifically, for the computed eigenvalue λ = 1 + λ1ε+O(ε2) we have that

λ+ 1− ε+ εz − ε2Φκ(z) = 2 +O(ε) ≥ 1,

λ− 1 + ε− εz + ε2Φκ(z) = (1 + λ1 − z)ε+O(ε2) ≥ ε(λ1 +O(ε)).

As we have proved before that λ1 is strictly positive, see Lemma 5.9, taking ε small enough these
two quantities are not zero and we are allow to divide both sides of (73), (74) by these factors:

a(z) =
ε

2m(λ+ 1− ε+ εz − ε2Φκ(z))

∫ 1

−1
ϕ′κ(z̄)

(
a(z̄)e−mε|z−z̄| − b(z̄)e−m(2+ε(z+z̄))

)
dz̄,

b(z) =
ε

2m(λ− 1 + ε− εz + ε2Φκ(z))

∫ 1

−1
ϕ′κ(z̄)

(
a(z̄)e−m(2+ε(z+z̄)) − b(z̄)e−mε|z−z̄|

)
dz̄.

Since these terms are the factors that appear multiplying the solution (a, b) in the left hand side of
(73), (74) we have that their inverses are C∞−functions on the unit interval [−1, 1]. In addition,
the integral terms

e−mεz
∫ 1

−1
ϕ′κ(z̄)a(z̄)e−mεz̄dz̄ and e−mεz

∫ 1

−1
ϕ′κ(z̄)b(z̄)e−mεz̄dz̄,
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are also C∞−functions. Finally, the remaining integral term f(z) =
∫ 1
−1 ϕ

′
κ(z̄)a(z̄)e−mε|z−z̄|dz̄ is in

H2([−1, 1]) for a ∈ L2([−1, 1]). To see this one just has to take two derivatives on f(z) to get that

f ′′(z) = −2mεϕ′κ(z)a(z) + (mε)2f(z).

In fact, we have that f(z) ∈ Hk+2([−1, 1]) if a ∈ Hk([−1, 1]). The same hods for∫ 1

−1
ϕκ(z̄)b(z̄)e−mε|z−z̄|dz̄.

All this yields that if (a, b) ∈ Hk([−1, 1])×Hk([−1, 1]) then (a, b) ∈ Hk+2([−1, 1])×Hk+2([−1, 1])
for all k ≥ 0. Then we have proved that (a, b) ∈ C∞([−1, 1]).

5.3.3. Proof of uniqueness. Until now we have shown that there exist λ and (w+
n , w

−
n ) given by

w+
n (z) =

{
0 n 6= m,

a(z) n = m,
and w−n (z) =

{
0 n 6= m,
b(z) n = m,

with (λ, a, b) ∈ R × C∞([−1, 1]) × C∞([−1, 1]) solving (44), (45) for all n ≥ 1 and satisfying (69),
(70), (71) and (72).

To finish the proof of Theorem 5.1 we need to check that the kernel of L[λ], fixed that λ, is one
dimensional. Therefore we have to prove that the solution of system (44), (45), given by (47), (48),
(69), (70), for λ given by (71), is unique modulo multiplication by a constant. In order to prove
our goal, we will distinguish between two cases:

• Case n 6= m : Let us postpone this case to next section 5.4.2 (take W±n = 0 on that section).
• Case n = m : Let (u, v) ∈ L2([−1, 1])×L2([−1, 1]) be a solution of (49), (50), with λ given

by (71). Note that (u, v) depends on ε although we do not make explicit this dependence.
Then, let us see that for some constant C we have{

u(z) = Ca(z),

v(z) = Cb(z).

The system (49), (50) is linear in (u, v) and we can assume without loss of generality that

‖u‖2L2([−1,1]) + ‖v‖2L2([−1,1]) = 1.

If it is not the case we only need to normalized the solution and enter that value into the final
constant C. Now, using (49), we get that u(z) = εu1(z) with ‖u1‖L2([−1,1]) = O(1) in terms of ε.
This information yields from (50) that

(1 + λ1 − z)v(z) +
1

2m

∫ 1

−1
ϕ′κ(z̄)v(z̄)dz̄ = F (z),(75)

where ‖F‖L2([−1,1]) = O(ε). Just dividing (75) by (1 + λ1 − z) we have

v(z) =
C

1 + λ1 − z
+

F (z)

1 + λ1 − z
.(76)

In addition, recalling the precise form of b0(z) we obtain that

v(z) = Cb0(z) + εv1(z),(77)

where ‖v1‖L2([−1,1]) = O(1) in terms of ε and C is a constant.
Looking again (49) we have that

2u1(z) = C
e−2m

2m

∫ 1

−1
(−ϕ′κ(z̄))b0(z̄)dz̄ +G(z),
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where ‖G‖L2([−1,1]) = O(ε). Recalling the precise form of a1, see (52), forces to

u1(z) = Ca1 + εu2(z),(78)

with ‖u2‖L2([−1,1]) = O(1) in terms of ε and the same constant C than in (77).
Finally, we get a coupled system for (u2, v1) which is exactly the same as (63), (64) for (aε2, b

ε
1) up

to the multiplicative constant C. Indeed, we have, from (77) together with (55) and (78) together
with (52), that

2u2(z) +
e−2m

2m

∫ 1

−1
ϕκ(z̄)v1(z̄)e−mε(z+z̄)dz̄ = CA0[a1, b0](z) + εA1[u2;λε2, Ca1, Cb0](z),

v1(z) = b0(z)(CB0[a1, b0](z) + εB1[u2, v1;λε2](z)− Cλε2b0(z)).

This system is linear in (u2, v1) (now λ is fixed). One can check that C(aε2, b
ε
1) is a solution and

by a fixed point argument must be unique. Then (u2, v1) = C(aε2, b
ε
1) (with the same constant C

as in (78) and (77)) and consequently we have proved our goal.

5.4. Codimension of the image of the linear operator. Let λε,κ,m given by Theorem 5.1. In
order to determine the codimension in Y of the linear operator L[λε,κ,m] ≡ DfF [λε,κ,m, 0] on X,
from expression (37) we see that we have to study the equation:

(79) L[λε,κ,m]h = H,

with h ∈ X and H ∈ Y. As we did before, we will use the expansions

h(x) =
∞∑
n=1

hn(y) cos(nx), H(x) =
∞∑
n=1

Hn(y) sin(nx),

and, similarly to what we made in section 5.1, we define the auxiliary functions

H±n (y) := Hn(±y) for y ∈ [1− ε, 1 + ε],

h±n (y) := hn(±y) for y ∈ [1− ε, 1 + ε],

and

W±n (z) := H±n (1 + εz) for z ∈ [−1, 1],

w±n (z) := h±n (1 + εz) for z ∈ [−1, 1].

Then, for any ε > 0, the functional equation (79) is equivalent to solve the system

(80) − n(λm + 1− ε+ εz − ε2Φκ(z))w+
n (z)

+
ε

2

∫ 1

−1
ϕ′κ(z̄)w+

n (z̄)e−εn|z−z̄|dz̄ − εe−2n

2

∫ 1

−1
ϕ′κ(z̄)w−n (z̄)e−εn(z+z̄)dz̄ = W+

n (z),

(81) − n(λm − 1 + ε− εz + ε2Φκ(z))w−n (z)

+
εe−2n

2

∫ 1

1
ϕ′κ(z̄)w+

n (z̄)e−εn(z+z̄)dz̄ − ε

2

∫ 1

−1
ϕ′κ(z̄)w−n (z̄)e−εn|z−z̄|dz̄ = W−n (z),

for all n ≥ 1. Here λm ≡ λε,κ,m. In what follow we will omit the dependence on both ε and κ of
λε,κ,m and keep that one on m. Let us define the function

Λ+
m(z) :=λm + 1 + ε(−1 + z)− ε2Φκ(z),

Λ−m(z) :=λm − 1 + ε(+1− z) + ε2Φκ(z),
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and the operators

T+
n [u, v](z) := Λ+

m(z)u(z)− ε

2n

∫ 1

−1
ϕ′κ(z̄)u(z̄)e−εn|z−z̄|dz̄ +

εe−2n

2n

∫ 1

−1
ϕ′κ(z̄)v(z̄)e−nε(z+z̄)dz̄,

(82)

T−n [u, v](z) := Λ−m(z)v(z) +
ε

2n

∫ 1

−1
ϕ′κ(z̄)v(z̄)e−εn|z−z̄|dz̄ − εe−2n

2n

∫ 1

−1
ϕ′κ(z̄)u(z̄)e−nε(z+z̄)dz̄.

(83)

Note that T+
n and T−n are nothing but 1

nL
+
n [λm] and 1

nL
−
n [λm] respectively, with L+

n and L−n given
by (44) and (45). Therefore, the system (80), (81) is equivalent to

T+
n [w+

n , w
−
n ](z) =− 1

n
W+
n (z),(84)

T−n [w+
n , w

−
n ](z) =− 1

n
W−n (z),(85)

for all n ≥ 1.

Lemma 5.13. Let f, g, u, v ∈ L2([−1, 1]) then

−(T+
n [u, v], ϕ′κf)L2 + (T−n [u, v], ϕ′κg)L2 = −(ϕ′κu, T

+
n [f, g])L2 + (ϕ′κv, T

−
n [f, g])L2 .

Proof. Direct computation. �

Lemma 5.13 implies the following necessary condition for (84), (85) in order to be solvable:

Lemma 5.14. Let (a, b) ∈ L2([−1, 1]) given by (69) and (70). That is, the pair (a, b) solves

T+
m [a, b] = 0, T−m [a, b] = 0.

Then

−(W+
m , ϕ

′
κa)L2 + (W−m , ϕ

′
κb)L2 = 0

Proof. Direct computation. �

Next we state and prove the main theorem of this section:

Theorem 5.15. Let M > 1. There exist κ0 = κ0(M) and ε0 = ε0(M) such that for all 0 ≤ κ < κ0,
0 < ε < ε0 and 1 ≤ m < M , the following statement hold:
Let (λm, a, b) ∈ R× L2([−1, 1])× L2([−1, 1]) given by (69), (70) and (71) and {W±n }∞n=1 such that

3∑
j=0

3−j∑
k=0

∞∑
n=1

n2k‖∂jzW±n ‖2L2([−1,1]) <∞.

and

−(W+
m , ϕ

′
κa)L2 + (W−m , ϕ

′
κb)L2 = 0.

Then, there exist {w±n }∞n=1, with

3∑
j=0

4−j∑
k=0

∞∑
n=1

n2k‖∂jzw±n ‖2L2([−1,1]) <∞,

satisfying (84) and (85) for all n ≥ 1.

Proof. The proof will be split into two cases. The case n = m and the case n 6= m.
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5.4.1. The case n = m. To deal with this case we introduce the space L2([−1, 1]) with weight −ϕ′κ.
That is, L2

ϕ′κ
([−1, 1]) with inner-product and norm given by

(u, v)L2
ϕ′κ

:=

∫ 1

−1
(−ϕ′κ(z̄))u(z̄)v(z̄)dz̄,

and

‖v‖2L2
ϕ′κ

:= (v, v)L2
ϕ′κ

=

∫ 1

−1
(−ϕ′κ(z̄))|v(z̄)|2dz̄.

In addition, we define the bilinear forms

B[(u1, v1), (u2, v2)] := (T+
m [u1, v1], u2)L2

ϕ′κ
+ (T−m [u1, v1], v2)L2

ϕ′κ
,

B[v1, v2] :=

∫ 1

−1
(1 + λ1 − z̄)v1(z̄)v2(z̄)(−ϕ′κ(z̄))dz̄

− 1

2m

(∫ 1

−1
(−ϕ′κ(z̄))v1(z̄)dz̄

)(∫ 1

−1
(−ϕ′κ(z̄))v2(z̄)dz̄

)
.

We start with the properties of the bilinear form B. Notice that by definition (55) of b0 we have

B[b0, b0] = 0.

We also define the orthogonal complement of b0 in L2
ϕ′κ

([−1, 1]) :

b⊥0 := {v ∈ L2
ϕ′κ

([−1, 1]) | (b0, v)L2
ϕ′κ

= 0}.

Lemma 5.16. Let v1, v2 ∈ L2
ϕ′κ

([−1, 1]). Then, the following estimate holds

|B[v1, v2]| ≤ C‖v1‖L2
ϕ′κ
‖v2‖L2

ϕ′κ
,

where the constant C is independent of ε, κ,m. Moreover, if v ∈ b⊥0 we have

B[v, v] ≥ c(M)||v||2L2
ϕ′κ
.

Proof. The first conclusion is trivial. For the other one we need to proceed as follow. In first place,
we fix an arbitrary v ∈ b⊥0 , i.e. v ∈ L2

ϕ′κ
([−1, 1]) such that∫ 1

−1
ϕ′κ(z)v(z)b0(z) dz = 0.

Notice that by definition

B[v, v] =

∫ 1

−1
(−ϕ′κ(z))

|v(z)|2

b0(z)
dz − 1

2m

(∫ 1

−1
(−ϕ′κ(z))v(z) dz

)2

.(86)

In addition, for all µ ∈ R, we have that∫ 1

−1
(−ϕ′κ(z))v(z) dz =

∫ 1

−1
(−ϕ′κ(z))(1− µb0(z))v(z) dz =

∫ 1

−1

(−ϕ′κ(z))√
b0(z)

√
b0(z) (1− µb0(z)) v(z) dz

≤
(∫ 1

−1
(−ϕ′κ(z))

|v(z)|2

b0(z)
dz

) 1
2
(∫ 1

−1
(−ϕ′κ(z))b0(z)(1− µb0(z))2 dz

) 1
2

.

Thus

1

2m

(∫ 1

−1
(−ϕ′κ(z))v(z) dz

)2

≤ 1

2m

(∫ 1

−1
(−ϕ′κ(z))b0(z)(1− µb0(z))2 dz

)(∫ 1

−1
(−ϕ′κ(z))

|v(z)|2

b0(z)
dz

)
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and consequently

B[v, v] ≥
(

1− 1

2m

∫ 1

−1
(−ϕ′κ(z))b0(z)(1− µb0(z))2 dz

)∫ 1

−1
(−ϕ′κ(z))(1 + λ1 − z)|v(z)|2 dz.

Expanding the square we have∫ 1

−1
(−ϕ′κ(z))b0(z)(1− µb0(z))2 dz = 2m− 2µ

∫ 1

−1
(−ϕ′κ(z))|b0(z)|2 dz + µ2

∫ 1

−1
(−ϕ′κ(z))(b0(z))3 dz,

and therefore

1− 1

2m

∫ 1

−1
(−ϕ′κ(z))b0(z)(1− µb0(z))2 dz

=
µ

2m

(
2

∫ 1

−1
(−ϕ′κ(z))|b0(z)|2 dz − µ

∫ 1

−1
(−ϕ′κ(z))(b0(z))3 dz

)
.

Choosing

µ =

∫ 1
−1(−ϕ′κ(z))(b0(z))2 dz∫ 1
−1(−ϕ′κ(z))(b0(z))3 dz

,

we obtain the lower bound

1− 1

2m

∫ 1

−1
(−ϕ′κ(z))b0(z)(1− µb0(z))2 dz =

µ

2m

∫ 1

−1
(−ϕ′κ(z))|b0(z)|2 dz ≥ c(M).

Finally, as λ1 ≥ λ∗1(M) we get

B[v, v] ≥ c(M)

∫ 1

−1
(−ϕ′κ(z))(1 + λ1 − z)|v(z)|2 dz ≥ c(M)λ1‖v‖2L2

ϕ′κ
≥ c(M)‖v‖2L2

ϕ′κ
.

�

Next we shall study the bilinear for B[(u1, v1), (u2, v2)].

Lemma 5.17. Let u, v ∈ L2
ϕ′κ

([−1, 1]). Then, the following expression holds

B[(u, v), (u, v)] =2

∫ 1

−1
(−ϕ′κ(z))|u(z)|2 dz + εB[v, v] + εB1[u, u] + ε2B2[v, v],(87)

with B1, B2 given by (90), (91) and satisfying

|B1[u, u]| ≤ C‖u‖2L2
ϕ′κ
, |B2[v, v]| ≤ C‖v‖2L2

ϕ′κ
,

where the constant C is independent of ε, κ,m.
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Proof. From (82) and (83) we find that

B[(u1, v1), (u2, v2)] =

∫ 1

−1
(−ϕ′κ(z))Λ+

m(z)u1(z)u2(z) dz

+
ε

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)u1(z)u2(z̄)e−εn|z−z̄| dzdz̄

− εe−2m

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)v1(z)u2(z̄)e−εm(z+z̄) dzdz̄

+

∫ 1

−1
(−ϕ′κ(z))Λ−m(z)v1(z)v2(z) dz

− ε

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)v1(z)v2(z̄)e−εm|z−z̄| dzdz̄

+
εe−2m

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)u1(z)v2(z̄)e−εm(z+z̄) dzdz̄.

From the above expression we can check that

|B[(u1, v1), (u2, v2)]| ≤ C
(
‖u1‖L2

ϕ′κ
+ ‖v1‖L2

ϕ′κ

)(
‖u2‖L2

ϕ′κ
+ ‖v2‖L2

ϕ′κ

)
,(88)

where the constant C is independent of ε, κ,m. In addition, if (u1, v1) = (u, v) = (u2, v2) the cross
terms cancels and we obtain

B[(u, v), (u, v)] =

∫ 1

−1
(−ϕ′κ(z))Λ+

m(z)|u(z)|2 dz

+
ε

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)u(z)u(z̄)e−εm|z−z̄| dzdz̄

+

∫ 1

−1
(−ϕ′κ(z))Λ−m(z)|v(z)|2 dz

− ε

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)v(z)v(z̄)e−εm|z−z̄| dzdz̄

:= I + II.

where

I =

∫ 1

−1
(−ϕ′κ(z))Λ+

m(z)|u(z)|2 dz +
ε

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)u(z)u(z̄)e−εm|z−z̄| dzdz̄,

II =

∫ 1

−1
(−ϕ′κ(z))Λ−m(z)|v(z)|2 dz − ε

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)v(z)v(z̄)e−εm|z−z̄| dzdz̄.

We recall that

Λ+
m(z) = 2 + (−1 + λ1 + z)ε+ (λε2 − Φκ(z))ε2,

Λ−m(z) = (1 + λ1 − z)ε+ (λε2 + Φκ(z))ε2.(89)

Thus

I = 2

∫ 1

−1
(−ϕ′κ(z))|u(z)|2 dz + ε

(∫ 1

−1
(−ϕ′κ(z)) [(−1 + λ1 + z) + ε(λε2 − Φκ(z))] |u(z)|2 dz

)
+

ε

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)u(z)u(z̄)e−εm|z−z̄| dzdz̄,
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and

II = ε

∫ 1

−1
(−ϕ′κ(z))

|v(z)|2

b0(z)
dz + ε2

∫ 1

−1
ϕ′κ(z)(λε2 + Φκ(z))|v(z)|2 dz ± ε

2m

(∫ 1

−1
ϕ′κ(z)v(z) dz

)2

= εB[v, v] + ε2

∫ 1

−1
ϕ′κ(z)(λε2 + Φκ(z))|v(z)|2 dz

− ε2

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)v(z)v(z̄)

e−εm|z−z̄| − 1

ε
dzdz̄,

where in the last step we have used the expression (86).
Putting all together, we have

B[(u, v), (u, v)] =2

∫ 1

−1
(−ϕ′κ(z))|u(z)|2 dz + εB[v, v] + εB1[u, u] + ε2B2[v, v],

where

B1[u, u] :=

∫ 1

−1
ϕ′κ(z) [(−1 + λ1 + z) + ε(λε2 − Φκ(z))] |u(z)|2 dz(90)

+
1

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)u(z)u(z̄)e−mε|z−z̄| dzdz̄,

B2[v, v] :=

∫ 1

−1
ϕ′κ(z)(λε2 + Φκ(z))|v(z)|2 dz(91)

− ε2

2m

∫ 1

−1

∫ 1

−1
ϕ′κ(z)ϕ′κ(z̄)v(z)v(z̄)

e−εm|z−z̄| − 1

ε
dzdz̄.

Finally, one can see that

|B1[u, u]| ≤ C‖u‖2L2
ϕ′κ
, |B2[v, v]| ≤ C‖v‖2L2

ϕ′κ
,

for some constant C, which is independent of ε, κ,m. �

Combining all the previous results, we are in a good position to prove the following lemma.
Before that, we recall the solution (a, b) defined in previous section 5.3.1 and given by (69), (70).
We also define the orthogonal complement of (−a, b) in L2

ϕ′κ
([−1, 1])× L2

ϕ′κ
([−1, 1]):

(−a, b)⊥ :=

{
(u, v) ∈ L2

ϕ′κ
([−1, 1])× L2

ϕ′κ
([−1, 1]) | −(u, a)L2

ϕ′κ
+ (v, b)L2

ϕ′κ
= 0

}
.

Lemma 5.18. Let M > 1. There exist κ0 = κ0(M), ε0 = ε0(M) such that for all 0 < ε < ε0,
0 ≤ κ < κ0 and 1 ≤ m < M , the following estimates hold

|B[(u1, v1), (u2, v2)]| ≤ C
(
‖u1‖L2

ϕ′κ
+ ‖v1‖L2

ϕ′κ

)(
‖u2‖L2

ϕ′κ
+ ‖v2‖L2

ϕ′κ

)
,

B[(u, v), (u, v)] ≥ c(M)

(
‖u‖2L2

ϕ′κ
+ ε‖v‖2L2

ϕ′κ

)
,(92)

for all (u1, v1), (u2, v2) ∈ L2
ϕ′κ

([−1, 1])× L2
ϕ′κ

([−1, 1]) and for all (u, v) ∈ (−a, b)⊥.

Proof. Notice that the first estimate had been proved in (88). To prove (92) we start using the fact
that (u, v) ∈ (−a, b)⊥, which implies that

(v, b)L2
ϕ′κ

= (u, a)L2
ϕ′κ
.
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Recalling expressions (69) and (70) we see that

(v, b0)L2
ϕ′κ

= ε(u, a1)L2
ϕ′κ

+ ε2(u, aε2)L2
ϕ′κ
− ε(v, bε1)L2

ϕ′κ
.

Thus we can assume that v = v0 + εv1, where v0 ∈ b⊥0 and v1 ∈ span{b0}. So, we have

(v1, b0)L2
ϕ′κ

= (u, a1)L2
ϕ′κ

+ ε(u, aε2)L2
ϕ′κ
− (v, bε1)L2

ϕ′κ
.

By the explicit expressions of b0 and a1 together with the upper bounds (72), we obtain

(93) ‖v1‖L2
ϕ′κ
≤ C(M)(‖u‖L2

ϕ′κ
+ ‖v‖L2

ϕ′κ
).

By the definition of v as the sum of two orthogonal functions we have

(94) ‖v‖2L2
ϕ′κ

= ‖v0‖2L2
ϕ′κ

+ ε2‖v1‖2L2
ϕ′κ
.

In addition, combining (93), (94) we get

‖v0‖2L2
ϕ′κ

= ‖v‖2L2
ϕ′κ
− ε2‖v1‖2L2

ϕ′κ
≥ ‖v‖2L2

ϕ′κ
− C(M)ε2(‖u‖2L2

ϕ′κ
+ ‖v‖2L2

ϕ′κ
)(95)

≥ c(M)‖v‖2L2
ϕ′κ
− C(M)ε2‖u‖2L2

ϕ′κ
,

for ε small enough.
We then can estimate

B[v, v] =B[v0, v0] + εB[v0, v1] + εB[v1, v0] + ε2B[v1, v1](96)

≥c(M)‖v0‖2L2
ϕ′κ
− Cε(‖u‖2L2

ϕ′κ
+ ‖v‖2L2

ϕ′κ
)

≥c(M)‖v‖2L2
ϕ′κ
− C(M)ε‖u‖2L2

ϕ′κ
,

where we have used Lemma 5.16, inequality (95) and taken ε small enough.
Finally, from (96) and (87) we achieve the conclusion of the lemma. Recall that (87) tell us that

B[(u, v), (u, v)] = 2‖u‖2L2
ϕ′κ

+ εB[v, v]− Cε‖u‖2L2
ϕ′κ
− Cε2‖v‖2L2

ϕ′κ

≥ 2‖u‖2L2
ϕ′κ

+ c(M)ε‖v‖2L2
ϕ′κ
− C(M)ε2‖u‖2L2

ϕ′κ
− Cε‖u‖2L2

ϕ′κ
− Cε2‖v‖2L2

ϕ′κ

≥ c(M)

(
‖u‖2L2

ϕ′κ
+ ε‖v‖2L2

ϕ′κ

)
,

where in the last step we are taking ε small enough. �

Then we have all the ingredients to prove the main result of this section. We just need to consider
the functional equation

B[(u1, v1), (u, v)] = − 1

m
(W+

m , u)L2
ϕ′κ
− 1

m
(W−m , v)L2

ϕ′κ
, for all (u, v) ∈ (−a, b)⊥.(97)

Combining Lemma 5.18 and Lax-Milgram theorem, there exists (u1, v1) ∈ (−a, b)⊥ satisfying (97).
This implies that there exist γ ∈ R such that

(T+
m [u1, v1], T−m [u1, v1]) = − 1

m
(W+

m ,W
−
m) + γ(−a, b).

But then, taking the inner product on L2
ϕ′κ

([−1, 1])× L2
ϕ′κ

([−1, 1]) against (−a, b), we get

−(T+
m [u1, v1], a)L2

ϕ′κ
+ (T−m [u1, v1], b)L2

ϕ′κ
= − 1

m
(−(W+

m , a)L2
ϕ′κ

+ (W−m , b)L2
ϕ′κ

) + γ(‖a‖2L2
ϕ′κ

+ ‖b‖2L2
ϕ′κ

).
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Since T+
m [a, b] = 0 and T−m [a, b] = 0, we have that

−(T+
m [u1, v1], a)L2

ϕ′κ
+ (T−m [u1, v1], b)L2

ϕ′κ
= 0, by Lemma 5.13,

− 1

m
(−(W+

m , a)L2
ϕ′κ

+ (W−m , b)L2
ϕ′κ

) = 0, by Lemma 5.14,

which implies that γ = 0. Therefore, there exist (u1, v1) ∈ L2
ϕ′κ

([−1, 1])× L2
ϕ′κ

([−1, 1]) satisfying

(T+
m [u1, v1], T−m [u1, v1]) = − 1

m
(W+

m ,W
−
m).(98)

Next we shall improve the regularity of (u1, v1). By (92) and (97), we have that

‖u1‖2L2
ϕ′κ

+ ε‖v1‖2L2
ϕ′κ
≤ C(M)B[(u1, v1), (u1, v1)] = −C(M)

m

(
(W+

m , u1)L2
ϕ′κ

+ (W−m , v1)L2
ϕ′κ

)
≤ C(M)

(
‖W+

m‖L2
ϕ′κ
‖u1‖L2

ϕ′κ
+ ‖W−m‖L2

ϕ′κ
‖v1‖L2

ϕ′κ

)
≤ C(M)

(
‖W+

m‖2L2
ϕ′κ

+
1

ε
‖W−m‖2L2

ϕ′κ

)
+

1

2

(
‖u1‖2L2

ϕ′κ
+ ε‖v1‖2L2

ϕ′κ

)
,

where in the last step we have used the generalized Young inequality. Since ϕ′κ ∈ L∞([−1, 1]), we
get the right-hand side of the following expression in the unweighted L2([−1, 1])−norm.

‖u1‖2L2
ϕ′κ

+ ε‖v1‖2L2
ϕ′κ
≤ C(M)

(
‖W+

m‖2L2 +
1

ε
‖W−m‖2L2

)
.(99)

Let us look to (85). We can write this equation in the following way

v1(z) =− ε

2mΛ−m(z)

∫ 1

−1
ϕ′κ(z̄)v1(z̄)e−εm|z−z̄|dz̄(100)

+
ε

2mΛ−m(z)
e−2m

∫ 1

−1
ϕ′κ(z̄)u1(z̄)e−εm(z+z̄)dz̄ − 1

mΛ−m(z)
W−m(z).

Recalling (89) we have

(101) ‖1/Λ−m‖L∞([−1,1]) ≤
C(M)

ε
, and ‖ε/Λ−m‖L∞([−1,1]) ≤ C(M).

Then, taking the L2([−1, 1]) norm of (100) yields

‖v1‖L2 ≤ C(M)

(
‖v1‖L2

ϕ′κ
+ ‖u1‖L2

ϕ′κ
+

1

ε
‖W−m‖L2

)
,

and using inequality (99) give us

‖v1‖L2 ≤
C(M)√

ε

(
‖W+

m‖L2 +
1√
ε
‖W−m‖L2

)
+ C(M)

(
‖W+

m‖L2 +
1√
ε
‖W−m‖L2

)
+
C(M)

ε
‖W−m‖L2

≤C(M)

ε

(
‖W+

m‖L2 + ‖W−m‖L2

)
.

Once we have proved that v1 ∈ L2([−1, 1]) we only have to take derivatives on expression (100),
but before that, we observe that

(102) ‖1/Λ−m‖Ẇk,∞([−1,1]) ≤
C(M)

ε
, and ‖ε/Λ−m‖Ẇk,∞([−1,1]) ≤ C(M), for k = 1, 2.

For k = 3 we need to distinguish between degenerate (κ = 0) and non-degenerate (κ > 0) case:

(103) ‖1/Λ−m‖Ẇ 3,∞([−1,1]) ≤

{
C(M)
εκ κ > 0,

C
ε κ = 0,

and ‖ε/Λ−m‖Ẇ 3,∞([−1,1]) ≤

{
C(M)
κ κ > 0,

C κ = 0.
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Proof of (102). Note that

∂1)
z

(
1

Λ−m(z)

)
= −∂zΛ−m(z)

(
1

Λ−m(z)

)2

,

∂2)
z

(
1

Λ−m(z)

)
= −∂2)

z Λ−m(z)

(
1

Λ−m(z)

)2

− 2∂1)
z Λ−m(z)

(
1

Λ−m(z)

)
∂1)
z

(
1

Λ−m(z)

)
,

with

Λ−m(z) = (1 + λ1 − z)ε+ (λε2 + Φκ(z))ε2,

∂zΛ
−
m(z) = −ε+ Φ′κ(z)ε2,

∂2
zΛ−m(z) = Φ′′κ(z)ε2,

give us (102) for k = 1 by (101). Similarly, we get (102) for k = 2 by (101) and (102) for k = 1. �

Proof of (103). For k = 3 we have the expression

∂3)
z

(
1

Λ−m(z)

)
=− ∂3)

z Λ−m(z)

(
1

Λ−m(z)

)2

− 4∂2)
z Λ−m(z)

(
1

Λ−m(z)

)
∂1)
z

(
1

Λ−m(z)

)
(104)

− 2∂1)
z Λ−m(z)

(
∂1)
z

(
1

Λ−m(z)

))2

− 2∂1)
z Λ−m(z)

(
1

Λ−m(z)

)
∂2)
z

(
1

Λ−m(z)

)
.

The difference between degenerate and non-degenerate case is due to the factor:

∂3
zΛ−m(z) = Φ′′′κ (z)ε2 = ϕ′′κ(z)ε2.

Note that for the degenerate case, we have that ϕ = 1−z
2 is a linear function and the above term

vanishes. In contrast, for the non-degenerate case (κ > 0) we obtain the bound

‖∂3
zΛ−m‖L∞([−1,1]) = ‖ϕ′′κ‖L∞([−1,1])ε

2 ≤ C

κ
ε2.

Finally, by taking the L∞([−1, 1])−norm on both sides of (104) and combining previous estimates
(101) and (102) we arrive to the required result. �

Remark 5.19. Notice that the bound obtained in (103) is completely natural due to the fact that

ϕ′κ(z)
κ→0−−−→ −1

2
χ[−1,1](z), in H

3
2
−(R),

but not in higher-order regularity spaces. Then, for κ > 0 the Sobolev embedding just give us

‖ϕ′′κ‖L∞([−1,1]) . ‖ϕ′κ‖H 3
2+([−1,1])

≤ C

κ
.

Therefore, we have proved

‖v1‖Hk ≤ cκ
C(M)

ε

(
‖W+

m‖Hk + ‖W−m‖Hk

)
,

for k = 0, 1, 2 and 3 with

(105) cκ :=

{
1 if κ = 0,

κ−1 if κ > 0.
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Proceeding similarly for u1, we have the expression:

u1(z) =
ε

2mΛ+
m(z)

∫ 1

−1
ϕ′κ(z̄)u1(z̄)e−εm|z−z̄|dz̄(106)

− ε

2mΛ+
m(z)

e−2m

∫ 1

−1
ϕ′κ(z̄)v1(z̄)e−εm(z+z̄)dz̄ − 1

mΛ+
m(z)

W+
m(z).

Now, since

Λ+
m(z) = 2 + (−1 + λ1 + z)ε+ (λε2 − Φκ(z))ε2,

∂zΛ
+
m(z) = ε− Φ′κ(z)ε2,

∂2
zΛ+

m(z) = −Φ′′κ(z)ε2,

∂3
zΛ+

m(z) = −Φ′′′κ (z)ε2,

we observe that

‖1/Λ+
m‖Ẇk,∞([−1,1]) ≤ ε

k, and ‖ε/Λ+
m‖Ẇk,∞([−1,1]) ≤ ε

k+1, for k = 0, 1, 2.

and
‖1/Λ−m‖Ẇ 3,∞([−1,1]) ≤ cκε

2 and ‖ε/Λ−m‖Ẇ 3,∞([−1,1]) ≤ cκε
3.

Therefore, we have proved that

‖u1‖Hk ≤ cκ
(
‖W+

m‖Hk + ‖W−m‖Hk

)
,

for k = 0, 1, 2, 3 and cκ given by (105).

5.4.2. The case n 6= m. In this case we have to solve

Λ+
m(z)u(z)− ε

2n

∫ 1

−1
ϕ′κ(z̄)u(z̄)e−εn|z−z̄|dz̄ +

εe−2n

2n

∫ 1

−1
ϕ′κ(z̄)v(z̄)e−εn(z+z̄)dz̄ = − 1

n
W+
n (z),(107)

Λ−m(z)

ε
v(z) +

1

2n

∫ 1

−1
ϕ′κ(z̄)v(z̄)e−εn|z−z̄|dz̄ − e−2n

2n

∫ 1

−1
ϕ′κ(z̄)u(z̄)e−εn(z+z̄)dz̄ = − 1

nε
W−n (z).(108)

Since Λ+
m(z) = O(1) we can divide (107) by Λ+

m(z) to get

u(z) = − 1

nΛ+
m(z)

W+
n (z) + εU [u, v](z),(109)

where

U [u, v](z) :=
1

2nΛ+
m(z)

∫ 1

−1
ϕ′κ(z̄)u(z̄)e−εn|z−z̄|dz̄ − e−2n

2nΛ+
m(z)

∫ 1

−1
ϕ′κ(z̄)v(z̄)e−εn(z+z̄)dz̄.

And then we can write (108), using (109) as

(1 + λ1 − z)v(z) +
1

2n

∫ 1

−1
ϕ′κ(z̄)v(z̄)dz̄ =− 1

nε
W−n (z)(110)

+
e−2n

2n

∫ 1

−1
ϕ′κ(z̄)

(
− 1

nΛ+
m(z̄)

W+
n (z̄)

)
e−εn(z+z̄)dz̄

+εV [u, v](z),

where

V [u, v](z) :=− (λε2 + Φκ(z))v(z) +
1

2n
e−2n

∫ 1

−1
ϕ′κ(z̄)U [u, v](z̄)e−εn(z+z̄)dz̄

− 1

2n

∫ 1

−1
ϕ′κ(z̄)v(z̄)

e−nε|z−z̄| − 1

ε
dz̄.
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In order to solve (110), we will use the following lemma.

Lemma 5.20. Let F ∈ L2([−1, 1]). Then, the unique solution to

(1 + λ1 − z)f(z) +
1

2n

∫ 1

−1
ϕ′κ(z̄)f(z̄)dz̄ = F (z),(111)

is given by

f(z) =
1

1 + λ1 − z

(
F (z) +

1

2(m− n)

∫ 1

−1
ϕ′κ(z̄)

F (z̄)

1 + λ1 − z̄
dz̄

)
.

Proof. If f(z) is a solution of (111) then

f(z) =
C

1 + λ1 − z
+

F (z)

1 + λ1 − z
,(112)

for some constant C. Plugging this expression of f into (111) yields

C +
C

2n

∫ 1

−1

ϕ′κ(z̄)

1 + λ1 − z̄
dz̄ +

1

2n

∫ 1

−1
ϕ′κ(z̄)

F (z̄)

1 + λ1 − z̄
dz̄ = 0,

Then, using (58) we get

C

(
1− 2m

2n

)
= − 1

2n

∫ 1

−1
ϕ′κ(z̄)

F (z̄)

1 + λ1 − z̄
dz̄,

or

C =
1

2(m− n)

∫ 1

−1
ϕ′κ(z̄)

F (z̄)

1 + λ1 − z̄
dz̄.(113)

Conversely, it is easy to check that f in (112), with C given by (113), solves the equation (111). �

To finish, let us introduce

I[F ](z) :=
1

1 + λ1 − z

(
F (z) +

1

2(m− n)

∫ 1

−1
ϕ′κ(z̄)

F (z̄)

1 + λ1 − z̄
dz̄

)
,

and

W (z) := − 1

nε
W−n (z) +

e−2n

2n

∫ 1

−1
ϕ′κ(z̄)

(
− 1

nΛ+
m(z̄)

W+
n (z̄)

)
e−εn(z+z̄)dz̄.

By using Lemma 5.20, equation (110) can be written as

v(z) = I[W ](z) + εI[V [u, v]](z).(114)

The coupled system given by (109) and (114) is a linear contraction on L2([−1, 1]) for ε small
enough. Therefore, there exists a unique (u, v) ∈ L2([−1, 1])×L2([−1, 1]) solving (109), (114) with

‖u‖L2 + ‖v‖L2 ≤
C(M)

εn

(
‖W+

n ‖L2 + ‖W−n ‖L2

)
Therefore, this (u, v) is the unique solution of (107) and (108). Taking derivatives on (109) and

(114) we find that actually

‖u‖Hk + ‖v‖Hk ≤ cκ
C(M)

εn

(
‖W+

n ‖Hk + ‖W−n ‖Hk

)
for k = 0, 1, 2, 3 and cκ given by (105).

Then we have achieved all the conclusions of Theorem 5.15. �
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5.5. The transversality property. To check the complete assumptions of Crandall-Rabinowitz’s
theorem it remains to prove the transversality assumption. In order to do this is enough to show
that

D2
λ,fF [λε,κ,m, 0]hε,κ,m 6∈ R(Lε,κ[λε,κ,m]), where N (Lε,κ[λε,κ,m]) = span {hε,κ,m}.

This will be done in a straightforward way without any difficulty. Recall that for any m ∈ N
we have proved before that there exist an eigenvalue λε,κ,m ∈ R given by Theorem 5.1 such that
N (Lε,κ[λε,κ,m]) = span {hε,κ,m}, where hε,κ,m(x) = h(y) cos(mx) and with h given by

(115) h(y) =

{
a(+y−1

ε ) if y ∈ [+1− ε,+1 + ε],

b(−y−1
ε ) if y ∈ [−1− ε,−1 + ε].

To finish, let us proceed by reduction to absurd. Since D2
λ,fF [λε,κ,m, 0]hε,κ,m = −h(y)m sin(mx),

using Lemma 5.14 we have that if D2
λ,fF [λε,κ,m, 0]hε,κ,m ∈ R(Lκ,ε[λε,κ,m]), then

−‖a‖2L2
ϕκ

+ ‖b‖2L2
ϕκ

= 0.

This give us a contradiction since ‖a‖L2
ϕ′κ

= O(ε) and ‖b‖L2
ϕ′κ

= O(1) and concludes the last required

condition of Crandall-Rabinowitz theorem 3.1.

6. Main theorem

After verifying all the conditions for the application of the Crandall-Rabinowitz theorem 3.1 and
the discussion in Section 2 we obtain the following theorem:

Theorem 6.1. Fixed 1 < M < ∞. There exist ε0(M), κ0(M) such that, for every 0 < ε < ε0,
0 < κ < κ0 and m ∈ N, m < M , there exist a branch of solutions, fσε,κ,m ∈ H4,3(Dε) parameterize
by σ, of equation (16), with |σ| < σ0, for some small number σ0 > 0, $ε,κ as in section 2.3 and
λ = λσε,κ,m. These solutions satisfy:

(1) fσε,κ,m(x, y) is 2π
m−periodic on x.

(2) The branch

fσε,κ,m = σhε,κ,m + o(σ) in H4,3(Dε),

and the speed

λσε,κ,m = λε, κ,m + o(1),

where (λε,κ,σ, hε,κ,m) are given in Theorem 5.1 and Remark 5.4.
(3) fσε,κ,m(x, y) depends on x in a nontrivial way.

In addition, the vorticity ωσκ,σ,m ∈ H4,3(T× R), given implicitly by

ωσε,κ,m(x1, x2) = $ε,κ(y),

for (x1, x2) = (x, y + fσε,κ,m(x, y)) with x ∈ T and y ∈ [−1− ε,−1 + ε] ∪ [1− ε, 1 + ε],

ωσε,κ,m(x1, x2) = ε,

for x1 ∈ T and −1 + ε+ fσε,κ,m(x1,−1 + ε) < x2 < 1− ε+ fσε,κ,m(x1, 1− ε), and

ωσε,κ,m(x1, x2) = 0,

for x1 ∈ T and either x2 > 1 + ε+ fσε,κ,m(x1, 1 + ε) or x2 < −1− ε+ fσε,κ,m(x1,−1− ε),
yields a traveling way solution for 2D Euler in the sense that

ωσε,κ,m(x1 + λσε,κ,mt, x2)

satisfies the system (2). Importantly, ωσε,κ,m(x1, x2) depends non trivially on x1.
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Proof. The only statement in the previous theorem that it remains to prove is the property (1)
about the periodicity of fσε,κ,m on x. Note that fσε,κ,m bifurcates in the direction cos(mx) but this

fact does not implies, in principle, that fσε,κ,m is 2π
m -periodic on x since the remainder could be not.

However, if f(x, y) is 2π
m -periodic on x, the functional F$ε,κ [λ, f] in (17) is 2π

m -periodic on x. So, we

can add to the spaces X(Dε) and Y (Dε) the condition of consisting of 2π
m -periodic function on x.

If we do this, F$ε,κ still goes from X(Dε) to Y (Dε). With these new spaces we can again check
all the hypothesis of the C-R theorem (the proof goes along the same lines). This fact gives us the
2π
m -periodicity of the solutions. �

Then, in order to prove Theorem 1.1 it remains to prove that H
3
2
−(T × R)-norm of ωσε,κ,m can

be made as small as we want and that ωσε,κ,σ ∈ C∞(T× R). We do this in Theorems 6.2 and 6.4.

6.1. Distance of the traveling wave to the Couette flow. The solution ωσε,κ,m obtained in
Theorem 6.1 satisfies the following statement:

Theorem 6.2. Fixed M > 1, 0 < κ < κ0 and 0 < γ < 3
2 , for all ε > 0 and 1 ≤ m < M , there exist

ε > 0 and σ > 0 such that

‖ωσε,κ,m‖Hγ(T×R) < ε.

Proof. Let us emphasis that we can make ‖fσε,κ,m‖H4,3 arbitrarily small fixed ε, κ and m, taking σ
small. We have all the ingredients to obtain a quantitative estimate of the distance between the

Couette flow and the constructed traveling wave. We could compute the H
3
2
− norm of wσε,κ,m from

the expression

Λγwσε,κ,m(x) = kγ

∫
R2

wσε,κ,m(x)− wσε,κ,m(y)

|x− y|2+γ
dy.

We could show that this quantity is as small as we want by making σ and ε small with independence

of κ. We recall that $ε,0 is in H
3
2
−. However, to avoid tedious computations, we will take a shortcut

using interpolation of Sobolev norms:

‖g‖Ḣs . ‖g‖1−sL2 ‖g‖sḢ1 , (0 < s < 1),

which (taking 0 < γ � 1) give us

(116) ‖w + 1‖
Ḣ

3−γ
2
≡ ‖ω‖

Ḣ
3−γ
2
. ‖ω‖

1+γ
2

Ḣ1
‖ω‖

1−γ
2

Ḣ2
.

Remark 6.3. This way of proceeding will make us lose the independence on κ. But since we are
actually interested on the case κ > 0 it will be good enough.

To alleviate the notation let us skip the subscripts (ε, κ,m) and the superscript σ on wσε,κ,m,
ωσε,κ,m, and fσε,κ,m in the rest of the section. We will keep $ε,κ and ϕκ as we did before.

In order to compute the right-hand side of (116), we have that

(117) ∇ω(x, y + f(x)) =
$′ε,κ(y)

1 + fy(x)
(−fx(x), 1), on supp(∇ω),

thus, making the appropriate change of variables, we obtain

‖ω‖2
Ḣ2 =

∫
T×R

∣∣∇2ω(x)
∣∣2 dx =

∫
supp(∇2ω)

∣∣∂2ω(x)
∣∣2 dx

=

∫
Dε

|∇2ω(x, y + f(x))|2(1 + fy(x))dx,
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and computing second order derivatives we get

∂2
xω(x, y + f(x)) =A1(x)$′ε,κ(y) +A2(x)$′′ε,κ(y),

∂2
yω(x, y + f(x)) =A3(x)$′ε,κ(y) +A4(x)$′′ε,κ(y),

∂2
xyω(x, y + f(x)) =A5(x)$′ε,κ(y) +A6(x)$′′ε,κ(y),

where Ai for i = 1, ..., 6 are functions which depend on ∂xf, ∂yf, ∂
2
xf, ∂

2
y f, ∂

2
xyf.

The H4,3−norm of f could depend on ε badly. However we always could choose σ small enough
in such a way that the H4,3-norm of f is small. Noticing that H4,3 ⊂ C2 (see [15, Lemma 4.1]) we
have that Ai for i = 1, ..., 6 are bounded functions. Then, we have that

‖ω‖Ḣ1 ≈ ‖$′ε,κ‖L2(Iε),

‖ω‖Ḣ2 ≈ ‖$′ε,κ‖L2(Iε) + ‖$′′ε,κ‖L2(Iε).

Let us note that by parity of the profile $ε,κ on Iε = [−1 − ε,−1 + ε] ∪ [+1 − ε,+1 + ε], we can
just reduced our problem to study the following norms:

‖$′ε,κ‖L2([1−ε,1+ε]), ‖$′′ε,κ‖L2([1−ε,1+ε]).

Recalling the definitions of $ε,κ and ϕκ in section 2.3. We have that

$′ε,κ(y + 1) = −
ψ′κ
(y
ε

)∫ 1
−1 ψ

′
ε,κ(z̄)dz̄

, for |y| ≤ ε.

At this point it does not matter to consider the normalization factor
∫ 1
−1 ψ

′
κ(z̄)dz̄. Then

(118) ‖$′ε,κ‖L2([1−ε,1+ε]) =

∫ 1+ε

1−ε
|$′ε,κ(y)|2 dy =

∫ ε

−ε

∣∣∣ψ′κ (yε)∣∣∣2 dy ≤ 2ε‖ψ′κ‖2L∞([−1,1]),

and

‖$′′ε,κ‖L2([1−ε,1+ε]) =

∫ 1+ε

1−ε
|$′′ε,κ(y)|2 dy =

1

ε2

∫ ε

−ε

∣∣∣ψ′′κ (yε)∣∣∣2 dy.(119)

Since

ψ′κ(z) =

∫ 1+κ

−1+κ
Θκ(z − z̄)dz̄,

thus

ψ′′κ(z) = Θκ(z − (1− κ))−Θκ(z − (−1 + κ)),

and

ψ′′κ

(y
ε

)
=

1

κ

(
Θ

(
y − ε(1− κ)

εκ

)
−Θ

(
y − ε(−1 + κ)

εκ

))
.

Putting the above expression into (119) we get

‖$′′ε,κ‖L2([1−ε,1+ε]) ≤
1

ε2κ2

(∫ ε

−ε

∣∣∣∣Θ(y − ε(1− κ)

εκ

)∣∣∣∣2 dy +

∫ ε

−ε

∣∣∣∣Θ(y − ε(−1 + κ)

εκ

)∣∣∣∣2 dy

)
.

Now, we make the changes of variables ỹ = y− ε(1− κ) in the first integral and ỹ = y− ε(−1 + κ)
in the second one. Note that the limits of integration will be (−ε(2− κ), εκ) and (−εκ, ε(2− κ)),
respectively. But ε(2− κ) > εκ for κ < 1, and the support of Θ(ỹ/εκ) is inside of (−εκ, εκ). Thus
both integrals run from −εκ to εκ:

(120) ‖$′′ε,κ‖L2([1−ε,1+ε]) ≤
2

ε2κ2

∫ εκ

−εκ

∣∣∣Θ( y
εκ

)∣∣∣2 dy ≤ 4

εκ
‖Θ‖2L∞([−1,1]).
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Therefore, combining (118) and (120), there exists C > 0 such that

‖w + 1‖
Ḣ

3−γ
2
≡ ‖ω‖

Ḣ
3−γ
2
. ‖ω‖

1+γ
2

Ḣ1
‖ω‖

1−γ
2

Ḣ2
≤ Cε

1+γ
4 ε

−1+γ
4 κ

−1+γ
4 ≤ Cε

γ
2 κ
−1+γ

4 .

In addition

‖w + 1‖L2 ≡ ‖ω‖L2 . ε.

Consequently, for any ε > 0 and for any 0 < s < 3/2, taking ε and σ small enough, we find a
traveling wave such that its vorticity satisfies ‖wσε,κ,m + 1‖Hs(T×R) < ε. �

6.2. Full regularity of the solution. This section is devote to proving the following result.

Theorem 6.4. The solution ωσε,κ,m in Theorem 6.1 is actually C∞(T× R).

Proof. In order to prove this theorem we will use equation (16), i.e.,

(λσε,κ,m + y + fσε,κ,m(x)− u1[fσε,κ,m](x))∂xf
σ
ε,κ,m(x) = u2[fσε,κ,m](x), x ∈ Dε = T× Iε,

where

u1[fσε,κ,m](x) =
1

4π

∫
T×Iε

$′ε,κ(ȳ) log
(
cosh(y − ȳ + fσε,κ,m(x)− fσε,κ,m(x̄))− cos(x− x̄)

)
dx̄,

and

u2[fσε,κ,m](x) =
−1

4π

∫
T×Iε

$′ε,κ(ȳ) log
(
cosh(y − ȳ + fσε,κ,m(x)− fσε,κ,m(x̄))− cos(x− x̄)

)
∂xf

σ
ε,κ,m(x̄)dx̄.

Let us remove the superscript σ and the subscripts ε, κ and m from fσε,κ,m to alleviate the notation.
First of all we notice that, since f ∈ X(Dε) by construction, in particular it is mean zero in x.

So, we can recover f from ∂xf through the expression

f(x) = Int[∂xf](x) :=

∫ x

0
∂xf(x̄, y)dx̄− 1

2π

∫ π

−π

(∫ x̄

0
∂xf(x̃, y)dx̃

)
dx̄, x > 0.

Therefore, if ∂xf ∈ Hk(Dε) then it is clear that f ∈ Hk+1,k(Dε). Next, we will show that if
∂xf ∈ Hk(Dε), then in fact f ∈ Hk+1(Dε) for k ≥ 3. Using the above expressions we have that, if
∂xf ∈ Hk(Dε) then ui[f] ∈ Hk+1(Dε) for i = 1, 2. In addition, we can split u1[f] in the following
way

u1[f](x) = Ωε,κ(y) + (u1[f](x)− Ωε,κ(y)) ,

where (see (38))

Ωε,κ(y) =
1

4π

∫
T×Iε

$′ε,κ(ȳ) log (cosh(y − ȳ)− cos(x− x̄)) dx̄ =

∫ y

0
$ε,κ(ȳ)dȳ.

Let us fix k = 3, i.e. ∂xf ∈ H3(Dε) and prove that in fact f ∈ H4(Dε). Then we have

‖u1[f]− Ωε,κ‖L∞ ≤ σ Cε,κ,M ,
‖u2[f]‖H4 ≤ σ Cε,κ,M ,

and

λσε,κ,m + y − Ωε,κ(y) ≥ λσε,κ,m ≥ cε,κ,M > 0.

Then, taking σ small enough we obtain

λσε,κ,m + y + f(x)− u1[f](x) > cε,κ,M ,(121)

and we can write

∂xf(x) =
1

λσε,κ,m + y + f(x)− u1[f](x)
u2[f](x).(122)
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To get extra regularity on the vertical variable let us take three derivatives on y in (122) to obtain

∂x∂
3
y f(x) +

u2[f ](x)(
λσε,κ,m + y + f(x)− u1[f](x)

)2∂3
y f(x) = terms at least in H0,1(Dε).

For σ small enough such that (121) holds, let us define, for g ∈ {h ∈ L2(Dε) :
∫ π
−π h(x, y) dx = 0}

the operator

T [f]g := g +
u2[f](

λσε,κ,m + y + f − u1[f]
)2 Int[g].

For any F ∈ L2(Dε) there exists T−1[f], such that, if g ∈ {h ∈ L2(Dε) :
∫ π
−π h(x, y) dx = 0} satisfies

T [f]g = F,

then

g = T−1[f]F.

In addition

T−1[f] : H0,1(Dε)→ H0,1(Dε).

Therefore, ∂x∂
3
y f is in H0,1(Dε). Finally, we can iterate this process to show that f is in C∞(Dε).

�

7. Appendix

In order to facilitate the presentation of the manuscript, we collect in this section all the technical
lemmas used previously. We start recalling the definition of the kernel given by

(123) K[g](x, x̄) := log [cosh(ȳ + ∆x̄[g](x))− cos(x̄)] ,

where

∆x̄[g](x) := g(x)− g(x− x̄).

In order to take derivatives into the kernel (123) we have introduced the following two functions

Ψ1[g](x, x̄) :=
sinh(ȳ + ∆x̄[g](x))

cosh(ȳ + ∆x̄[g](x))− cos(x̄)
,

Ψ2[g](x, x̄) :=
cosh(ȳ + ∆x̄[g](x))

cosh(ȳ + ∆x̄[g](x))− cos(x̄)
,

with derivatives given by the expressions

∂xΨ1[g](x, x̄) = [Ψ2[g]−Ψ2
1[g]](x, x̄)∆x̄[∂xg](x),(124)

∂xΨ2[g](x, x̄) = [Ψ1[g] (1−Ψ2[g])](x, x̄)∆x̄[∂xg](x).(125)

Combining (123) with (124) and (125) it is just a matter of algebra to obtain

∂xK[g](x, x̄) = Ψ1[g](x, x̄)∆x̄[∂xg](x),

∂2
xK[g](x, x̄) = [Ψ2[g]−Ψ2

1[g]](x, x̄) (∆x̄[∂xg](x))2 + Ψ1[g](x, x̄)∆x̄[∂2
xg](x),

∂3
xK[g](x, x̄) = Ψ1[g](x, x̄)[1− 3Ψ2[g] + 2Ψ2

1[g]](x, x̄) (∆x̄[∂xg](x))3

+ 3[Ψ2[g]−Ψ2
1[g]](x, x̄)∆x̄[∂xg](x)∆x̄[∂2

xg](x) + Ψ1[g](x, x̄)∆x̄[∂3
xg](x).

Now, before starting with the proof of the lemmas, we remember the Taylor expansion of the
trigonometric functions involved in the definition of Ψi(x, x̄) for i = 1, 2.

sinh(z) :=

+∞∑
n=0

z2n+1

(2n+ 1)!
, cosh(z) :=

+∞∑
n=0

z2n

(2n)!
, and cos(z) :=

+∞∑
n=0

(−1)nz2n

(2n)!
.
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Using the above expressions, it is simple to check that there exists some constant C(‖g‖H3(Dε))
such that for any x̄ ∈ T× R with |x̄| � 1, we get

| cosh(ȳ + ∆x̄[g](x))| ≤ C(‖g‖H3(Dε)),

| sinh(ȳ + ∆x̄[g](x))| ≤ C(‖g‖H3(Dε))|x̄|,
| cosh(ȳ + ∆x̄[g](x))− cos(x̄)| ≥

(
1
2 − ‖g‖H3(Dε)

)
|x̄|2 − C(‖g‖H3(Dε))|x̄|

4,(126)

and as an immediate consequence we obtain the following result.

Corollary 7.1. Let g ∈ Bδ(H3(Dε)) with 0 < δ(ε)� 1. For x̄ ∈ T×R such that |x̄| � 1 we have

|Ψi[g](x, x̄)| ≤
C(‖g‖H3(Dε))

1− C(‖g‖H3(Dε))

1

|x̄|i
for i = 1, 2.

Now, we focus our attention in the higher order derivatives ∂2
xK[g](x, x̄) and ∂3

xK[g](x, x̄). It
will be convenient to introduce some notation in order to handle these terms. To be more specific,
we will use the following expressions:

∂2
xK[g](x, x̄) = I1[g](x, x̄) + I2[g](x, x̄),(127)

∂3
xK[g](x, x̄) = J1[g](x, x̄) + J2[g](x, x̄) + J3[g](x, x̄),(128)

where

I1[g](x, x̄) := Ĩ1[g](x, x̄) (∆x̄[∂xg](x))2 ,

I2[g](x, x̄) := Ĩ2[g](x, x̄)∆x̄[∂2
xg](x),

J1[g](x, x̄) := J̃1[g](x, x̄) (∆x̄[∂xg](x))3 ,

J2[g](x, x̄) := J̃2[g](x, x̄)∆x̄[∂xg](x)∆x̄[∂2
xg](x),

J3[g](x, x̄) := J̃3[g](x, x̄)∆x̄[∂3
xg](x),

Ĩ1[g] := Ψ2[g]−Ψ2
1[g],

Ĩ2[g] := Ψ1[g],

J̃1[g] := Ψ1[g]
(
1− 3Ψ2[g] + 2Ψ2

1[g]
)
,

J̃2[g] := 3Ψ2[g]−Ψ2
1[g],

J̃3[g] := Ψ1[g].

As an immediate consequence of Corollary 7.1 we get the following bounds for the above expressions.

Corollary 7.2. Let g ∈ Bδ(H3(Dε)) with 0 < δ(ε)� 1. For x̄ ∈ T×R such that |x̄| � 1 we have

|̃I2[g](x, x̄)|, |J̃3[g](x, x̄)| ≤ C(‖g‖H3(Dε))|x̄|
−1,

|̃I1[g](x, x̄)|, |J̃2[g](x, x̄)| ≤ C(‖g‖H3(Dε))|x̄|
−2,

|J̃1[g](x, x̄)| ≤ C(‖g‖H3(Dε))|x̄|
−3.

Before starting with the proof of the main lemmas of the Appendix, we will collect a couple
of auxiliary results. In first place, we note that for any g ∈ H4,3(Dε), an inequality that we will
repeatedly apply in our arguments is the following:

(129) |∆x̄[∂ixg](x)| ≤ |x̄|2−i‖g‖H4,3(Dε), i = 1, 2.

Note that the above reduces to the Sobolev embedding H3,2(Dε) ⊂ C1(Dε) and H2,1(Dε) ⊂ C(Dε).
Secondly, we obtain an uniform bound for the difference of the auxiliary functions Ψi[f

′] − Ψi[f
′′]

and their derivatives in terms of the H4,3(Dε)-norm of the difference f ′ − f ′′.

Lemma 7.3. Let f ′, f ′′ ∈ Bδ(H4,3(Dε)) with 0 < δ(ε)� 1 small enough. The following bounds hold

i)
|(Ψi[f

′]−Ψi[f
′′])(x, x̄)|2|x̄|2i ≤ C(ε)‖f ′ − f ′′‖2H3(Dε)

, i = 1, 2.

ii)
|(∂xΨi[f

′]− ∂xΨi[f
′′])(x, x̄)|2|x̄|2i ≤ C(ε)‖f ′ − f ′′‖2H4,3(Dε)

, i = 1, 2.

iii)

|(∂2
xΨi[f

′]− ∂2
xΨi[f

′′])(x, x̄)|2|x̄|2(i+1) ≤ C(ε)‖f ′ − f ′′‖2H4,3(Dε)
, i = 1, 2.
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Proof of i). Using some trigonometric identities for hyperbolic functions sinh(·), cosh(·) we get(
Ψ1[f ′]−Ψ1[f ′′]

)
(x, x̄) =

sinh(∆x̄[f ′ − f ′′](x))− cos(x̄) cosh(ȳ) [sinh(∆x̄[f ′](x))− sinh(∆x̄[f ′′](x))]

[cosh(ȳ + ∆x̄[f ′](x))− cos(x̄)] [cosh(ȳ + ∆x̄[f ′′](x))− cos(x̄)]

− cos(x̄) sinh(ȳ) [cosh(∆x̄[f ′](x))− cosh(∆x̄[f ′′](x))]

[cosh(ȳ + ∆x̄[f ′](x))− cos(x̄)] [cosh(ȳ + ∆x̄[f ′′](x))− cos(x̄)]
,

and (
Ψ2[f ′]−Ψ2[f ′′]

)
(x, x̄) =

cos(x̄) [cosh(ȳ + ∆x̄[f ′′](x))− cosh(ȳ + ∆x̄[f ′](x))]

[cosh(ȳ + ∆x̄[f ′](x))− cos(x̄)] [cosh(ȳ + ∆x̄[f ′′](x))− cos(x̄)]
.

Notice that both denominators vanish if and only if x̄ = 0. Now, since f ′, f ′′ ∈ H4,3(Dε) ⊂ C2(Dε)
are continuous functions on a bounded domain, the outer region is easily bounded by the required
term. Then, we just focus our attention on the inner region |x̄| � 1.

Applying Taylor expansion of each trigonometric function involved we obtain that each numerator
of the previous expression can be bound as follows∣∣sinh(∆x̄[f ′ − f ′′](x))− cos(x̄) cosh(ȳ)

[
sinh(∆x̄[f ′](x))− sinh(∆x̄[f ′′](x))

]∣∣
≤ C(ε)|x̄|3 1

1−max{‖f ′ − f ′′‖H3 , ‖f ′‖H3 , ‖f ′′‖H3}diam(Dε)
‖f ′ − f ′′‖H3 ,

∣∣cos(x̄) sinh(ȳ)
[
cosh(∆x̄[f ′](x))− cosh(∆x̄[f ′′](x))

]∣∣
≤ C(ε)|x̄|3 max{‖f ′‖H3 , ‖f ′′‖H3}

1−max{‖f ′‖H3 , ‖f ′′‖H3}diam(Dε)
‖f ′ − f ′′‖H3 ,

and∣∣cos(x̄)
[
cosh(ȳ + ∆x̄[f ′](x))− cosh(ȳ + ∆x̄[f ′′](x))

]∣∣
≤ C(ε)|x̄|2 max{‖f ′‖H3 , ‖f ′′‖H3}

1−max{‖f ′‖H3 , ‖f ′′‖H3}diam(Dε)
‖f ′ − f ′′‖H3 .

Combining all with the usual lower bound for the denominator (see (126)), we obtain

|(Ψi[f
′]−Ψi[f

′′])(x, x̄)|2|x̄|2j ≤
(

C(ε, ‖f ′‖H3(Dε), ‖f ′′‖H3(Dε))

1−max{‖f ′‖H3 , ‖f ′′‖H3}diam(Dε)

)
‖f ′ − f ′′‖2H3(Dε)

.

Finally, as f ′, f ′′ ∈ Bδ(H4,3(Dε)), taking 0 < δ < diam(Dε)
−1 we have proved our goal. �

Proof of ii). Due to the relations

∂xΨ1[g](x, x̄) = (Ψ2[g]−Ψ2
1[g])(x, x̄)∆x̄[∂xg](x),

∂xΨ2[g](x, x̄) = (Ψ1[g]−Ψ1[g]Ψ2[g])(x, x̄)∆x̄[∂xg](x),

it is clear that adding and subtracting some appropriate term we obtain the expressions

(∂xΨ1[f ′]− ∂xΨ1[f ′′])(x, x̄) = (Ψ2[f ′]− (Ψ1[f ′])2)(x, x̄)∆x̄[∂x(f ′ − f ′′)](x)(130)

+ (Ψ2[f ′]−Ψ2[f ′′])(x, x̄)∆x̄[∂xf
′′](x)

− (Ψ1[f ′]−Ψ1[f ′′])(x, x̄)(Ψ1[f ′] + Ψ1[f ′′])(x, x̄)∆x̄[∂xf
′](x),

and

(∂xΨ2[f ′]− ∂xΨ2[f ′′])(x, x̄) = (Ψ1[f ′]−Ψ1[f ′]Ψ2[f ′])(x, x̄)∆x̄[∂x(f ′ − f ′′)](x)(131)

+ (Ψ1[f ′]−Ψ1[f ′′])(x, x̄)∆x̄[∂xf
′′](x)

−Ψ1[f ′](x, x̄)(Ψ2[f ′]−Ψ2[f ′′])(x, x̄)∆x̄[∂xf
′′](x)

−Ψ2[f ′′](x, x̄)(Ψ1[f ′]−Ψ1[f ′′])(x, x̄)∆x̄[∂xf
′′](x).



46 ÁNGEL CASTRO AND DANIEL LEAR

As before, we just focus on the inner region |x̄| � 1, which is the most singular part. Now,
remembering (129) and applying repeatedly Corollary 7.1, we get for 1 ≤ i ≤ 2 and |x̄| � 1 that

|(∂xΨi[f
′]− ∂xΨi[f

′′])(x, x̄)||x̄|i

. ‖f ′ − f ′′‖H4,3(Dε) + |x̄||(Ψ1[f ′]−Ψ1[f ′′])(x, x̄)|+ |x̄|2|(Ψ2[f ′]−Ψ2[f ′′])(x, x̄)|.

Finally, applying i) in each of the last two terms of the above expressions we have proved ii). �

Proof of iii). Taking one derivative on (130), (131) and adding and subtracting appropriate terms,
we obtain the expressions

(∂2
xΨ1[f ′]− ∂2

xΨ1[f ′])(x, x̄) = (Ψ2[f ′]−Ψ2
1[f ′′])(x, x̄)∆x̄[∂2

x(f ′ − f ′′)](x)

+ (Ψ1[f ′]− 3Ψ1[f ′]Ψ2[f ′] + 2Ψ3
1[f ′])(x, x̄)∆x̄[∂xf

′](x)∆x̄[∂x(f ′ − f ′′)](x)

+ (Ψ2[f ′]−Ψ2[f ′′])(x, x̄)∆x̄[∂2
xf
′′](x)

+ (∂xΨ2[f ′]− ∂xΨ2[f ′′])(x, x̄)∆x̄[∂xf
′′](x)

− (Ψ1[f ′]−Ψ1[f ′′])(Ψ1[f ′] + Ψ1[f ′′])(x, x̄)∆x̄[∂2
xf
′](x),

− (∂xΨ1[f ′]− ∂xΨ1[f ′′])(Ψ1[f ′] + Ψ1[f ′′])(x, x̄)∆x̄[∂xf
′](x),

− (Ψ1[f ′]−Ψ1[f ′′])(Ψ2[f ′]−Ψ2
1[f ′])(x, x̄)∆x̄[∂xf

′](x)∆x̄[∂xf
′](x),

− (Ψ1[f ′]−Ψ1[f ′′])(Ψ2[f ′′]−Ψ2
1[f ′′])(x, x̄)∆x̄[∂xf

′′](x)∆x̄[∂xf
′](x),

and

(∂2
xΨ2[f ′]− ∂2

xΨ2[f ′′])(x, x̄) = (Ψ1[f ′]−Ψ1[f ′]Ψ2[f ′])(x, x̄)∆x̄[∂2
x(f ′ − f ′′)](x)

+ (Ψ2[f ′]− 2Ψ2
1[f ′])(1−Ψ2[f ′])(x, x̄)∆x̄[∂xf

′](x)∆x̄[∂x(f ′ − f ′′)](x)

+ (Ψ1[f ′]−Ψ1[f ′′])(x, x̄)∆x̄[∂2
xf
′′](x)

+ (∂xΨ1[f ′]− ∂xΨ1[f ′′])(x, x̄)∆x̄[∂xf
′′](x)

−Ψ1[f ′](Ψ2[f ′]−Ψ2[f ′′])(x, x̄)∆x̄[∂2
xf
′′](x)

−Ψ1[f ′](∂xΨ2[f ′]− ∂xΨ2[f ′′])(x, x̄)∆x̄[∂xf
′′](x)

− (Ψ2[f ′]−Ψ2
1[f ′])(Ψ2[f ′]−Ψ2[f ′′])(x, x̄)∆x̄[∂xf

′](x)∆x̄[∂xf
′′](x)

−Ψ2[f ′′](x, x̄)
(
Ψ1[f ′]−Ψ1[f ′′]

)
(x, x̄)∆x̄[∂2

xf
′′](x)

−Ψ2[f ′′](x, x̄)(∂xΨ1[f ′]− ∂xΨ1[f ′′])(x, x̄)∆x̄[∂xf
′′](x)

− (Ψ1[f ′′]−Ψ1[f ′′]Ψ2[f ′′])
(
Ψ1[f ′]−Ψ1[f ′′]

)
(x, x̄)

(
∆x̄[∂xf

′′](x)
)2
.

The computations are very long and tedious but share lot of similarities. For this reason we shall
focus only on (∂2

xΨ2[f ′]−∂2
xΨ2[f ′′])(x, x̄) to illustrate how the estimates work. The ideas is to write

the above long expressions in groups of terms as

• (1−Ψ2[f ′])(Ψ1[f ′]∆x̄[∂2
x(f ′ − f ′′)](x) + (Ψ2[f ′]− 2Ψ2

1[f ′])∆x̄[∂xf
′](x)∆x̄[∂x(f ′ − f ′′)](x)),

• (Ψ1[f ′]−Ψ1[f ′′])(∆x̄[∂2
xf
′′](x)− (Ψ1[f ′′]−Ψ1[f ′′]Ψ2[f ′′]) (∆x̄[∂xf

′′](x))2−Ψ2[f ′′]∆x̄[∂2
xf
′′](x)),

• (Ψ2[f ′]−Ψ2[f ′′])
(
−Ψ1[f ′]∆x̄[∂2

xf
′′](x)− (Ψ2[f ′]−Ψ2

1[f ′])∆x̄[∂xf
′](x)∆x̄[∂xf

′′](x)
)
,

• (∂xΨ1[f ′]− ∂xΨ1[f ′′])(1−Ψ2[f ′′])∆x̄[∂xf
′′](x),

• (∂xΨ2[f ′]− ∂xΨ2[f ′′])(−Ψ1[f ′]∆x̄[∂xf
′′](x)).
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Remembering (129) and applying repeatedly Corollary 7.1, we get for 1 ≤ i ≤ 2 and |x̄| � 1 that

|(∂2
xΨi[f

′]− ∂2
xΨi[f

′′])(x, x̄)||x̄|i . |x̄|−1‖f ′ − f ′′‖H4,3(Dε) + |(Ψ1[f ′]−Ψ1[f ′′])(x, x̄)|
+ |x̄||(Ψ2[f ′]−Ψ2[f ′′])(x, x̄)|+ |x̄||(∂xΨ1[f ′]− ∂xΨ1[f ′′])(x, x̄)|
+ |x̄|2|(∂xΨ2[f ′]− ∂xΨ2[f ′′])(x, x̄)|.

Finally, applying i) and ii) in each of the terms of the above expressions we have proved iii). �

At this point, we have all the ingredients to prove the main lemmas of the Appendix. The first
one allows us to take derivatives into the kernel ∂ixK[g] as follows:

Lemma 7.4. Let g ∈ Bδ(H4,3(Dε)) with 0 < δ(ε)� 1 small enough. The following bounds hold

i)

sup
x∈Dε

(
sup

x̄∈Dε(y)
|K[g](x, x̄)|2

)
≤ C(ε, ‖g‖H4,3(Dε)),

ii)

sup
x∈Dε

(∫
Dε(y)

|∂xK[g](x, x̄)|2dx̄

)
≤ C(ε, ‖g‖H4,3(Dε)),

iii) ∫
Dε

(∫
Dε(y)

∣∣∂2
xK[g](x, x̄)

∣∣2 |x̄|2γdx̄

)
dx ≤ C(ε, ‖g‖H4,3(Dε)),

iv) ∫
Dε

(∫
Dε(y)

∣∣∂3
xK[g](x, x̄)

∣∣2 |x̄|2dx̄

)
dx ≤ C(ε, ‖g‖H4,3(Dε)).

Proof. As we can see the computations share lot of similarities. For this reason we shall focus only
on one significant term iii) to illustrate how the estimates work. Remembering (127) we get∫

Dε

(∫
Dε(y)

∣∣∂2
xK[g](x, x̄)

∣∣2 |x̄|2γdx̄

)
dx ≤

2∑
i=1

∫
Dε

(∫
Dε(y)

|Ii[g](x, x̄)|2 |x̄|2γdx̄

)
dx

Proceeding as usual, we split the integral into inner and outer regions. As g ∈ H4,3(Dε) ⊂ C2(Dε)
is a continuous function on a bounded domain the outer integral is trivially bounded by some
universal constant. To handle the remaining inner integral {(x, x̄) ∈ Dε ×Dε(y) : |x̄| � 1} of each
term, we use Corollary 7.2 as follows:

I1) As g ∈ H4,3(Dε) we have that ∂xg ∈ H3,2(Dε) ⊂ C1(Dε) and consequently we get∫
Dε

(∫
|x̄|�1

|I1[g](x, x̄)|2 |x̄|2γdx̄

)
dx =

∫
Dε

(∫
|x̄|�1

∣∣∣̃I1[g](x, x̄)
∣∣∣2 |∆x̄[∂xg](x)|4 |x̄|2γdx̄

)
dx

≤ C(ε, ‖g‖H4,3(Dε))

(∫
|x̄|�1

|x̄|2γdx̄

)
,

I2) As g ∈ H4,3(Dε) we have that ∂2
xg ∈ H2,1(Dε) ⊂ C(Dε) and consequently we get∫

Dε

(∫
|x̄|�1

|I2[g](x, x̄)|2 |x̄|2γdx̄

)
dx =

∫
Dε

(∫
|x̄|�1

∣∣∣̃I2[g](x, x̄)
∣∣∣2 ∣∣∆x̄[∂2

xg](x)
∣∣2 |x̄|2γdx̄

)
dx

≤ C(δ, ‖g‖H4,3(Dε))

(∫
|x̄|�1

1

|x̄|2(1−γ)
dx̄

)
.
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As 0 < γ < 1, the last term is integrable and we have proved our goal. The rest of the terms i), ii)
and iv) work in a similar way and we omit the details. �

Now, we continue with an analog result for the difference ∂ixK[f ′]− ∂ixK[f ′′].

Lemma 7.5. Let f ′, f ′′ ∈ Bδ(H4,3(Dε)) with 0 < δ(ε)� 1 small enough. The following bounds hold

i)

sup
x∈Dε

(
sup

x̄∈Dε(y)
|K[f ′, f ′′](x, x̄)|2

)
≤ C(ε)‖f ′ − f ′′‖2H4,3(Dε)

.

ii)

sup
x∈Dε

(∫
Dε(y)

|∂xK[f ′, f ′′](x, x̄)|2dx̄

)
≤ C(ε)‖f ′ − f ′′‖2H4,3(Dε)

.

iii) ∫
Dε

(∫
Dε(y)

∣∣∂2
xK[f ′, f ′′](x, x̄)

∣∣2 |x̄|2γdx̄

)
dx ≤ C(ε)‖f ′ − f ′′‖2H4,3(Dε)

.

iv) ∫
Dε

(∫
Dε(y)

∣∣∂3
xK[f ′, f ′′](x, x̄)

∣∣2 |x̄|2dx̄

)
dx ≤ C(ε)‖f ′ − f ′′‖2H4,3(Dε)

.

Proof of i). We start by remembering the kernel definition K[f ′, f ′′] = K[f ′]−K[f ′′] given by

K[f ′, f ′′](x, x̄) = log

[
cosh (ȳ + ∆x̄[f ′](x))− cos(x̄)

cosh (ȳ + ∆x̄[f ′′](x))− cos(x̄)

]
.

Adding and subtracting some appropriate term, one finds

cosh (ȳ + ∆x̄[f ′](x))− cos(x̄)

cosh (ȳ + ∆x̄[f ′′](x))− cos(x̄)
= 1 +

cosh (ȳ + ∆x̄[f ′](x))− cosh (ȳ + ∆x̄[f ′′](x))

cosh (ȳ + ∆x̄[f ′′](x))− cos(x̄)
,

and using the standard logarithmic inequality 1 − x−1 ≤ log x ≤ x − 1 for all x > 0, we get the
lower and upper bounds

K[f ′, f ′′](x, x̄) ≤ cosh (ȳ + ∆x̄[f ′](x))− cosh (ȳ + ∆x̄[f ′′](x))

cosh (ȳ + ∆x̄[f ′′](x))− cos(x̄)
,

K[f ′, f ′′](x, x̄) ≥ cosh (ȳ + ∆x̄[f ′](x))− cosh (ȳ + ∆x̄[f ′′](x))

cosh (ȳ + ∆x̄[f ′](x))− cos(x̄)
.

As f ′, f ′′ ∈ Bδ(H4,3(Dε)) are arbitrary functions we can assume without loss of generality that

|K[f ′, f ′′](x, x̄)| ≤
∣∣∣∣cosh (ȳ + ∆x̄[f ′](x))− cosh (ȳ + ∆x̄[f ′′](x))

cosh (ȳ + ∆x̄[f ′′](x))− cos(x̄)

∣∣∣∣ ,
and using the trigonometric identity cosh(a+ b) = cosh(a) cosh(b) + sinh(a) sinh(b) we finally get

cosh (ȳ + ∆x̄[f ′](x))− cosh (ȳ + ∆x̄[f ′′](x))

cosh (ȳ + ∆x̄[f ′′](x))− cos(x̄)
= cosh(ȳ)

cosh (∆x̄[f ′](x))− cosh (∆x̄[f ′′](x))

cosh (ȳ + ∆x̄[f ′′](x))− cos(x̄)

+ sinh(ȳ)
sinh (∆x̄[f ′](x))− sinh (∆x̄[f ′′](x))

cosh (ȳ + ∆x̄[f ′′](x))− cos(x̄)
.
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Now, we will use the Taylor expansion of the trigonometric functions cosh(·) and sinh(·) together

with the algebraic identity an − bn = (a− b)
∑n−1

k=0 a
kbn−1−k to obtain

cosh
(
∆x̄[f ′](x)

)
− cosh

(
∆x̄[f ′′](x)

)
= ∆x̄[f ′ − f ′′](x)

∞∑
n=1

2n−1∑
k=0

(∆x̄[f ′](x))k (∆x̄[f ′′](x))2n−1−k

(2n)!
,

sinh
(
∆x̄[f ′](x)

)
− sinh

(
∆x̄[f ′′](x)

)
= ∆x̄[f ′ − f ′′](x)

∞∑
n=0

2n∑
k=0

(∆x̄[f ′](x))k (∆x̄[f ′′](x))2n−k

(2n+ 1)!
.

Computing the infinite sum of the geometric series
∑∞

n=0 r
2n with

r := max{‖f ′‖H4,3(Dε), ‖f
′′‖H4,3(Dε)}diam(Dε),

we finally get (under condition δ < diam(Dε)
−1) that∣∣cosh

(
∆x̄[f ′](x)

)
− cosh

(
∆x̄[f ′′](x)

)∣∣ ≤ C(ε)|x̄|2
max{‖f ′‖H4,3(Dε), ‖f ′′‖H4,3(Dε)}‖f ′ − f ′′‖H4,3(Dε)

1−max{‖f ′‖H4,3(Dε), ‖f ′′‖H4,3(Dε)}diam(Dε)
,

∣∣sinh
(
∆x̄[f ′](x)

)
− sinh

(
∆x̄[f ′′](x)

)∣∣ ≤ C(ε)|x̄|
‖f ′ − f ′′‖H4,3(Dε)

1−max{‖f ′‖H4,3(Dε), ‖f ′′‖H4,3(Dε)}diam(Dε)
,

where we have applied the Sobolev embedding L∞(Dε) ↪→ H2(Dε).
Now, it is not difficult to see that the following uniform bound holds

sup
x∈Dε

(
sup

x̄∈Dε(y)

∣∣∣∣ cosh(ȳ)|x̄|2 + sinh(ȳ)|x̄|
cosh(ȳ + ∆x̄[f ′′](x))− cos(x̄)

∣∣∣∣2
)
≤ C(ε)

thanks to the fact (see (126)) that for |x̄| � 1 we have

| cosh(ȳ + ∆x̄[f ′′](x))− cos(x̄)| ≥
(

1
2 − ‖f

′′‖H3(Dε)

)
|x̄|2 − C(‖f ′′‖H3(Dε))|x̄|

4.

Then, taking 0 < δ < diam(Dε)
−1 small enough and combining all we have proved our goal. �

Proof of ii). As K[f ′, f ′′](x, x̄) = (K[f ′] − K[f ′′])(x, x̄) and ∂xK[g](x, x̄) = Ψ1[g](x, x̄)∆x̄[∂xg](x),
adding and subtracting some appropriate term we obtain

(132) ∂xK[f ′, f ′′](x, x̄) = Ψ1[f ′](x, x̄)∆x̄[∂x(f ′ − f ′′)](x) + (Ψ1[f ′]−Ψ1[f ′′])(x, x̄)∆x̄[∂xf
′′](x).

To bound the first term we use f ′, f ′′ ∈ Bδ(H4,3(Dε)), which implies ∂x(f ′−f ′′) ∈ H3,2(Dε) ⊂ C1(Dε).
As usual, splitting the integral and using Corollary 7.1 in the inner region we obtain directly that∫

Dε(y)
|Ψ1[f ′](x, x̄)∆x̄[∂x(f ′ − f ′′)](x)|2dx̄ ≤ C(ε, ‖f ′‖H4,3(Dε))‖f

′ − f ′′‖2H4,3(Dε)
.

For the second term of (132), using that ∂xf
′′ ∈ H3,2(Dε) ⊂ C1(Dε) and applying Lemma 7.3 we

get∫
Dε(y)

|(Ψ1[f ′]−Ψ1[f ′′])(x, x̄)∆x̄[∂xf
′′](x)|2dx̄ ≤ ‖f ′′‖H4,3(Dε)

∫
Dε(y)

|(Ψ1[f ′]−Ψ1[f ′′])(x, x̄)|2|x̄|2dx̄

≤ C(ε, ‖f ′‖H4,3(Dε), ‖f
′′‖H4,3(Dε))‖f

′ − f ′′‖2H4,3(Dε)
.

Finally, as the above holds for any x ∈ Dε, combining the above and taking the supremum over all
the domain we have proved the desired inequality. �

Proof of iii). Taking a derivative of (132) we obtain

∂2
xK[f ′, f ′′](x, x̄) = ∂xΨ1[f ′](x, x̄)∆x̄[∂x(f ′ − f ′′)](x) + Ψ1[f ′](x, x̄)∆x̄[∂2

x(f ′ − f ′′)](x)

+ (∂xΨ1[f ′]− ∂xΨ1[f ′′])(x, x̄)∆x̄[∂xf
′′](x) + (Ψ1[f ′]−Ψ1[f ′′])(x, x̄)∆x̄[∂2

xf
′′](x).(133)
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To bound the first term of (133), as f ′, f ′′ ∈ Bδ(H4,3(Dε)) we get ∂xf
′, ∂x(f ′ − f ′′) ∈ H3,2(Dε) ⊂

C1(Dε). Now, splitting the integral and using (124) together with Corollary 7.1 in the inner region
we obtain∫
Dε

(∫
|x̄|�1

∣∣∂xΨ1[f ′](x, x̄)∆x̄[∂x(f ′ − f ′′)](x)
∣∣2 |x̄|2γdx̄

)
dx ≤

C(‖f ′‖H4,3(Dε))

1− C(‖f ′‖H4,3(Dε))
‖f ′ − f ′′‖2H4,3(Dε)

.

To bound the second term of (133) we use the same type of ideas. As f ′, f ′′ ∈ Bδ(H4,3(Dε)) we
get ∂2

x(f ′ − f ′′) ∈ H2,1(Dε) ⊂ C(Dε). Now, splitting the integral and applying Corollary 7.1 in the
inner region we obtain∫

Dε

(∫
|x̄|�1

∣∣Ψ1[f ′](x, x̄)∆x̄[∂2
x(f ′ − f ′′)](x)

∣∣2 |x̄|2γdx̄

)
dx

≤
C(‖f ′‖H4,3(Dε))

1− C(‖f ′‖H4,3(Dε))
‖f ′ − f ′′‖2H4,3(Dε)

(∫
|x̄|�1

1

|x̄|2(1−γ)
dx̄

)
,

where the last integral is bounded thanks to the fact that 0 < γ < 1. Finally, to bound the last two
terms of (133) we use the fact that ∂xf

′′ ∈ H3,2(Dε) ⊂ C1(Dε) and ∂2
xf
′′ ∈ H2,1(Dε) ⊂ C(Dε) to

get∫
Dε

(∫
Dε(y)

∣∣(∂xΨ1[f ′]− ∂xΨ1[f ′′])(x, x̄)∆x̄[∂xf
′′](x)

∣∣2 |x̄|2γdx̄

)
dx

≤ ‖f ′′‖H4,3(Dε)

∫
Dε

(∫
Dε(y)

∣∣(∂xΨ1[f ′]− ∂xΨ1[f ′′])(x, x̄)
∣∣2 |x̄|2(1+γ)dx̄

)
dx

and∫
Dε

(∫
Dε(y)

∣∣(Ψ1[f ′]−Ψ1[f ′′])(x, x̄)∆x̄[∂2
xf
′′](x)

∣∣2 |x̄|2γdx̄

)
dx

≤ ‖f ′′‖H4,3(Dε)

∫
Dε

(∫
Dε(y)

∣∣(Ψ1[f ′]−Ψ1[f ′′])(x, x̄)
∣∣2 |x̄|2γdx̄

)
dx.

Using auxiliary Lemma 7.3 on the last terms of the above expressions we have proved our goal. �

Proof of iv). As before, taking a derivative of (133) we obtain

∂3
xK[f ′, f ′′](x, x̄) = ∂2

xΨ1[f ′](x, x̄)∆x̄[∂x(f ′ − f ′′)](x) + 2∂xΨ1[f ′](x, x̄)∆x̄[∂2
x(f ′ − f ′′)](x)

+ Ψ1[f ′](x, x̄)∆x̄[∂3
x(f ′ − f ′′)](x) + 2

(
∂xΨ1[f ′]− ∂xΨ1[f ′′]

)
(x, x̄)∆x̄[∂2

xf
′′](x)

+
(
Ψ1[f ′]−Ψ1[f ′′]

)
(x, x̄)∆x̄[∂3

xf
′′](x) +

(
∂2
xΨ1[f ′]− ∂2

xΨ1[f ′′]
)

(x, x̄)∆x̄[∂xf
′′](x).(134)

In first place, due to the relations (124) and (125), we have

∂2
xΨ1[f ′] = [Ψ1[f ′](1−Ψ2[f ′])− 2Ψ1[f ′](Ψ2[f ′]−Ψ2

1[f ′])]
(
∆x̄[∂xf

′](x)
)2

+ (Ψ2[f ′]−Ψ2
1[f ′])∆x̄[∂2

xf
′].

Remembering (129) and applying repeatedly Corollary 7.1, we get that the first three terms of
(134) can be handle in the following way:

3∑
i=1

∫
Dε

(∫
Dε(y)

∣∣∂3−i
x Ψ1[f ′](x, x̄)∆x̄[∂ix(f ′ − f ′′)](x)

∣∣2 |x̄|2dx̄

)
dx ≤ C(ε)‖f ′ − f ′′‖2H4,3(Dε)

.
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The remaining three terms of (134) follows by auxiliary Lemma 7.3. Notice that using (129) we
get∫

Dε

(∫
Dε(y)

∣∣(Ψ1[f ′]−Ψ1[f ′′])(x, x̄)∆x̄[∂3
xf
′′](x)

∣∣2 |x̄|2dx̄

)
dx

≤ ‖f ′′‖H4,3(Dε)

∫
Dε

(
sup

x̄∈Dε(y)

∣∣(Ψ1[f ′]−Ψ1[f ′′])(x, x̄)
∣∣2 |x̄|2)dx,

∫
Dε

(∫
Dε(y)

∣∣(∂xΨ1[f ′]− ∂xΨ1[f ′′])(x, x̄)∆x̄[∂2
xf
′′](x)

∣∣2 |x̄|2dx̄

)
dx

≤ ‖f ′′‖H4,3(Dε)

∫
Dε

(∫
Dε(y)

∣∣(∂xΨ1[f ′]− ∂xΨ1[f ′′])(x, x̄)
∣∣2 |x̄|2dx̄

)
dx,

and

∫
Dε

(∫
Dε(y)

∣∣(∂2
xΨ1[f ′]− ∂2

xΨ1[f ′′])(x, x̄)∆x̄[∂xf
′′](x)

∣∣2 |x̄|2dx̄

)
dx

≤ ‖f ′′‖H4,3(Dε)

∫
Dε

(∫
Dε(y)

∣∣(∂2
xΨ1[f ′]− ∂2

xΨ1[f ′′])(x, x̄)
∣∣2 |x̄|4dx̄

)
dx.

Using auxiliary Lemma 7.3 on the last terms of the above expressions we have proved our goal. �

Lemma 7.6. Let f ∈ Bδ(H4,3(Dε)) with 0 < δ(ε) � 1 small enough and h ∈ H4,3(Dε) with
‖h‖H4,3(Dε) = 1. For 0 < τ � 1, the following bound holds

i)

sup
x∈Dε

(
sup

x̄∈Dε(y)

∣∣∣∣K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

∣∣∣∣2
)
≤ C(ε)τ2.

ii)

sup
x∈Dε

(∫
Dε(y)

∣∣∣∣∂x{K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}∣∣∣∣2 dx̄

)
≤ C(ε)τ2.

iii) ∫
Dε

(∫
Dε(y)

∣∣∣∣∂2
x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}∣∣∣∣2 |x̄|2γdx̄

)
dx ≤ C(ε)τ2.

iv) ∫
Dε

(∫
Dε(y)

∣∣∣∣∂3
x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}∣∣∣∣2 |x̄|2dx̄

)
dx ≤ C(ε)τ2.

Proof of i). Just applying the standard logarithmic inequality 1−x−1 ≤ log x ≤ x−1 for all x > 0,
we get the lower and upper bounds

K[f + τh, f](x, x̄) ≤ cosh (ȳ + ∆x̄[f + τh](x))− cosh (ȳ + ∆x̄[f](x))

cosh (ȳ + ∆x̄[f](x))− cos(x̄)
,

K[f + τh, f](x, x̄) ≥ cosh (ȳ + ∆x̄[f + τh](x))− cosh (ȳ + ∆x̄[f](x))

cosh (ȳ + ∆x̄[f + τh](x))− cos(x̄)
.
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Therefore, we have∣∣∣∣K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

∣∣∣∣
≤ max

0≤ξ≤τ

∣∣∣∣1τ
(

cosh (ȳ + ∆x̄[f + τh](x))− cosh (ȳ + ∆x̄[f](x))

cosh (ȳ + ∆x̄[f + ξh](x))− cos(x̄)

)
−Ψ1[f](x, x̄)∆x̄[h](x)

∣∣∣∣ .
Now, using the trigonometric identity cosh(a+ b) = cosh(a) cosh(b) + sinh(a) sinh(b) on the above
expression, we get

cosh (ȳ + ∆x̄[f + τh](x))− cosh (ȳ + ∆x̄[f](x))

cosh (ȳ + ∆x̄[f + ξh](x))− cos(x̄)

= cosh(ȳ + ∆x̄[f](x))
cosh (∆x̄[τh](x))− 1

cosh (ȳ + ∆x̄[f + ξh](x))− cos(x̄)

+ sinh(ȳ + ∆x̄[f](x))
sinh (∆x̄[τh](x))

cosh (ȳ + ∆x̄[f + ξh](x))− cos(x̄)
,

and consequently∣∣∣∣K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

∣∣∣∣
≤
∣∣∣∣cosh (∆x̄[τh](x))− 1

τ

∣∣∣∣ max
0≤ξ≤τ

∣∣∣∣ cosh(ȳ + ∆x̄[f](x))

cosh (ȳ + ∆x̄[f + ξh](x))− cos(x̄)

∣∣∣∣
+

∣∣∣∣sinh (∆x̄[τh](x))

τ
−∆x̄[h](x)

∣∣∣∣ max
0≤ξ≤τ

∣∣∣∣ sinh(ȳ + ∆x̄[f](x))

cosh (ȳ + ∆x̄[f + ξh](x))− cos(x̄)

∣∣∣∣ .
Applying the Taylor expansion of the trigonometric functions sinh(·), cosh(·) together with the fact
that ‖h‖H3(Dε) = 1 we get the bounds∣∣∣∣cosh (∆x̄[τh](x))− 1

τ

∣∣∣∣ ≤ C(ε)τ |x̄|2,∣∣∣∣sinh (∆x̄[τh](x))

τ
−∆x̄[h](x)

∣∣∣∣ ≤ C(ε)τ2|x̄|3.

In addition, we have

max

{∣∣∣∣ cosh(ȳ + ∆x̄[f](x))

cosh (ȳ + ∆x̄[f + ξh](x))− cos(x̄)

∣∣∣∣ , ∣∣∣∣ sinh(ȳ + ∆x̄[f](x))

cosh (ȳ + ∆x̄[f + ξh](x))− cos(x̄)

∣∣∣∣}
≤

C(‖f‖H3(Dε))(
1
2 − ‖f + ξh‖H3(Dε)

)
|x̄|2 − C(‖f + ξh‖H3(Dε))|x̄|4

,

which give us∣∣∣∣K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

∣∣∣∣ ≤ max
0≤ξ≤τ

C(ε, ‖f‖H3(Dε))τ(
1
2 − ‖f + ξh‖H3(Dε)

)
− C(‖f + ξh‖H3(Dε))|x̄|2

.

Coming back to the starting point, as f ∈ Bδ(X(Dε)) and ‖h‖H4,3(Dε) = 1, taking 0 < δ(ε), τ � 1
small enough we have proved our desired inequality. �

Proof of ii). As K(f ′, f ′′)(x, x̄) = (K[f ′]−K[f ′′]) (x, x̄) and ∂xK[g](x, x̄) = Ψ1[g](x, x̄)∆x̄[∂xg](x),
adding and subtracting some appropriate term we obtain

∂xK[f ′, f ′′](x, x̄) = Ψ1[f ′](x, x̄)∆x̄[∂x(f ′ − f ′′)](x) +
(
Ψ1[f ′]−Ψ1[f ′′]

)
(x, x̄)∆x̄[∂xf

′′](x).
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So, it is just a matter of algebra to get

(135) ∂x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}
= A[f, h](x, x̄) + B[f, h](x, x̄),

where both new functionals are given respectively by

A[f, h](x, x̄) :=

[
(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ
− (Ψ2[f]−Ψ2

1[f])(x, x̄)∆x̄[h](x)

]
∆x̄[∂xf](x),(136)

B[f, h](x, x̄) := (Ψ1[f + τh]−Ψ1[f])(x, x̄)∆x̄[∂xh](x).

Directly from auxiliary Lemma 7.3, as h ∈ H4,3(Dε) implies ∂xh ∈ H3,2(Dε) ⊂ C1(Dε) and by
hypothesis ‖h‖H4,3(Dε) = 1, we get

sup
x∈Dε

∫
Dε(y)

|B[f, h]|2 dx̄ ≤ C(ε)τ2.

To obtain something similar for A[f, h] we need to work a little bit more. In first place, thanks to
the definition of Ψ1[·](x, x̄), adding and subtracting some appropriate term we have

(Ψ1[f + τh]−Ψ1[f]) (x, x̄) =
sinh(ȳ + ∆x̄[f + τh](x))− sinh(ȳ + ∆x̄[f](x))

cosh(ȳ + ∆x̄[f](x))− cos(x̄)

− sinh(ȳ + ∆x̄[f + τh](x))
cosh(ȳ + ∆x̄[f + τh](x))− cosh(ȳ + ∆x̄[f](x))

[cosh(ȳ + ∆x̄[f + τh](x))− cos(x̄)] [cosh(ȳ + ∆x̄[f](x))− cos(x̄)]
,

and using on it some trigonometric identities, we obtain

(Ψ1[f + τh]−Ψ1[f]) (x, x̄) =
[
Ψ2[f](x, x̄)−Ψ2

1[f](x, x̄) cosh (τ∆x̄[h](x))
]

sinh (τ∆x̄[h](x))

+ Ψ2
1[f](x, x̄)

cosh(ȳ + ∆x̄[f + τh](x)− cosh(ȳ + ∆x̄[f](x)

cosh(ȳ + ∆x̄[f + τh](x)− cos(x̄)
sinh (τ∆x̄[h](x)) cosh (τ∆x̄[h](x)) .

Now, dividing the above expression by τ and subtracting the term (Ψ2[f]−Ψ2
1[f])(x, x̄)∆x̄[h](x) we

obtain that

(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ
− (Ψ2[f]−Ψ2

1[f])(x, x̄)∆x̄[h](x)

= Ψ2[f](x, x̄)

(
sinh(τ∆x̄[h](x))

τ
−∆x̄[h](x)

)
−Ψ2

1[f](x, x̄)

(
cosh(τ∆x̄[h](x))

sinh(τ∆x̄[h](x))

τ
−∆x̄[h](x)

)
+ Ψ2

1[f](x, x̄)
cosh(ȳ + ∆x̄[f + τh](x)− cosh(ȳ + ∆x̄[f](x)

cosh(ȳ + ∆x̄[f + τh](x)− cos(x̄)
sinh (τ∆x̄[h](x)) cosh (τ∆x̄[h](x)) .

Finally, using the Taylor expansion of the trigonometric functions sinh(·), cosh(·) and (129) give us
the desired inequality

(137) sup
x∈Dε

∫
Dε(y)

|A[f, h]|2 dx̄ ≤ C(ε)τ2.

�

Proof of iii). Recalling (135), we have

(138) ∂2
x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}
= ∂xA[f, h](x, x̄) + ∂xB[f, h](x, x̄),
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where, using relation ∂xΨ1[g](x, x̄) = Ĩ1[g](x, x̄)∆x̄[∂xg](x) whit Ĩ1[g] =
(
Ψ2[g]− (Ψ1[g])2

)
, we get

∂xA[f, h](x, x̄) = (̃I1[f + τh]− Ĩ1[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x)

+
(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ
∆x̄[∂2

xf](x)− Ĩ1[f](x, x̄)∆x̄[∂2
xf]∆x̄[h](x)

+
(̃I1[f + τh]− Ĩ1[f])(x, x̄)

τ
(∆x̄[∂xf](x))2 − (∂xΨ2[f]− 2Ψ1[f]∂xΨ1[f]) (x, x̄)∆x̄[∂xf](x)∆x̄[h](x),

and

∂xB[f, h](x, x̄) = (̃I1[f + τh]− Ĩ1[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x)

+ (Ψ1[f + τh]−Ψ1[f])(x, x̄)∆x̄[∂2
xh](x)

+ τ Ĩ1[f + τh](x, x̄) (∆x̄[∂xh](x))2 .

By definition of Ĩ1[·] and relations (124) and (125), the previous expressions can be rewritten in a
more manageable way as

∂xA[f, h](x, x̄) = (A′1 + A′2 + A′3 + A′4 + A′5)[f, h](x, x̄),(139)

∂xB[f, h](x, x̄) = (B′1 + B′2 + B′3 + B′4)[f, h](x, x̄),(140)

with

A′1[f, h](x, x̄) :=

[
(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ
− (Ψ2[f]−Ψ2

1[f])(x, x̄)∆x̄[h](x)

]
∆x̄[∂2

xf](x),

A′2[f, h](x, x̄) := (Ψ2[f + τh]−Ψ2[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x),

A′3[f, h](x, x̄) := −(Ψ1[f + τh]−Ψ1[f])(Ψ1[f + τh] + Ψ1[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x),

A′4[f, h](x, x̄) :=

[
(Ψ2[f + τh]−Ψ2[f])(x, x̄)

τ
− (Ψ1[f]−Ψ1[f]Ψ2[f]) (x, x̄)∆x̄[h](x)

]
(∆x̄[∂xf](x))2 ,

A′5[f, h](x, x̄) :=

[
− (Ψ1[f + τh] + Ψ1[f])(x, x̄)

(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ

+ 2Ψ1[f](x, x̄)(Ψ2[f]−Ψ2
1[f])(x, x̄)∆x̄[h](x)

]
(∆x̄[∂xf](x))2 ,

and

B′1[f, h](x, x̄) := (Ψ2[f + τh]−Ψ2[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x),

B′2[f, h](x, x̄) := −(Ψ1[f + τh]−Ψ1[f])(Ψ1[f + τh] + Ψ1[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x),

B′3[f, h](x, x̄) := τ(Ψ2[f + τh]−Ψ2
1[f + τh])(x, x̄) (∆x̄[∂xh](x))2 ,

B′4[f, h](x, x̄) := (Ψ1[f + τh]−Ψ1[f])(x, x̄)∆x̄[∂2
xh](x).

Note that the only new type of term that appear is A′4[f, h]. The rest of terms can be easily handle
using auxiliary Lemma 7.3, Corollary 7.1 and (129). To sum up, our proof reduces to check that

(141)

∫
Dε

(∫
Dε(y)

∣∣A′4[f, h](x, x̄)
∣∣2 |x̄|2γdx̄

)
dx ≤ C(ε, ‖f‖H3(Dε))τ

2.

By (129), as f ∈ H4,3(Dε) we have that ∂xf ∈ H3,2(Dε) ⊂ C1(Dε) and we just need to prove the
same type of estimate for the term∫

Dε

(∫
Dε(y)

∣∣∣∣(Ψ2[f + τh]−Ψ2[f])(x, x̄)

τ
− (Ψ1[f]−Ψ1[f]Ψ2[f]) (x, x̄)∆x̄[h](x)

∣∣∣∣2 |x̄|4+2γdx̄

)
dx.
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Thanks to the definition of Ψ2[·](x, x̄), adding and subtracting some appropriate term we have

(Ψ2[f + τh]−Ψ2[f]) (x, x̄) =
cosh(ȳ + ∆x̄[f + τh](x))− cosh(ȳ + ∆x̄[f](x))

cosh(ȳ + ∆x̄[f](x))− cos(x̄)

− cosh(ȳ + ∆x̄[f + τh](x))
cosh(ȳ + ∆x̄[f + τh](x))− cosh(ȳ + ∆x̄[f](x))

[cosh(ȳ + ∆x̄[f + τh](x))− cos(x̄)] [cosh(ȳ + ∆x̄[f](x))− cos(x̄)]
,

and using on it some trigonometric identities, we obtain

(Ψ2[f + τh]−Ψ2[f]) (x, x̄) = [Ψ1[f](x, x̄)−Ψ1[f]Ψ2[f](x, x̄) cosh (τ∆x̄[h](x))] sinh (τ∆x̄[h](x))

−Ψ2
1[f](x, x̄) sinh2(τ∆x̄[h](x)) + 2Ψ1[f]Ψ2[f](x, x̄) sinh(τ∆x̄[h](x)) sinh2

(
τ
2 ∆x̄[h](x)

)
+ 2Ψ2[f](x, x̄) [1−Ψ2[f](x, x̄) cosh(τ∆x̄[h](x))] sinh2

(
τ
2 ∆x̄[h](x)

)
+ Ψ1[f + τh](x, x̄)

[
cosh(ȳ + ∆x̄[f + τh](x))− cosh(ȳ + ∆x̄[f](x))

cosh(ȳ + ∆x̄[f](x))− cos(x̄)

]2

.

Now, dividing the above expression by τ and subtracting the term (Ψ1[f]−Ψ1[f]Ψ2[f])(x, x̄)∆x̄[h](x)
we obtain that

(Ψ2[f + τh]−Ψ2[f])(x, x̄)

τ
− (Ψ1[f]−Ψ1[f]Ψ2[f]) (x, x̄)∆x̄[h](x)

= Ψ1[f](x, x̄)

(
sinh (τ∆x̄[h](x))

τ
−∆x̄[h](x)

)
−Ψ1[f]Ψ2[f](x, x̄)

(
cosh (τ∆x̄[h](x))

sinh (τ∆x̄[h](x))

τ
−∆x̄[h](x)

)
−Ψ2

1[f](x, x̄) sinh2(τ∆x̄[h](x)) + 2Ψ1[f]Ψ2[f](x, x̄) sinh(τ∆x̄[h](x)) sinh2
(
τ
2 ∆x̄[h](x)

)
+ 2Ψ2[f](x, x̄) [1−Ψ2[f](x, x̄) cosh(τ∆x̄[h](x))] sinh2

(
τ
2 ∆x̄[h](x)

)
+ Ψ1[f + τh](x, x̄)

[
cosh(ȳ + ∆x̄[f + τh](x))− cosh(ȳ + ∆x̄[f](x))

cosh(ȳ + ∆x̄[f](x))− cos(x̄)

]2

.

Finally, using the Taylor expansion of the trigonometric functions sinh(·), cosh(·) and (129) give us
the desired inequality (141). �

Proof of iv). Recalling (138) together with (139) and (140), we have

(142) ∂3
x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}
=

5∑
i=1

∂xA
′
i[f, h](x, x̄) +

4∑
i=1

∂xB
′
i[f, h](x, x̄),

where,

∂xA
′
1[f, h](x, x̄) = ∂x

{
(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ
− (Ψ2[f]−Ψ2

1[f])(x, x̄)∆x̄[h](x)

}
∆x̄[∂2

xf](x)

+

[
(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ
− (Ψ2[f]−Ψ2

1[f])(x, x̄)∆x̄[h](x)

]
∆x̄[∂3

xf](x)

:= A′′11[f, h](x, x̄) + A′′12[f, h](x, x̄),

∂xA
′
2[f, h](x, x̄) = (∂xΨ2[f + τh]− ∂xΨ2[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x)

+ (Ψ2[f + τh]−Ψ2[f])(x, x̄)∆x̄[∂2
xf](x)∆x̄[∂xh](x)

+ (Ψ2[f + τh]−Ψ2[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂2
xh](x)

:= A′′21[f, h](x, x̄) + A′′22[f, h](x, x̄) + A′′23[f, h](x, x̄),
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∂xA
′
3[f, h](x, x̄) = −(∂xΨ1[f + τh]− ∂xΨ1[f])(Ψ1[f + τh] + Ψ1[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x)

− (Ψ1[f + τh]−Ψ1[f])(∂xΨ1[f + τh] + ∂xΨ1[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x)

− (Ψ1[f + τh]−Ψ1[f])(Ψ1[f + τh] + Ψ1[f])(x, x̄)∆x̄[∂2
xf](x)∆x̄[∂xh](x)

− (Ψ1[f + τh]−Ψ1[f])(Ψ1[f + τh] + Ψ1[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂2
xh](x)

:= A′′31[f, h](x, x̄) + A′′32[f, h](x, x̄) + A′′33[f, h](x, x̄) + A′′34[f, h](x, x̄),

∂xA
′
4[f, h](x, x̄)

= ∂x

{
(Ψ2[f + τh]−Ψ2[f])(x, x̄)

τ
− (Ψ1[f]−Ψ1[f]Ψ2[f])(x, x̄)∆x̄[h](x)

}
(∆x̄[∂xf](x))2

+

[
(Ψ2[f + τh]−Ψ2[f])(x, x̄)

τ
− (Ψ1[f]−Ψ1[f]Ψ2[f])(x, x̄)∆x̄[h](x)

]
2∆x̄[∂xf](x)∆x̄[∂2

xf](x)

:= A′′41[f, h](x, x̄) + A′′42[f, h](x, x̄),

∂xA
′
5[f, h](x, x̄) = ∂x

{
− (Ψ1[f + τh] + Ψ1[f])(x, x̄)

(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ

+ 2Ψ1[f](Ψ2[f]−Ψ2
1[f])(x, x̄)∆x̄[h](x)

}
(∆x̄[∂xf](x))2

+

[
− (Ψ1[f + τh] + Ψ1[f])(x, x̄)

(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ

+ 2Ψ1[f](Ψ2[f]−Ψ2
1[f])(x, x̄)∆x̄[h](x)

]
2∆x̄[∂xf](x)∆x̄[∂2

xf](x)

:= A′′51[f, h](x, x̄) + A′′52[f, h](x, x̄),

and

∂xB
′
1[f, h](x, x̄) = (∂xΨ2[f + τh]− ∂xΨ2[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x)

+ (Ψ2[f + τh]−Ψ2[f])(x, x̄)
[
∆x̄[∂2

xf](x)∆x̄[∂xh](x) + ∆x̄[∂xf](x)∆x̄[∂2
xh](x)

]
=: B′′11[f, h](x, x̄) + B′′12[f, h](x, x̄),

∂xB
′
2[f, h](x, x̄) = −(∂xΨ1[f + τh]− ∂xΨ1[f])(Ψ1[f + τh] + Ψ1[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x)

− (Ψ1[f + τh]−Ψ1[f])(∂xΨ1[f + τh] + ∂xΨ1[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂xh](x)

− (Ψ1[f + τh]−Ψ1[f])(Ψ1[f + τh] + Ψ1[f])(x, x̄)∆x̄[∂2
xf](x)∆x̄[∂xh](x)

− (Ψ1[f + τh]−Ψ1[f])(Ψ1[f + τh] + Ψ1[f])(x, x̄)∆x̄[∂xf](x)∆x̄[∂2
xh](x)

=: B′′21[f, h](x, x̄) + B′′22[f, h](x, x̄) + B′′23[f, h](x, x̄) + B′′24[f, h](x, x̄),

∂xB
′
3[f, h](x, x̄) = τ(∂xΨ2[f + τh]− 2Ψ1[f + τh]∂xΨ1[f + τh])(x, x̄) (∆x̄[∂xh](x))2

+ τ(Ψ2[f + τh]−Ψ2
1[f + τh])(x, x̄)2∆x̄[∂xh](x)∆x̄[∂2

xh](x)

=: B′′31[f, h](x, x̄) + B′′32[f, h](x, x̄),

∂xB
′
4[f, h](x, x̄) = (∂xΨ1[f + τh]− ∂xΨ1[f])(x, x̄)∆x̄[∂2

xh](x)

+ (Ψ1[f + τh]−Ψ1[f])(x, x̄)∆x̄[∂3
xh](x)

=: B′′41[f, h](x, x̄) + B′′42[f, h](x, x̄).
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Taking into account all the above we have proved that∫
Dε

(∫
Dε(y)

∣∣∣∣∂3
x

{
K[f + τh, f](x, x̄)

τ
−Ψ1[f](x, x̄)∆x̄[h](x)

}∣∣∣∣2 |x̄|2dx̄

)
dx

.
5∑
i=1

∫
Dε

(∫
Dε(y)

∣∣∂xA′i[f, h](x, x̄)
∣∣2 |x̄|2dx̄

)
dx +

4∑
i=1

∫
Dε

(∫
Dε(y)

∣∣∂xB′i[f, h](x, x̄)
∣∣2 |x̄|2dx̄

)
dx,

where each of the terms that appear can be decomposed as follows:

∂xA
′
1[f, h](x, x̄) = A′′11[f, h](x, x̄) + A′′12[f, h](x, x̄),

∂xA
′
2[f, h](x, x̄) = A′′21[f, h](x, x̄) + A′′22[f, h](x, x̄) + A′′23[f, h](x, x̄),

∂xA
′
3[f, h](x, x̄) = A′′31[f, h](x, x̄) + A′′32[f, h](x, x̄) + A′′33[f, h](x, x̄) + A′′34[f, h](x, x̄),

∂xA
′
4[f, h](x, x̄) = A′′41[f, h](x, x̄) + A′′42[f, h](x, x̄),

∂xA
′
5[f, h](x, x̄) = A′′51[f, h](x, x̄) + A′′52[f, h](x, x̄),

and

∂xB
′
1[f, h](x, x̄) = B′′11[f, h](x, x̄) + B′′12[f, h](x, x̄),

∂xB
′
2[f, h](x, x̄) = B′′21[f, h](x, x̄) + B′′22[f, h](x, x̄) + B′′23[f, h](x, x̄) + B′′24[f, h](x, x̄),

∂xB
′
3[f, h](x, x̄) = B′′31[f, h](x, x̄) + B′′32[f, h](x, x̄),

∂xB
′
4[f, h](x, x̄) = B′′41[f, h](x, x̄) + B′′42[f, h](x, x̄).

For the sake of brevity, we shall present here the complete details for the term A′′51[f, h](x, x̄) and
the other terms can be dealt using the previous lemmas via straightforward variations. To sum up,
our goal reduces to check that

(143)

∫
Dε

(∫
Dε(y)

∣∣A′′51[f, h](x, x̄)
∣∣2 |x̄|2dx̄

)
dx ≤ C(ε)τ2.

Notice that A′′51[f, h] can be written in a more manageable way (adding and subtracting terms) as

A′′51[f, h](x, x̄) = 2(Ψ1[f]−Ψ1[f + τh])(x, x̄)∂x

{
(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ

}
(∆x̄[∂xf](x))2

− 2∂xΨ1[f](x, x̄)

{
(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ
− (Ψ2[f]−Ψ2

1[f])(x, x̄)∆x̄[h](x)

}
(∆x̄[∂xf](x))2

− 2Ψ1[f](x, x̄)∂x

{
(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ
− (Ψ2[f]−Ψ2

1[f])(x, x̄)∆x̄[h](x)

}
(∆x̄[∂xf](x))2 .

Now, each one of the above terms can be easily handled. Using (129) and applying repeatedly
Lemma 7.3 we get that the first term is bounded as required. For the second term, we only need
to note that it can be written, remembering (136), as

2∂xΨ1[f](x, x̄)

{
(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ
− (Ψ2[f]−Ψ2

1[f])(x, x̄)∆x̄[h](x)

}
(∆x̄[∂xf](x))2

= 2∂xΨ1[f](x, x̄)A[f, h](x, x̄)∆x̄[∂xf](x).

Combining (124) with Corollary 7.2 and (129) we obtain the bound 2|∂xΨ1[f](x, x̄)∆x̄[∂xf](x)| ≤
C(ε). After that, as an immediate consequence of (137) we get the required bound for the second
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term. For the latter, we proceed in the same spirit as before, trying to split that term into previously
studied terms. Notice that

2Ψ1[f](x, x̄)∂x

{
(Ψ1[f + τh]−Ψ1[f])(x, x̄)

τ
− (Ψ2[f]−Ψ2

1[f])(x, x̄)∆x̄[h](x)

}
(∆x̄[∂xf](x))2

= 2Ψ1[f](x, x̄)∂xA[f, h](x, x̄)∆x̄[∂xf](x)− 2Ψ1[f](x, x̄)A[f, h](x, x̄)∆x̄[∂2
xf](x)

= 2Ψ1[f](x, x̄)
{
A′1[f, h](x, x̄) + A′4[f, h](x, x̄) + A′5[f, h](x, x̄)

}
∆x̄[∂xf](x).

Using Corollary 7.1 and (129) we obtain the bound 2|Ψ1[f](x, x̄)∆x̄[∂xf](x)| ≤ C(ε). Finally,
working as we did to get inequality (141) we get the required bound for each of the above terms.
Therefore, combining all we have proved our goal. �
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