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Abstract

We consider smooth solutions of the Burgers-Hilbert equation that
are a small perturbation § from a global periodic traveling wave with
small amplitude e. We use a modified energy method to prove the
existence time of smooth solutions on a time scale of % with 0 < 0 <
€ < 1 and on a time scale of 57 with 0 < < €2 < 1. Moreover, we
show that the traveling wave exists for an amplitude € in the range
(0,€*) with €* ~ 0.29 and fails to exist for € > 2.
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1 Introduction

1.1 The Burger-Hilbert equation (BH).

In this paper we study the size and stability of traveling waves of the Burgers-
Hilbert equation (BH),

fi=Hf+ ffa for (z,t) € Q x R (1)
f(x,0) = folz). (2)
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where 2 is the real line R or the torus T and H f is the Hilbert transform
which is defined for f: R — R by
1 . ko
Hf(zx) = -PV. 19 4, Hf(k) = —i— f(k).

T RT—1Y ||

In the periodic setting T there is an analogous expression for H f.

This equation arised in [I8] as a quadratic approximation for the evolution
of the boundary of a simply connected vorticity patch in 2D. Later, Biello and
Hunter, in [3], proposed the model as an approximation for describing the
dynamics of small slope vorticity fronts in the two-dimensional incompressible
Euler equations. Recently, the validity of this approximation is proved in [14].

By standard energy estimates the initial value problem for (BH) is locally
well posed in H® for s > % Bressan and Nguyen established in [4] global
existence of weak solutions for initial data fy € L*(R) with f(x,t) € L®(R)N
L3(R) for all t > 0. Bressan and Zhang constructed, in [5], locally in time
piecewise continuous solutions to the BH equation with a single discontinuity
where the Hilbert transform generates a logarithmic singularity. Uniqueness
for general global weak solutions of [4] is open. But piecewise continuos
solutions are shown to be unique in [17] by Krupa and Vasseur.

Burgers—Hilbert equation can indeed form shocks in finite time. For dif-
ferent numerical simulations see [3] and [II] (see also [16]). Finite time
singularities, in the C1Y norm with 0 < § < 1, was shown to exist in [6]
for initial data fy in L*(R) N C1(R) that has a point 2y € R such that
H(fo)(zo) > 0 and fo(xo) > (32| fo|[12)3. Recently, with a different ap-
proach, Saut and Wang [19] proved shock formation in finite time for (BH)
and Yang [21] constructed solutions that develope an asymptotic self-similar
shock at one single point with an explicitly computable blowup profile for
(BH).

In this paper we are concerned with the dynamics in the small amplitude
regime where (BH) can be viewed as a perturbation of the linearized (BH)
equation f; = H[f]. Since the nonlinear term in is quadratic and the
Hilbert transform is orthogonal in L2, standard energy estimates yield a
time of existence of smooth solutions 7" ~ m Thanks to the effect of the
Hilbert transform and using the normal form method, Hunter, Ifrim, Tataru
and Wong (see [12] and [I3]) were able to improve this time of existence.
More precisely, if € is the size of the initial data, they prove a lifespan T" ~ E%
for small enough € (see also [9] for a similar approach with a modified version
of the (BH) equation). The proofs are based in the normal form method
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and in the modified energy method. Furthermore, Hunter [I1] showed for
0 < € < 1 the existence of C'*°-traveling wave solutions of the form

fe(z,t) = uc(x + vt)
with
uc(z) = ecos(z) + O(e?), (3)
ve = —1 4+ O(e?), (4)

Notice that, (%ue(nx) 11)6) is also a C*°—traveling wave solution.

n

1.2 The main theorem.

In the present work we extend the results in the small amplitude regime in
the following way:

1. Size of the traveling waves: we show that the traveling wave exist for
an amplitude € in the range (0, €*) with €* ~ 0.29 and fails to exist for

2

€> =,

2. Extended lifespan from a traveling wave: we prove that a —perturbation
of u, lives, at least, for a time T ~ é, for 0 < 0 < e < 1, and for a
time T' ~ & for 0 < 0 < €2 < 1 (see Figure 1). This is an improvement
compared with the time T ~ % provided by the results in [12] and [13].
Indeed, our main theorem reads:

Theorem 1. For 0 < |e|, § < 1 let (ue,ve) € C°(T) x R be a traveling wave
solution of equation (1) as in and and

1fo = tel[mra(ry < 6.
Then there ezist, 0 < g < 1, T'(€,d) > 0 and a solution of equation
f(x,t) € C((0,T(e,0)); HY(T)),
such that:
1. if § < le| and |e] < eg, T(€,0) ~ %,

2. if 6 K € and |e| < €, T(€,0) ~ 5.
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Figure 1: Logarithmic plot of the lifespan vs the size of the perturbation.

1.3 Sketch of the proof of theorem
Now we briefly describe the proof of theorem [I} Assume that the solution
fla,t) = uc(z +vet) + g( + vet, 1)

is a small perturbation around the traveling wave wu.(z + v.t). Then the
linearization of the Burgers-Hilbert equation is

Leg = —vege + Hg + (uc(2)g)s = 0

so to the first order, the perturbation g solves the equation ¢g; = L.g, with
solution

g(x,t) = etteg(x,0).
Therefore the linear evolution of g is determined by the eigenvalues of L..
The full nonlinear evolution of g is

gt ="Lcg+ N(g,9)
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where N(g, g) is a nonlinearity that is (at least) quadratic in g. We plug in
the linear solution to get

g1 =" Leg(x,0) + N(eg(x,0), e g(z,0))

to second order, which integrates to
t
g(x,t) = eteg(x,0) + etLE/ e e N(efeg(x,0), et g(x,0))ds.
0

Expand (at least formally) the initial data and the nonlinearity in terms of
the eigenvectors of L. as

g(x70) = ZCnQOTL(.T), N(QOZ,QDm) = chanOm
where the eigenvalue of ¢,, is \,. Then

( t) ‘o ( ) e(Al+/\m)t e)\nt ( ) (5>
X ~ E Cn€ " pplx) + E Clmn®Pn T
I n Lm.n )\l )\m )\n l

[REAS)

to second order, provided that the denominator \; + A, — A\, # 0, i.e., that
the eigenvalues are “non-resonant”. Then we can integrate the equation ([1)
up to a cubic error term, yielding the “cubic lifespan”, i.e., initial data of
size € leads to a solution that exists for a time at least comparable to e 2.
This is the “normal form transformation”, first proposed by Poincaré in the
setting of ordinary differential equations (see [2] for a book reference). Its
application to partial differential equations was initiated by Shatah [20].
Unfortunately, non-resonance fails for L. because 0 is an eigenvalue, and
0+ A\, — A\, = 0. The eigenvalue 0 arises from the symmetry of the equation
(). Indeed, the initial data u.(z +6) & uc(z) 4 dul(z) produces the solution

f(x,t) = ue(x + vt + 8) = u(x + vet) + dul(z + v t).

In this case g(x,t) = ou.(z) with g: = 0, so u. € ker L. Also, the initial data
Uers(z) = ue(z) + 60.uc () produces the solution

F(x,1) = ters(x + veist) = uc(z + vet) + 0uc(x + vet) + dvitul (x + vet).
In this case g(z,t) = 00.uc(x) + ovltul(z), so

L.g = 6LOu. = g, = dvlu. € ker L,
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so O.u. is in the generalized eigenspace corresponding to the eigenvalue 0.
These perturbations generate translations and variations along the bifur-
cation curve. We treat them separately using a more sophisticated ansatz

f(x,1) = ey (2 + alt)) + g(x + a(t), 1).

We will show in Proposition [5|that if |ey| and || f — ue, || 2 /|€0| are sufficiently
small, then f can always be put in the form above, with |e — €y|/|€o| also
small, and the expansion of g not involving any eigenvector with eigenvalue
0. This way we removed the resonance caused by the eigenvalue 0 from the
evolution of g.

We also need to analyze the other eigenvalues of L., a first order differen-
tial operator with variable coefficients, and a quasilinear perturbation from
Ly = 0, + H, whose eigenvectors are the Fourier modes e™®. Just like the
Schrodinger operator with potential —A + V', with a basis of eigenvectors
known as the “Jost functions”, giving rise to the “distorted Fourier trans-
form” (see Agmon [1]), L. can also be diagonalized using a combination of
conjugation and perturbative analysis. More precisely, let g = h,. Then

Leg = ((ue(x) = ve)g)e + Hg = ((ue(x) = ve)he + Hh)s

so L. is conjugate to the operator h — (u.(x) — ve)h, + Hh. Let h = ho be
where ¢/ () is proportional to (u.(z) —v.)~!. Then

Leg = ((ccdy + H+ R)h o ¢,

where ¢. — 1 as € — 0, and R, is a small smoothing remainder (i.e., it gains
derivatives of arbitrarily high orders). Thus L. is conjugate to c¢.0, + H + R,
whose eigenvalues can be approximated by those of ¢.0, + H, which are
+(nci—1i),n =1,2,.... The general theory of unbounded analytic operators
developed in [15] allows us to justify this approximation up to O(e%) (see
Corollar ' and to relate the eigenvectors of L, to the Fourier modes (see
Lemmai in the sense that another linear map h — conjugates L. into a
Fourier multiplier whose action on ¢("+s82™)® s multiplication by A, (n # 0).
At the end of the day we have the following estimate for small e:

1/2, 1+m#n,
/2, l+m=n,

|)\l+>\m_)\n‘>{

see Proposition . Because this value appears in the denominator in ({3)), if
g has size ¢, a direct application of the normal form transformation yields a
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lifespan comparable to €2/§%. To improve on this, we will make use of the
structure of the nonlinearity:

N6, ) = b2+ O(Je).

The first term is the usual product-style nonlinearity, which imposes the
restriction [ + sgnl + m + sgnm = n + sgnn, and implies that [ + m —
n = £1 # 0, so the normal form transformation can be carried out as
before. The second term is of size |¢| and gains a factor of 1/|¢| in the
lifespan. Thus the usual energy estimate can show a lifespan comparable to
1/|ed|, and the normal form transformation can show a lifespan comparable
to |e|/d%. This decomposition of the nonlinearity into one part satisfying
classical additive frequency restrictions, and another part enjoying better
estimates analytically was first used in Germain—Pusateri-Rousset [10] to
show global wellposedness of the 1D Schrodinger equation with potential
(see also Chen—Pusateri [7]). Our result shows that this approach can be
adapted to quasilinear equations and to the case of discrete spectrum.

1.4 The outline of the paper.

In section [2| we study the traveling waves solutions for ([l). For sake of
completeness we sketch the proof of existence which follows from bifurcation
theory. In addition we analyze the size of the traveling waves. In section
we study the linearization of equation (1)) around the traveling waves. In
section [4] we introduce a new frame of references which will help us to avoid
the resonances found in section [3] Finally, in section [5] we prove theorem

2 'Traveling waves

The existence of traveling waves for (1) was shown in [I1]. Here we will study
their size after we give some details about the existence proof. We look for
solutions of in the form

fe(x,t) = uc( + vet),
thus we have to find (u., v.) solving

Hu, — veul + ueu., = 0. (6)



If (ue,ve) is a solution, so is (ul(x),v?) = (uc(nz)/n,v./n). Thus from one

solution we can get n-fold symmetric solutions for all n > 1.
To solve () we can apply the Crandall-Rabinowitz theorem (see [8]) to

F : (u, ) = Hu+uwu' — (=1 + p)u,
HH(T)xC = H (T,

where

HEH(T)

= {2m-periodic, mean zero, and even functions, analytic in the strip {|Im(z)| < r}}

endowed with the norm

||f||Hff’+(T) = Z (£ i) ey,
+

and

HE(T)
= {2m-periodic, and odd functions, analytic in the strip {|Im(z)| < r}}

endowed with the norm

171

HE(T) = Z (i) || zecry-
n

Here || - || (1) is the usual Sobolev norm, and it is enough to take & > 1 and
r=1.
We just notice that F'(0, ) = 0 and the derivative of F' at uw =0, u = 0,

D F(0,0)h = Hh + I

just has a non trivial element in its kernel belonging to H%*(T), namely,
h = cos(x).

Thus, the application of the C-R theorem allows to show the existence
of a branch of solutions (uc,v.) € (H,"", R), bifurcating from (0, —1), for (f)
with the assymptotic

uc(z) = ecos(z) + O(e?)
ve = —1+ O(e).



We remark that we obtain a bifurcation curve

€ — (Ue, Ve)
={z€C: |z|<dé} — (Hf "7, R) (7)

which is differentiable and hence analytic on By for 4 small enough.

The rest of this section is devoted to prove further properties of these
solutions.

Introducing the asymptotic expansion

=3 talwe” 5)
= Z vp€”, 9)

taking u; = cos(x), A\g = —1 and comparing the coefficient in €” we obtain
that

Lo
ul, + Hu, = —v,_1sin(z) + Z VU, — 5835 Z Up— U = —Vp_1 SIN(T) + fr,
m=1 m=1

forn=2,3, ...

We notice that in order to solve the equation Hu + u' = f we need
(f,sin(z)) = 0. Therefore we have to choose v,_1 = L(sin(z), f,). This gives
us a recurrence for (u,, v, 1), n > 2, in terms of {(Up, vm_1)}"_. In order
to study this recurrence we will introduce the ansatz

Uy = 3 U cos(ka). (10)
k=2

By induction, one can check that the rest of coefﬁcients in the expansion on
cosines of w, must be zero. In addition, if u.(x) solves @ (x + m)
also a bifurcation curves in the direction of cos(x) and then by unlqueness,
ue(z) = u_.(x + ), which yields u, ; = 0 if n — k = 1, mod(2).

Comparing the coefficient of sin(kxz), with £ = n mod(2), and 2 < k < n,



we have that

n—k min(m,k—1)
(1 - k)un,k + k Z UnUp—m,k — Z Z U, 1 Un—m, k—1 (11>
m=1 m=1|=max(1,k—n+m)

n—1 min(m,n—m—k)

— g Z Z Um I Un—m k+l = 0.

m=1 =1
And comparing with sin(z) we have that

—1 min(m,n—m—1)

n—1 (
1
Up—1 = = Z Z Um | Up—m,1+1- (12)
m=1 =1

Up to order O(e*) we find that

\)

2 3
ue(xr) = ecosx — € cos2z + > cosdz + O(e),

62
Ve = —1- Z + 0(64).

The recurrence — allows us to prove the following result.

Theorem 2. The radius of convergence of the series and @D, with the
coefficients given by the expression , and 15 not bigger than %

Proof. From and ( . we have that

n—1
1
(1 — n)unn = 5 (n - k’)uk,kunfk,nfk'
k=1
Let
o0
y=y(x) =+ "
n=2
Then

/ ]‘ /
y—ay = 5yry,

(2z + zy)y' = 2y,

2+yy 1
2
Iny+y/2=Inx+ C,
ye¥'? = Cx.
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Since y ~ x for small x, C'=1, so

ye!’? =,
y = 2W(z/2),

where W is the Lambert W-function. Since the radius of convergence of
W at 0 is 1/e, the radius of convergence of y at 0 is 2/e, so the radius of

convergence of and is at most 2/e. [

In addition we can get a bound for how large the traveling wave can be.

Theorem 3. The series and @, with the coefficients given by the ex-
pression , and converge for any € < x* ~ 0.29.

Proof. This proof is based on the implicit funtion theorem.

Firsly we will introduce the spaces L*~ = {odd functions f € L?*(T)},
H'" = {even functions f € H'(T)}. The space X will the orthogonal com-
plement of the span of cos(z) in H'". We will equip L*~ with the norm

1 s
lulfe = [ Ju(o)Pds, (1)

—Tr

in such a way that || sin(nz)||z2- = 1, for n > 1. We also define

=5 [ (W@ + o) - 20 hu() de. (1)

—T

Thus || cos(nz)||x =n — 1, for n > 2. The reason why we take these norms
is technical and it will arise below. Finally we define

X=XxR

equipped with the norm

(@ v)llx =/ llall% + v
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Since u. = ecosz — 3€? cos 2z + O(€®) and v, = —1 4+ O(€?), we can let
_ 1 € »

G(e,u,pu) = 5 F | ecosx — ECOSQJZ—FE U, €l

€

1
= — <sinx— Esian—i—elHﬁl)
€ 2

€
— (cosx— §C082(L’+61~L) (sinx — esin 2z — et’)

(1 + ep)(sinx — esin 2z — eil’)

a |

= Hu+ e(cosx(siHQ:U + ')

1
+ (5 cos 2z — ﬂ> (sinz — esin 2z — eﬂ’))
+ @ — p(sinz — esin 2z — et’)

map R x X to L?~.
Because the existence of traveling waves we already know that there exists
¢* such that for every e € [0, €*), there exist @, and p,. satisfying

G(€, T, pe) = 0.
In addition we have that

dG (e, U + s, 1+ sv)
ds

= dG@ae’#(’l}, V)

s=0

1
= Hﬁ—l—e(@'cosx — O(sinz — esin 2z — et’) — € <§cos2x —71) 27')

+ 0 — v(sinx — esin2x — et’) + eut’

maps (0,v) € X linearly to L*~.

Thus as far as dG.a, . (U, p) is invertible from X to L*>~ for € € [0,z*)
we will be able to extend the solution (u., p.) from [0,€*) to [0,2*) by the
Implicit Function Theorem.

Note that

dGooo(0,v) = Ho+ 7' — vsinx
is an isometry from X to L*»~ under the norms given by and .
Therefore one can compute

dGe,ﬁe,,ue - dGa,l,O (]I + dG(il,O (dGEﬂe,Me - dG070’0)) .
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By Von Neumann series and the fact that dGo g is an isometry, dG g, .
will be invertible, as far as, ||dGeq. 4. —dGo0,0||x—r2- < 1. In order to show
this last inequality we will bound

HdGe,ﬁe,ue - dGO,O,OHXﬁ\L?v— = A,

in terms of ||@.||x and pu.. After that we will bound ||u.||x and p.. To do it
we will use the information we have about 0.t and 0, ..
Along the bifurcation curve,

dGE:ﬁevﬂe (aﬁaﬁ? Mé) = _aﬁG(EJ aea Ne)

= cosx(sin 2z + @) + MY (cos 2z — 21,) (16)

— €(cos 2z — 24, ) (sin 2x + 4.) + pe(sin 2z + a)).

Thus
(Oetic, pe) = dG 5, (—0:G(e, Tic, pic))

€,Ue, e

Therefore

_ 1 .
\/||3eue||§< e < 77 190G (e te, el 2- (17)

In addition we have that, for r. = \/||@||% + |ie|?,

Ore < \JlIocadl i + ]2 <
re < 0B+ i < =

||86G(67 ﬂea Me)“LQv*-

Thus, explicit estimates for A, and ||0.G (€, Ue, pte)|| 2.~ in terms of r. and
e give a differential inequality for r. which can be used to bound A..

We will need the following lemmas to bound A, and the norm ||0.G (e, @, fte)|| 2.
where 9.G(€, G, p) is given by the right hand side of (16]).

Lemma 1. If f € X then ||fsinz — f'cosz|[r2 < Y52 f| x.

Proof. Let
f= Z fncosnx.
n=2
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Then
fsinz — f'cosz = —(f cosz)’

/
1 [e.e]
=3 <f2 cos + f3cos2r + E (frno1+ fn+1)005n$>

n=3

1 o0
=5 (fgsinx+2fgsin2:c—|—2n(fn1 ~|—fn+1)sinna:) )

n=3
Then

1F sin(a) — ' cos(@)l[3a = £ | 3+ 47+ 3 n2(fur + funr)?

And we have that

e’} 00 00 [e's}
Zn2(fn71 + for1)? = ZTLZ o1t Zfiﬂ + QZRanflan-
n=3 n=3 n=3 n=2

In addition

Zn foi= Z (n+ 112 =93 +16f; +25/7 + 36/ + Y (n+1)°f7,
n=2

n=>6
Zn 2= (n- )f2—9f4+16f5+z 2
n=4 n=>6

and

2 Z W fucifapr =2 9fofs+2- 16 fs f5 + 2 Z 1 fuet ot
9
<9 16
Uf2+0f4+ 'Yf3+ f5+§ —{—Zn nt1

9 6 -
=902+ (; +25> 2416712+ (7 +36> 2+ Zrﬁfﬁ,l +Y 0l
n="7 n=>5

=90 f3 + <§+25) [+ 167f7 + (17—6+36> BAY (n+12f4> (n—=17f
n=6 n==6
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Thus
A+ 0 (far + fan1)
n=3
< (104 90) f3 + (20 + 167) f5 + (59+§) fi+ (88+%) :
- (n+ 1)
+2§ (1+ n 1)2) (n—1)2f2.

Since, for n > 6, we have that EZJ_FBE < % we finally obtain that

f2+4fi+ ZTLQ(fn—1 + fa+1)
n=3
< (10+90) f3 + (20 + 16) f3 + (59 + 2) fi+ (88 * ?) fs
49 =
12 <% + 1) ;(n —1)%f7.

We have to compare

10 + 9o,

1422
4 ’ 9 7’ 16 +

20 + 1 59 4 2 88 4 16 4
0+ 167 + = S and 2( 22)

9
The minimum in o of max (10 + 90, 59:;“ ) is attached when 10490 = % —i—%

and it is 11.373. Then minimum in 7 of max (5 +4v,5.5 + %) is 11.5. Finally
2(1 4 49/25) = 5.92. Therefore

1f sin(a) — f'cos(a)> < SVITS|Flx.

Lemma 2. If f, g € X then [|(f9)'ll> < Bl fllxllgllx, where

w2 869
B=\/—+— ~3.05.
3 +144 305
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Proof. Let

f= ancosnx— Zf‘n‘e ,g—Zgncosmj— Zgwemxe

Inl>2 \n\>2

Then

nl>1  |ml|>2,ln—m|>2

= _% Z n Z Jim|9in—m| SinnT

n>1l  |m|>2|n—m|>2

so by Cauchy—Schwarz,

2

1(f9)'II72 = Z n Z Jim|Gn—m|

\n\>1 |m|>2,|n—m|>2

P> (Im| = 1)2(7;2— m| —1)?
[n|>1 |m|>2,|n—m|>2

x> (ml =D fn(n —ml - 1g_,

Im|>2,In—m|>2

ST w0l -1,

[n|>1|m|>2,|n—m|>2

—_

oo

C
= Sl fllxlglx
where

C =supC,,

n=1

2

Co= D G Pn w1

Im|>2,|In—m|>2

n—3 TL2 o) n2

_ 0N "
; -k =22 ; K2(k + n)?
N B; EZ J
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D,, # 0 only when n > 4. We have that Dy = 16 and when n > 5,

2m? R4 (n—k—2)7 =1
D, < _ 1
_(n—2)2k:1 k2(n — k — 2)? (n—2)2 kz::l@
4n? w2 1 50(7? — 2)
< (L _ < .
“(n—=22\6 n-2)7 27
For E,, by partial fraction decomposition
n? 1 2 2 1
—— = - +
E2(k+n)?2 k2 kn (k+n)n (k+n)?
SO
— ™ =1l 21 K1
I T O BE B
— k +n) 6 et k n = k 3 — k
so when n > 5, E, < 3(n* —4) so
682 — 172
Co=Dy+2E, < — =2 <185
27
and when 1 <n < 3,
2 2
anzEn<%—2<5.
For n = 4 we have
72 205 13 272 869
Cy=D 2B, =164+2——— ) ——=—+— > 186
S +(3 144> 23 7
% 212 869
00 s
C = C,=0C4=— =282
e SRR
and finally

C
1Cf9) ez < A/ S o gl = Bl N gl
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Lemma 3. If f € X then ||2f sin 2z — f' cos 22|12 < 0.8V7| f| x-
Proof. Let

f= Z fncosnz.
n=2
Then

1
2fsin2x — f'cos2x = —(f cos2z)" = —§(f3 cosx + fycos2x + f5cos3z)

- % (Z(fn—Q + fnt2) cos nx)

n=4
1
= §(f3 sinz + 2 fy sin 2z + 3 f5 sin 3x)
R )
+ 3 (; n(fro2+ fn+2)smnaj> ,

and

1 o0
|2f sin 2z — f'cos2x = —(f cos 2z)'|| 2 = 3 [34+4f2+9f2+ E n2(fn-2 + fut2)?
n=4

We have that

Z n*(fr-2 + for2)® = Z n’f2 o+ Z n’fi,+2 Z 0 fra foio

n=4
Zn+2 f2+Z f2+2ann 2fns2

We also can bound

22” fn—2fn+2 <Zn Onafr_ 2"‘2” 4o

oo

(n +2)%0,f? +Z n =220, af.

n=2
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Therefore

BAAR+ILZ+D) 0 (fas+ fara)’
n=4

< RO 0+ o) -2 (14 )
s — n—4

= 16(1 4 02) f2 4 (14 25(1 4 03)) 2 + (4 4+ 36(1 + 03)) f2 + (9 + 49(1 + 05)) f2

+§:(n+2) (1+0,) + (n — 2)? (1+0n14 )fﬁ

n—=

=16(1+09) f2 4+ (1 +25(1 4 03)) f2 + (4 4+ 36(1 + 03)) f2 + (9 + 49(1 4 05)) f2

( (1+ o) +16< +i>)f§+<81(1+a7)+25(1+i>)f72
(100<1+08)—|—36( )) fa+ (121(1+ag)+49( )) fo

+Z (n+2 (1+0,) + (n—2)? (1+0n1_4>)f3'

n=10

We take o, = 1 for n > 6 to get

fi+ A2+ 9f3 +Zn (faz + frs2)?

<16(1 + 09) f2 + (1+25<1+03))f3 (4+36(1+03))f7 + (9+49(1 + 035)) f2

(e L)) (oo )
(emem(e ) men(o ))

+ ) ((n+2)°+(n—2)) .

One can compute that (n +2)% + (n — 2)? = 2(n? + 4) and that

2
ot 104
(n—1)2 81

19



Thus we have to compare

144
16(1 —
a?é%),(u< (L+oz), 55+
and
. 26 N 25 187 N
max | — + —o3, —
osel0,1] \ 4 4% 36
and
40 36 236
max | — + —oy, —
o4€[0,1] \ 9 9 49
and
58 N 49 291 N
max | — + —o5, —
osc01] \ 16 16 " 64
and 104
2— < 2.6.
81

16
250’2

Then the maximum of these all numbers is the first one which is < 17. Thus

V17

17
|2f sin 2z — [ cos 2|2 < THJFHX

]

Now, with the lemmas [I} 2] and [3] we are ready to bound the right hand

side of (|16)). Indeed,

1
|| cos x sin 2z + 3 sin x cos 2z — € cos 2x sin 2z || 12

|4, cos x — @ sin x| 2
24, sin 2o — . cos 2x|| 2
€

12| = 11((@e)*)'ll 2
|| pte sin 22| 12

et 2

20

1
:ZHZS sin 3z + sinx — 2esin4x|| 2

V10 + 4¢2

9

4
<V11.5/2|ac x,

(Lemma [1))
<V17/2ac] x.

(Lemma (3))
<B||t|3, (Lemma [2)
§|Ne‘
<2| el e x,



by Cauchy—Schwarz,

|right-hand side of (L6))]|72 < (V11.5/2 + V17/2¢)||tic||x + Be|tic||%
+ el + 2l el x

< V10 + 4e€2
- 4

V10 + 4€2 N
4

+ 24/ Naclli + [uel® + V17/2¢]| ]| x
+ Bellte|x + [laellX + [pel*.
Turning to the other side, we have that
(dG (i) — AG0,0,0)) (0, V) = e(f/ cosz — O(sinx — esin 2z — €tl)

e (% cos 2z — u) 17’) (18)

+ ev(sin 2z + @) + ep 0.

Since
|0 cos — Dsinz|| 2 < V11.5/2|0|x, (Lemma [1])
6 sin 22 — %@' cos 2| 1= < V/IT/4]15x, (Lemma 3)
108 + @t || 2 = |[(@0)' |22 < Bllae]|x[[o]x,  (Lemmal2)

[ (sin 22 + @) |2 < [v|(1 4 2[|dc]|x),
et L2 < 2|peel [ 2]l x

|[left-hand side of (I8)]z2 < (V/3e + V17/4€* + Be?||ic||x + 2¢pe])||0]| x
+e(l+ 2fac]x)[v]
so by the Minkowski inequality,

1dG (c,aen0) — AG(0,0,0) | x xR L2
S\/(\/ 11.5/2¢ + 2¢|pe| + V17/4€® + Be?||t.||x)? + €2(1 + 2|t x)?

<\ (VIT5/2¢2 4+ ) + 26y |2 + % + VIT/4€2 + BE i x

<2€ 4 2eq/ | 11?2 + ||| % + V17/4¢% + Bé||a||x =: A..
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Since dG 0,0y is an isometry, the Von Neumann series (1 — 7)™ = ZZOZO T
shows that if Ac < 1, then dG(cg, ,.) is invertible, and HdG(_Elﬂé ue)H < (1-
A7 so

el + el + V17/2€] e x

_ 1 V10 + 4€2

+ Bellac % + 1@k + |ucl?).

Let e = \/||t]|% + |1e|>. Then
A, < 2e + 2ere + V17/4€* + Bé*r,,
ro = 0 and

V10 +4€2 + (2 + V17/2¢)re + Ber? 4 r?

<
- 1 —2e—2er. — /17/4€? — Bé?r,

/
/r.€

By the comparison principle, r. is bounded from above by the solution to

dy V10 + 422 + (8 + 2v/1Tx)y + 4Bay® + 4y
v~ 7 4 — 8z — 8xy — /1722 — 4Bx?y

with y(0) = 0. Integrating

V10 + 422dx + (8 + 2v/17x)ydx + ABxy?dx + 4y2da
+8zdy + 8zydy + V17x2dy + 4Bx?ydy = 4dy

gives

V2?2 4+ 2.5 4 2.5sinh ™' (vV0.42) + 8zy + V1722 + 2Bx?y? + 4xy® = 4y + c.
Since y(0) =0, ¢ =0, so

(2Bx? + 4z)y? + (82 + V1722 — 4)y + 2v/22 + 2.5 4+ 2.5sinh ! (v/0.4z) = 0.

When x > 0, the quadratic coefficient and the constant is positive, so this
equation has a non-negative root iff

8z + V172 —4 < —\/(2Ba;2 + 4z)(zV2? + 2.5 + 2.5sinh~ (V/0.4z))
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whose solution is x < x* &~ 0.29, according to Matlab. Hence the solution
can be extended to € = x* ~ 0.29. In order to achieve this last conclusion
we just notice that the solution to (£2)), with y(0) = 0 can be extended only
if A, <1, since 1 — A, arises in the denominator.

The above argument shows that for ¢ € (—z*, *), the bifurcation curve
produces a traveling wave u, = ecosx — 5 cos 2z + €2, which travels at
speed v, = —1 — €. Since all the operators involved are analytic in all its
arguments, the bifurcation curve is analytic in € on (—z*, 2*). It may be the
case, however, that the power series for u. and v, around € = 0 has a smaller
radius of convergence than z* (for example, the function f(z) = (2® + 1)~}
is analytic on the whole real line, but the radius of convergence of its power
series around 0 is only 1.) We now show that the radius of convergence of
the power series for u. and v, are indeed at least z*.

We note that the above argument also works if € is replaced with ee™®
(a € R), so the bifurcation curve (u,,v) is also analytic in a neighborhood
of {ee' : ¢ € (—x*,z*)}. Hence the curve is analytic in the disk of radius z*
centered at 0, so the radius of convergence of its power series around 0 is at
least x*. O

3 Linearization around traveling waves
In this section we will analyse the spectrum of the operator
Leg = —VcGs + Hg + (ue(‘r)g)z

corresponding to the linearization of equation around the traveling wave
(te,ve) bifurcating from zero in the direction of the cosine studied in the
previous section.

Actually, let

flz,t) = fe(z,t) + g(x + v, t).
with fo(z,t) = uc(z + vet). Then

ft(ma t) = 8tf€(x, t) + (Uegx + gt)(x + UJ? t)
and, since equation for f(xz,t),
(Hf+ ffo)(@,t) = (Hf+ fOufo)(x,t) + Hg(x + vet, t)
+ 0. (fe(z,t)g(x 4+ vt b)) + g(x + vet, 1) 0pg(x + vt t).
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Then the equation for g(z,t) is
Ohg(x,t) = —veg(@,t)e + Hy(x, 1) + (ue(z)g(2,1))0 + g(2, 1) g (2, t)a-
The linearization around g = 0 is
09 = Leg

where

Leg=—vego + Hg+ (ueg)e = Hg+ g+ » " ((u —0™)g),. (19
g 9o+ Hg+ (ueg)e = Hg+ g.+ Y €" (( )9). . (19)

S

n=1 e
Lg L(”)g

All along the paper we will assume that the initial data f, has zero mean.
Since the equation preserves the mean,

/—77: f(z,t)dx =0

for all t. Since in the construction above u, also has zero mean,

/: fla,t)dz =0

for all ¢.

3.1 The eigenvalue 0

The action of L on the Fourier modes is

F(Lg)(m) = i(m — sgnm)g(m)

with eigenvalues 0 (double), 44, £2i, ... (on L*(T) with zero mean). We
first study the perturbation of the eigenspace corresponding to the double
eigenvalue of 0. By translational symmetry, for any 6 € R, u.(x + §) is also
a solution to

Hu —veu+uu' = 0.

Differentiation with respect to § then shows that
Lo, = Hu., — veul + (ueul) = 0.
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Also, since u, lies on a bifucation curve, we can differentiate
Hu. — veul + ucul =0
with respect to € to get
Locue = Houe — (Ov)ul + ucdeul + udoue = (0.0 )u,

so on the span V, of . and d.u., L. acts nilpotently by the matrix

0 0.,
0o 0 )°

3.2 Simplifying the linearized operator

We want to solve the eigenvalue problem
Leg = ((ue = ve)g)' + Hg = Ae)g.
Let g = h’. Then the antiderivative of the above is
(ue — v )W + Hh = Ae)h  (mod 1). (20)
Let h = h o ¢, where ¢, satisfies

;2w o dy -
e ) 2

(ue — ). (W 0 ¢) + H(hod.) = Ae)hop. (mod 1).
When ¢ is small enough, ¢. is a diffeomorphism of R/27Z, so

Then

o </027r u(y‘i—y_v) h W+ H(hog)od t = Ae)h (mod 1).

By the change of variable z = ¢.(y),

H(ho 606 (0) = - [ bodu))cor 2Dy
_ % O W;L(Z) cot (¢e (37) ; ¢; (Z)) (qb;l)’(z)dz



The convolution kernel of the operator
Reh = H(ho o) oo, —

18

K.(z,2) = cot (¢6 (z) - O (Z)) (67)(2) — cot ™ Zand  (22)

the e-derivative of the kernel is

0K (z,2) = — csc? <¢€ (x) — ¢c (Z)> Od (@) ; Octe(2) (o) (2)

2
(cb;l(x) ; ¢>;1(z>) 0. (61 (2).

Near x = 0, cscz — 1/2* and cotx — 1/z are smooth, and (¢ 1)’ is smooth
everywhere, so when x — z is small enough, up to a smooth function in (z, 2),

+ cot

0Kz, z) (007 (2) =007 ()0 )'(2) | 0o )'(2)
2 (ot (2 ) ¢ (2))? ¢t (x) — o1 (2)
— 01 (2)) = (0ed ' (x) = 0b ' (2)) (0 1)' ()

O (o) (2) (o ' (2) — 7
(9! (x) — o1 (2))?
D6 (2)(x — 2 [ (1 — 167 (1 — t)= + )t
(ot (z) — o 1(2))?
(61 (2)(x = 2)* [ (1 = )A(d7)" (1 — 1)z + ta)dt
(ot (z) — 9 1(2))?

which is itself a smooth function of (x, z) when = — z is small enough (because
¢! is smooth). Then

10 RA™ || i Sk P22y, kym =0,1,...

where the constant does not depend on ¢, for all h € H™ /(1), or, equivalently,
10RD| e Sk Bl froms  kym =0,1,..., (23)
where, again, the constant does not depend on e.

Definition 1. We say an operator is of class S if it satisfies . We say
a family of operators is of class S uniformly if for each k and m there is an
implicit constant that makes true for all operators in the family.
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Thus 0. R, is of class S uniformly in €. Since Ry = 0, R /¢ is also of class
S uniformly in e. 3
Now the eigenvalue problem for h is of the form

(ccOp + H 4+ R)h = Ae)h (mod 1)
or, equivalently,

(0p + ¢ *H + 'R = ¢ 'A(e)h  (mod 1) (24)

o= o ( / " #) (25)

and R./e is of class S uniformly in e. Note that since u, and v, are analytic

functions of € on a neighborhood of 0, with uy = 0 and vy = —1, so are ¢,
R, and ¢, with ¢g = I, Ry =0 and ¢y = 1.

where

3.3 Spectral analysis of the linearization
The eigenvalue problem is a perturbation of the eigenvalue problem
W+ Hh =M (mod 1)
with explicit eigenvalues
0 (double), ni, n=+1,4£2 ...
and eigenfunctions

et gilntsenn)z o 4] 49

They form an othorgonal basis of H*/(1) for any nonnegative integer k.

Definition 2. Let T : H*(T) — Hk('ﬂ"), for k € N, a linear operator. We
will denote

1T := HT||Hk(TrHHk(T)-

The resolvent (9, + H — z)~! is also a Fourier multiplier whose action on
Fourier modes is

(0p + H — 2) LeF DT — (£ — z) etttz -y — 0 1, ... (26)
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The circle
I,={z:]z—ni|=1/2}, n==£1,4%2,...

encloses a single eigenvalue +ni, and the circle
Fo={z:]2| =1/2}

encloses the double eigenvalue 0. On I, and 'y we have that

|z —mi| >1/2, meZ (27)
so by ,
10, +H—2)" <2, z€l,, neZ. (28)
Moreover the projection
1 -1
Po=—— [ (0, +H—2)"dz, n==1,42,...
27t Jr,

is the projection on the span of ¢("*582™)% and the projection

1
Po=—— [ (0, +H—2)"dz
211 To

is the projection on the span of e and e~*.
Now when € is small enough and z € I',,, we have that

Op+c'H+c'Re— 2= (0, +H—2)(1+ (0, +H—2)"'R))
where
R =0, +c'H+c'R) — (0, + H) = (c.* —1)H + ¢ 'R, (29)

is analytic in € near 0, with R} = 0, thanks to the analyticity of c.. Taking
the inverse gives that

Op+c'HHc'Re—2) ' =1+ 0+ H—2)'R)y " 0, + H—2)""

and the Von Neumann series

(140, +H—2)'R)™ = i((@z—l—H—z)_lR;)" (30)

n=0
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converges because
10 + H — 2) 'Rl < 2| Rel S < 1
when € is small enough (depending on k). Moveover,
11+ (0 + H—2)'R)™ = 1| Sk e

and so
10, +c'H+c,'Re—2) ' — (0, + H—2)"Y S e

uniformly for z € I',,. Hence the projections

1
Qnle) = ~5-7 Oy +c.'H+c'R.—2)'dz, necZ (31)
i Jr,
exist and satisfy

HQn(G) - Pn” Sk €, nc Z (32>

uniformly in n. Then by Chapter I, Section 4.6 of [15], when € is small
enough, @,(¢) is conjugate to P,. Thus dimran@,(e) = 1 for n # 0 and
dimran Qg(€) = 2. So 9, + ¢, *H + ¢, ' R, has a single eigenvalue enclosed by
I, for n # 0. In section we showed that the action on the range of Qq(¢)
is given by a nonzero nilpotent 2 by 2 matrix. If z is outside all these circles,
then still holds and the Von Neumann series still converges to show
that 0, + ¢.'H + ¢.'R. — z is invertible, so it has no other eigenvalues.

3.4 Analyticity of eigenvalues and eigenvectors

By and ([27), (0, + H — z)~! is analytic in (z,€) for z in a neighborhood
U of U,ezl'y, and € near 0. By , R! is analytic in € near 0, so the series
shows that (0, +c.'H + ¢, 'R, — 2)~! is analytic in (z,¢€) for z € U and
¢ near 0, and the integral shows that all the projections Q,(¢) (n € Z)
are analytic in a neighborhood of 0 independent of n.

Let ¢, (€) be the corresponding eigenvectors to @, (€) for n # 0. Thanks
to , a good choice is ,(€) = Qn(e)e’" ™ ™® which is nonzero and
analytic in a neighborhood of 0 independent of n. Then by ,

Qn(e)(896"‘0;1(H+R6))ei(n+sgnn)x = (8I+C;1(H+Re))wn(€) = CzlAn(e)wn(e)-
On the other hand, the left-hand side equals

(n + sgn n)iQn(e)ez‘(n-l—sgnn)w + Cg_lQn(E)(H + RE)eii(n-i-sgnn)a:
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which is another vector analytic in € near 0. Then by the next lemma, all
the eigenvalues ¢!\, (€), and hence A, (¢), are analytic in a neighborhood of
0 independent of n.

Lemma 4. Let u(e) and v(e) be two vectors analytic in € € U satisfying
u(e) # 0 and v(e) = Ae)u(e), €€ U.
Then A(e) is analytic in € € U.

Proof. Without loss of generality assume that 0 € U. Since the result is local
in e, it suffices to show that A(e) is analytic in a smaller neighborhood of 0.

Since u(0) # 0, we can find a linear functional f such that f(u(0)) # 0.
Then f(u(e)) # 0 