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Abstract

We study the formation of singularities of a 1-D non linear and non local equation.
We show that this equation provides solutions of the surface quasi-geostrophic equation
with infinite energy. The existence of self-similar solutions and the blow-up for classical
solutions are shown.

1 Introduction.

In this paper we study the existence of particular solutions of the surface quasi-geostrophic
equation (SQG), i.e.

∂tθ + u · ∇θ = 0, (1.1)

θ(x, 0) = θ0(x),

where

θ : R2 × R+ → R
θ = ΛΨ and (1.2)

u = ∇⊥Ψ = (−∂x2Ψ, ∂x1Ψ) (1.3)

with Λ = (−∆)1/2.
Specifically, we shall analyze the case in which the stream function, Ψ, is given by the

expression
Ψ(x1, x2, t) = −x2Hf(x1, t), (1.4)

where is the Hilbert transform, i.e.

Hf(x) =
1

π
P.V.

∫
f(y)

x− y
dy.
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The SQG system (1.1) is a model of geophysical origin which was proposed by P. Con-
stantin, A. Majda and E. Tabak [7] as a model of the 3D-Euler equation. Numerical exper-
iments, carried out by those authors, showed evidence of fast growth of the gradient of the
active scalar when the geometry of the level sets contain a hyperbolic saddle. Later, further
numerical studies were performed in [20] and [8] suggesting a double exponential growth in
time. An analytical study in [11] showed that a simple hyperbolic saddle breakdown can not
occur in finite time. In fact, the angle of the saddle is bounded below by a double exponen-
tial in time and a quadruple exponential upper bound was obtained for the growth of the
derivatives of the active scalar. Subsequently, this bound was improved, for a formation of a
semi-uniform sharp front in [12], by a double exponential. In [13], under certain assumptions
on the local geometry of the level sets, the same bound is obtained. Recently, there has been
different approaches to understand the growth of the derivatives: in [4] it is shown an a priori
estimate from below for the Sobolev norms, a study of the spectrum of the linearized SQG
is performed in [16] and the existence of the unstable eigenvalues is proven, and in [18] they
prove that the 0 solution is strongly unstable in H11.

With the choice (1.4) of the stream function (see below in section 2), the solutions of (1.1)
can be written as

θ(x1, x2, t) = x2fx1(x1, t), (1.5)

where fx satisfies the following one dimensional equation

∂tfx +Hffxx = Hfxfx, (1.6)

fx(x, 0) = f0x(x).

In this way, for an odd initial data, the geometry of the level set of the active scalar contain a
hyperbolic saddle in a neighborhood of zero. Nevertheless, the angle of opening of the saddle
is not observed to go to zero in time. Similar stagnation-point solutions were considered for
2D Navier-Stokes equation in [5].

We will consider that the unknown quantity is the function fx and we will define f by
the expression

f(x) =

∫ x

−∞
fx(y)dy.

Then, if we take fx with zero mean and with a suitable decay at infinity, we have

Hf(x) ≡ H
(∫ x

−∞
fx(y)dy

)
=

1

π

∫ ∞
−∞

log(|x− y|)fx(y)dy.

At this point it is important to stress that equation (1.6) is mean preserving. In order to
verify this property it is enough to recall the orthogonality character of the Hilbert transform.

A more general version of (1.6) was proposed, in a different context, by H. Okamoto, T.
Sakajo and M. Wunsch in [23]

∂tfx + aHffxx = Hfxfx, (1.7)

where a is real parameter. It was motivated by the work of P. Constantin, P. Lax and A.
Majda ([6]) and the work of De Gregorio ([14] and [15]) where the equation is presented as
a 1D-model of the 3D vorticity Euler equation.
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Indeed, we can write the 3D Euler equation as

∂tw + (u · ∇)w = Dw, (1.8)

where

u(w) =
1

4π

∫
R3

(x− y)

|x− y|3
× w(y)dy

and

D(w) =
1

2
(∇u+∇u>).

Thus, D is a singular integral operator and it is easy to check that equation (1.7) and (1.8)
are of the same order. The natural question, behind equation (1.7), is if a transport term
(preserving the structure of the Euler equation) can cancel the singularities of the model
(a = 0) in [6]. See [14], [15] and [22] for a discussion on the role played by the convection
term.

In [23] the authors show local existence of classical solutions for (1.7) with f0x ∈ H1(T)
and they present a blow up criteria: The local solution of (1.6) can be extend to time T if∫ T

0
||Hfx||L∞dt <∞.

In addition they carry out a numerical analysis (see also [21]) and conjecture that solutions
may blow-up for −1 ≤ a < 1 and global existence otherwise.

The case a = −1 has been proposed as a 1-D model of the SQG equation (see [9]) and as
a 1-D model of the vortex sheet problem (see [1] and [19]). For this case, local existence is
proven in [19], singularities in finite time are shown for even, compact support and positive
classical solutions in [9] and for a more general positive initial data in [10]. Exact self-similar
solutions were constructed in [2].

The main results of this paper are organized as follows: In section 2 we will show that
the solutions of equation (1.6) provides solutions of the SQG equation. In section 3 we will
construct self-similar solutions for equation (3.1) for any value of the parameter a. The
existence of such solutions for the SQG equation has been studied by D. Chae in [3]. He
showed that self-similar solutions do not exist with the form

u(x, t) =
1

(T − t)
α

1+α

U

(
x

(T − t)
1

1+α

)
,

θ(x, t) =
1

(T − t)β
Φ

(
x

(T − t)
1

1+α

)
,

α, β ∈ R, α 6= −1,

if the profile Φ is in the class Lp1 ∩ Lp2 , with 0 < p1 < p2 ≤ ∞, and if the profile U ∈
C([0, T );C1(R2 ; R2)) generates a C1 diffeomorphism from R2 onto itself. Nevertheless, this
theorem can not be applied to solutions with the form (1.4). Finally, in section 4, we will
prove blow up for classical solutions of (3.1) with a < 0.
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2 SQG solutions with infinite energy.

In order to obtain the evolution equation for the function, f(x, t), we will use the following
representation of the operator Λ

ΛΨ(x1, x2) =
1

2π
P.V.

∫
R2

Ψ(x1, x2)−Ψ(y1, y2)

|x− y|3
dy. (2.1)

Then, introducing (1.4) in (2.1) we have

ΛΨ(x1, x2) = − 1

2π
P.V.

∫
R2

x2Hf(x1)− y2Hf(y1)

|x− y|3
dy

= − 1

2π
P.V.

∫
R2

x2 (Hf(x1)−Hf(y1)) + ηHf(y1)

((x1 − y1)2 + η2)
3
2

dy1dη

= − 1

2π
x2 P.V.

∫
R
Hf(x1)−Hf(y1)

P.V. ∫
R

1(
(x1 − y1)2 + η2

) 3
2

dη

 dy1

− 1

2π
P.V.

∫
R
Hf(y1)

(
P.V.

∫
R

η

((x1 − y1)2 + η2)
3
2

dη

)
dy1

= − 1

π
x2P.V.

∫
R

Hf(x1)−Hf(y1)

(x1 − y1)2
dy1 = −x2∂x1H(Hf(x1)) = x2∂x1f(x1).

Therefore, from (1.2) follows

θ(x1, x2, t) = ΛΨ(x1, x2, t) = x2∂x1f(x1, t). (2.2)

Combining (2.2) with (1.3) and with the equation (1.1) yields

x2
(
∂t (∂x1f) (x1, t) +Hf(x1, t)∂

2
x1f(x1, t)− ∂x1Hf(x1, t)∂x1f(x1, t)

)
= 0.

Thus, the solutions of (1.6) provides solutions of the equation (1.1) with infinite energy.

3 Self-Similar solutions for any a.

The aim of this section is to prove the existence of self-similar solutions of the equation
(1.7) but since the lack of regularity of this type of solutions we will work with the equation
for f , instead of fx, which is given by

∂tf + aHffx = (1 + a)

∫ x

−∞
Hfx(y)fx(y)dy (3.1)

f(x, 0) = f0(x).

The theorem we will prove is the following:
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Theorem 3.1 Let
G(x) =

√
(1− x2)+,

where and f+ is the positive part of the function f . Then, the function

f(x, t) = − 1

t(1+a)
G(tax)

is a self-similar solution of the equation (3.1).

The proof of this theorem is based in the next lemma:

Lemma 3.2 The Hilbert transform of the function

G(x) =
√

(1− x2)+
is given by the expression

HG(x) =


x−
√
x2 − 1 if x > 1
x if |x| < 1

x+
√
x2 − 1 if x < −1

Remark 3.3 A more general statement is obtained in [17]. Here we will give a simplifier
proof for lemma 3.2.

Proof. Consider the complex function

F (z) =
√

1− z2 + iz, z = x+ iy,

where the square root is defined by

√
z ≡ |z|

1
2 exp

i
2
arg(z) with −π < arg(z) ≤ π.

Then the following properties of F can be checked:

1. F (z) is an analytic function for y > 0.

2. F (z) vanishes at infinity.

3. The restriction of F (z) to the real axis is given by the expression

lim
y→0+

F (z) =


i(x−

√
x2 − 1) if x > 1√

1− x2 + ix if |x| < 1

i(x+
√
x2 − 1) if x < −1

Then, since the restriction of F (z) has to be of the form

lim
y→0+

F (z) = f(x) + iHf(x),
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the lemma 3.2 is proven.
By introducing the ansatz, f(x, t) = 1

t(1+a)
Φ(tax), in the equation (3.1) we obtain

aΦ′(ξ) (HΦ + ξ) = (1 + a)

∫ ξ

−∞
Φ′(y)

(
HΦ′(η) + 1

)
dη. (3.2)

Using lemma 3.2 we have that the function, Φ(ξ) = −G(ξ), satisfies equation (3.2) for
any a.

An important consequence of this self-similar solutions is the following corollary:

Corollary 3.4 The function f(x, t) = 1
(1−t)1+aG ((1− t)ax) is a solution of equation (3.1)

with the following behavior at time t = 1: i) For a > −1 there is blow-up. This means, f(0, t)
goes to infinity in fininte time. ii) For a = −1 the solution collapse in a point.

In order to prove this corollary it is enough to observe that the equation is time translations
invariant and that changing the time direction is the same that changing the sign of the initial
data.

4 Blow up for classical solutions with a < 0.

In this section we will present a proof of blow up of classical solutions for the equation
(3.1) with a < 0. We will say that a solution f(x, t) of equation (3.1) ”blows up in finite
time” if there exits 0 < T < ∞ such that either f is not in C∞(R × [0, T ]) or Hfx(x, t) is
unbounded on R× [0, T ].

Theorem 4.1 Let f0x ∈ C∞c (R) an odd function such that Hf0x(0) > 0. Then the solution of
(3.1) with a < 0 blows up in finite time.

Proof. We will proceed by a contradiction argument. Let us suppose that there exist a
solution of (3.1), fx ∈ C1 ([0, T ], C∞(R)) for all T <∞ with f0x as in the theorem. Then, fx
satisfies the following properties:

1. fx(·, t) is odd.

2. fx(·, t) is of compact support.

The first property is evident. In order to check the second property, we define the trajectories

dX(x, t)

dt
= aHf(X(x, t), t),

X(x, 0) = x.

Then the function fx(X(x, t), t) satisfies the equation

d fx(X(x, t), t)

dt
= Hfx(X(x, t), t)fx(X(x, t), t),

fx(X(x, 0), 0) = f0x(x)
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and therefore

fx(X(x, t), t) = exp

(∫ t

0
Hfx(X(x, τ), τ)dτ

)
f0x(x).

Taking the Hilbert transform on (3.1) yields

∂tHfx(x, t) + aH(Hffxx)(x, t) =
1

2

(
(Hfx(x, t)2 − fx(x, t)2

)
.

By evaluating this equation in x = 0 we obtain

dΛf(0, t)

dt
=

1

2
(Λf(0, t))2 − aH(Hffxx)(0, t). (4.1)

Thus, if we prove that H(Hffxx)(0, t) is bigger than 0, we obtain a contradiction since a < 0.
Therefore, in order to prove theorem (4.1) we just have to show the following lemma:

Lemma 4.2 Let f ∈ C∞c (R) an even function. Then

H(Hffxx)(0) ≥ 0.

Proof. We will use the Fourier transform:

f̂(k) =

∫ ∞
−∞

f(x)e−ikxdx and f(x) =
1

2π

∫ ∞
−∞

f̂(k)eikxdk.

Then, we can write

H(Hffxx)(0) =
1

2π

∫ ∞
−∞

̂H(Hffxx)(k)dk

=
1

(2π)2

∫ ∞
−∞
−isign (k)

∫ ∞
−∞

Ĥf(k − η)f̂xx(η)dηdk

=
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

sign (k)|η|
k − η

Λ̂f(k − η)Λ̂f(η)dηdk

=
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

sign (ξ + η)|η|
ξ

Λ̂f(ξ)Λ̂f(η)dηdξ.

Since Λf is a real even function, we have that Λ̂f is also a real even function. Therefore we
can write the previous expression in the following way

H(Hffxx)(0) =
2

(2π)2

∫ ∞
0

∫ ∞
0

(1 + sign (ξ − η))
η

ξ
Λ̂f(η)Λ̂f(ξ)dηdξ

=
4

(2π)2

∫ ∞
0

∫ ξ

0

η

ξ
Λ̂f(η)Λ̂f(ξ)dηdξ =

4

(2π)2

∫ ∞
0

∫ 1

0
αξΛ̂f(αξ)ξΛ̂f(ξ)dα

dξ

ξ

Defining the function, g(x) = xΛ̂f(x), and the dilatation gα(x) = g(αx) we have that

H(Hffxx)(0) =
4

(2π)2

∫ 1

0

(∫ ∞
0

g(ξ)gα(ξ)
dξ

ξ

)
dα.

Now we recall the definition of the Mellin transform:
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Definition 4.3 Let g be a real function such that the integral∫ ∞
0
|g(x)|dx

x
<∞.

Then, we define the Mellin transform, Mg(λ), of g(x) by the expression

Mg(λ) =

∫ ∞
0

xiλg(x)
dx

x
.

This operator has the following properties:

1. The Mellin transform of a dilatation is given by

Mgα(λ) = α−iλMg(λ).

2. The Parseval identity∫ ∞
0

f(x)g(x)
dx

x
=

1

2π

∫ ∞
−∞

Mf(λ)Mg(λ)dλ.

Therefore,

H(Hffxx)(0) =
4

(2π)3

∫ 1

0

∫ ∞
−∞

α−iλ|Mg|2(λ)dλdα.

Since |Mg|(·) is an even function we can conclude that

H(Hffxx)(0) =
8

(2π)3

∫ ∞
−∞
|Mg|2(λ)

(
<
∫ 1

0
α−iλdα

)
dλ

=
8

(2π)3

∫ ∞
−∞

|Mg|2(λ)

1 + λ2
dλ ≥ 0.

The lemma (4.2) is proven.
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[9] A. Córdoba, D. Córdoba and M.A. Fontelos, Formation of singularities for a transport
equation with non local velocity, Ann. of Math. 162 (2005) 1377-1389.
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[12] D. Córdoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations. J.
Amer. Math. Soc. 15 (2002) 665-670.

[13] J. Deng, T.Y. Hou, R. Li and X. Yu, Level sets dynamics and the non-blowup of the 2D
Quasi-geostrophic equation, Methods and Applications of Anal. 13 (2) (2006) 157-180.

[14] De Gregorio, On a one-dimensional model for the three dimensional vorticity equation.
J. Stat. Phys. 59 (1990) 1251.

[15] De Gregorio, A partial differential equation arising in a 1D model for the 3D vorticity
equation. Maht. Methods Appl. Sci. 19(1996) 1233.

[16] S. Friedlander and R. Shvydkoy, The unstable spectrum of the surface quasi-geostropic
equation. J. Math. Fluid Mech. 7(suppl. 1), S81–S93 (2005).

[17] R.K. Getoor, First passage times for symmetric stable processes in space, Trans. Amer.
Math. Soc. 101 (1961), 75-90.

[18] A. Kiselev and F. Nazarov, A simple energy pump for periodic 2D QGE, preprint.

[19] A. C. Morlet, Further Properties of a Continuum of Model Equations with Globally
Defined Flux, Journal Of Mathematical Analysis And Applications, 221, (1998) 132-
160.

[20] K. Ohkitani and M. Yamada, Inviscid and inviscid-limit behavior of a surface quasi-
geostrophic flow. Phys. Fluids 9 (1997), no. 4, 876–882.

9



[21] H. Sato and T. Sakajo, Numerical study of De Gregorio’s model for the 3D vorticity
equation Trans. Japan SIAM 16 221 (2006).

[22] H. Okamoto and K. Ohkitani, On the role of the convection term in the equations of
motion of incompressible fluid, J. Phys. Soc. Japan 74 2737.

[23] H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-
Majda equation. Nonlinearity 21 (2008), no. 10, 2447-2461.

Angel Castro and Diego Córdoba
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