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Mixing solutions for IPM

Ángel Castro

Abstract

We explain the main steps in the proof of the existence of mixing solutions of the
incompressible porous media equation for all Muskat type H5 initial data in the fully un-
stable regime which appears in [4]. Also we present some numerical simulations about these
solutions.

1. Introduction: The IPM system and the Muskat problem

The incompressible porous media system (IPM) models the dynamics of an incompressible fluid
with density ρ and viscosity ν which relies in a porous media with permeability κ and is given by
the following equations on Rd:

∂tρ+ u · ∇ρ = 0, ρ(x, 0) = ρ0(x), (1.1)
∇ · u = 0, (1.2)
ν

κ
u = −∇p− gρed, (1.3)

where u is the velocity of the flow, p its pressure and g is the acceleration due to gravity (we will
consider that the fluid is under the gravitational force). Thus this system is composed of the mass
conservation law (1.1), the incompressibility condition (1.2) and the Darcy’s law (1.3). This last
law was obtained by Darcy, in an experimental way, in 1920 (see [19]) and reflects the fact that
the porous media is trying to freeze the motion of the fluid. For a derivation of Darcy’s law from
the Navier-Stokes equation by using homogenization one can read [39].

In this paper we will work in R2 and we will take all the constant ν, κ and g in (1.3) equal to
one. In two dimensions the IPM system also models the dynamics of a fluid in Hele-Shaw cell. Such
a cell consist of two plates and a viscous and incompressible fluid between both of them whose
velocity satisfies the Navier-Stokes equations with zero boundary conditions. In this situation,
under certain assumptions, one can obtain the IPM system by sending the distance between the
two plates to zero.

The Muskat problem deals with the following initial data ρ0 for IPM: the density takes only
two (constant) values

ρ0(x) =
{
ρ− x ∈ Ω−0
ρ+ x ∈ Ω+

0
(1.4)

where Ω±0 are open and simply connected domains such that R2 = Ω+
0 ∪Ω−0 . The interface between

these two difference domains will be denoted by Γ(0) = ∂Ω+
0 ∩ ∂Ω−0 . Although more general

situations can be considered we will restrict our analysis to either asymptotically flat interfaces,
i.e., limx1→±∞ x2 = 0 for x ∈ Γ(0) or periodic in the horizontal variable and Ω+

0 will be the domain
that relies below.

The author was partially supported by the grant MTM2014-59488-P (Spain), ICMAT Severo Ochoa project SEV-2015-556 and ERC
grant 307179-GFTIPFD..
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If one consider that, starting with the initial data (1.4), the (weak) solution to the IPM system
has the form

ρ(x, t) =
{
ρ− x ∈ Ω−(t)
ρ+ x ∈ Ω+(t) (1.5)

where Ω±(t) depend on time and move with the flow, an equation for the interface Γ(t) = ∂Ω+(t)∩
∂Ω−(t) can be found. Indeed, if we parameterize the Γ(t) by

Γ(t) = {x ∈ R2 : x =z(α, t) = (z1(α, t), z2(α, t)), α ∈ R},

we obtain the equation

∂tz(α, t) = ρ+ − ρ−

2π

∫
R

z1(α, t)− z1(β, t)
|z(α, t)− z(β, t)|2 (∂αz(α, t)− ∂βz(β, t))dβ. (1.6)

z(α, 0) = z0(α), (1.7)

Conversely, solutions to equation (1.6) give rise to weak solutions of the IPM system through
expression (1.5) and Biot-Savart law.

The local and global well-posedness of equation (1.6) has been studied intensively in the last
decades. In order to summarize the main results we will define three different regimes: the stable
regime in which the denser fluid is below, ρ+ > ρ− and the interface can be parameterize by the
graph of function; the fully unstable regime in which the denser fluid is above, ρ+ < ρ− and again
the interface can be parameterize by the graph of function; and the partial unstable regime in which
there is a part of the interface where the denser fluid is above (and also a part of it where denser
fluid is below). The local in time existence of solutions in the stable regime was first shown in [16]
for an initial data in Hk, with k ≥ 4 in dimension 2 and 3. In addition several global existence
results have been proven for small and for medium size initial data (see [13], [17], [11], [12], [1]).
For a survey about these results we recommend [26]. However, in the fully unstable regime the
problem is ill-possed in Sobolev spaces ([16], [5] and [35]) and although there is not a proof of it
there is a strong analytical evidence that is also ill-possed in the partial unstable regime.

Then, the situation before [4] was that any solution for the IPM system by starting with an
initial data of Muskat type in the fully unstable regime was known. However, this is a quite realistic
situation from a physical point of view, and one can find several experiment about the evolution
of this kind configurations in a Hele-Shaw cell. In [4] we addresses this problem by construction
mixing solutions. The rest of the paper is devoted to explaining what a mixing solution is and
giving an sketch of the main ideas of the proof of its existence. In section 5 we present some
numerical results investigating the behaviour of these solutions.

2. Mixing solution

As comment in the introduction we would like to find some solutions for the IPM system with an
initial data of Muskat type in the fully unstable regime whose interface belongs to some Sobolev
space (non analytic in general). In the figure 2.1 we can see a draw of such an initial data. In
particular, we are interesting in showing the existence of mixing solutions whose definition is the
following

Definition 1. The density ρ(x, t) and the velocity u(x, t) are a "mixing solution" of the IPM system
if they are a weak solution and also there exist, for every t ∈ [0, T ], open simply connected domains
Ω±(t) and Ωmix(t) with Ω+ ∪Ω− ∪Ωmix = R2 such that, for almost every (x, t) ∈ R2 × [0, T ], the
following holds:

ρ(x, t) =
{

ρ± in Ω±(t)
(ρ− ρ+)(ρ− ρ−) = 0 in Ωmix(t) .

For every r > 0, x ∈ R2, 0 < t < T B((x, t), r) ⊂ ∪0<t<TΩmix(t) it holds that∫
B

(ρ− ρ+)
∫
B

(ρ− ρ−) 6= 0 .
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This definition is motivated by the solutions that were constructed by L. Székelyhidi Jr., in [36].
In that paper the author showed the existence of mixing solutions with a initial data of Muskat
type in the fully unstable regime in which the interface was flat (see also [32]).

The theorem that has been proven in [4] is the following

Theorem 1. Let Γ(0) = {x ∈ R2, : x = (x, f0(x))} with f0(x) ∈ H5. Let us suppose that ρ+ < ρ−.
Then there exist infinitely many "mixing solutions" starting with the initial data of Muskat type
given by Γ(0) (in the fully unstable regime) for the IPM system.

We would like to make two remarks about a mixing solution:

1. A mixing solution does not change the values that the density takes initially.

2. There is total mixing in the mixing zone.

An interesting question is which is the distribution of the density inside of the mixing zone
Ωmix(t). We think that the following holds:

There exist infinitely many mixing solutions such that the mixing is linearly degraded.
Hopefully a proof of it will arise in a forthcoming note. Roughly speaking, this assertion means

that, there exist infinitely many solutions, such that the mean values of its density go from ρ−

to ρ+ from the top to the bottom of the mixing zone in a linear way. Indeed, the mean values of
the density of any of these solutions are given by the values of the same subsolution. In the next
section we will present the concept of subsolution and will explain with some more details this
issue.

(a) Initial data.

Mixing Zone

(b) Mixing solution.

Figure 2.1: A Muskat type initial data in the fully unstable regime and a mixing solution

3. The subsolution

In [4] and [36] it has been shown that the existence of mixing solutions relies in the existence of a
subsolution. A rigorous definition of subsolution can be found in [4]. Here we will consider that a
subsolution is a 5−upla (ρ, u, m) ∈ C

(
(0, T )× R2) satisfying (weakly)
∂tρ+∇ ·m = 0, (3.1)
∇ · u = 0 (3.2)
∇⊥ · u = −∂x1ρ (3.3)

on (0, T )× R2 and the inclusions∣∣∣∣m− ρu + 1
2
(
1− ρ2) (0, 1)

∣∣∣∣ < 1
2
(
1− ρ2) on Ωmix(t) (3.4)
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and
ρ = ∓1, m = ∓u, on Ω±(t)

where Ω±(t) and Ωmix(t) satisfy the properties in the definition of mixing solutions. Here we will
work with ρ± = ∓1 for sake of simplicity but any others values ρ+ < ρ− could be considered.

The method of the proof of the fact that subsolutions yields solution is based on the adaptation
of the method of convex integration for the incompressible Euler equation in the Tartar framework
developed recently by De Lellis and Székelyhidi (see [3], [10], [18], [20], [21], [22], [23], [24], [38]
and [37] for the incompressible Euler and for another equations [6], [7], [8], [2] and [33]).

Very briefly, the version of convex integration used initially by De Lellis and Székelyhidi un-
derstands a nonlinear PDE, F (ρ, u) = 0 as a combination of a linear system L(ρ, u, q) = 0 and a
pointwise constraint (ρ, u, q) ∈ K where K is a convenient set of states and q is an artificial new
variable. Then L gives rises to a wave cone Λ and the geometry of the Λ hull of K, KΛ, rules
whether the convex integration method will yield solutions. An h-principle holds in this context:
if for a given initial data there exists an evolution which belongs to KΛ, called a subsolution, then
one find infinitely many weak solutions.

For the case of the IPM system, in [15], the authors initiated this analysis and used a version of
the convex integration method which avoids the computation of Λ hulls based on T4 configurations,
key in other applications of convex integration, e.g to the (lack of) regularity of elliptic systems
[31, 30, 29]. Keeping the discussion imprecise, their criteria amounts to say that (0, 0) must be in
the convex hull of Λ ∩ K in a stable way. Shvydkoy extended this approach to a general family
of active scalars, where the velocity is an even singular integral operator, in [34]. Recently, in
[28], Isett and Vicol using more subtle versions of convex integration show the existence of weak
solution for IPM with Cα−regularity. All of these solutions, increase the modulus of the density.
We remark that the mixing solutions do not change the values of the density.

Székelyhidi refined the result of [15] in [36] computing explicitly the Λ-hull for the case of IPM.
Notice that this increase the number of subsolutions (and thus the solutions available).

Next we will explain how to construct a subsolution for IPM. First of all we construct the mixing
zone. In order to do it we will use a pseudo-interface

Γp(t) = {x ∈ R2 : x = (x, f(x, t)), x ∈ R},
where f(x, t) is a function to be determined below and with f(x, 0) = f0(x). For sake of simplicity
it is assumed that Γp(t) can be written as the graph of a function, but more general situations
could be considered. The mixing zone is then defined by

Ωmix(t) =
{
x ∈ R2 : x = (x, λ+ f(x, t)), |λ| < ε, x ∈ R

}
,

where ε = ct and c ∈ (0, 2). We will call to the constant c the speed of propagation of the mixing
zone and measure the rate of growth of the mixing. The domains Ω+(t) and Ω−(t) will be the
regions below and above Ωmix(t) respectively.

The second step is to define the density and the velocity. We will use (x, λ)-coordinates in the
mixing zone to do it

x(x, λ, t) = (x, λ+ f(x, t)).
The density will be given by

ρ(x, t) =


+1 x ∈ Ω−(t)

ρ](x, λ, t) = λ
ε x ∈ R, |λ| < ε

−1 x ∈ Ω+(t)
(3.5)

where ρ](x, λ, t) ≡ ρ(x(x, λ, t), t) for x ∈ R and |λ| < ε and therefore x(x, λ, t) ∈ Ωmix(t).
Once we have the density, we construct the velocity by using Biot-Savart law, i.e.,

u(x, t) = 1
2π

∫
R2

(x− y)⊥

|x− y|2 (−∂y1ρ(y, t)) dy,

which in the mixing zone yields

u](x, λ, t) = 1
2πε

∫ ∞
−∞

∫ ε

−ε

(−(λ− λ′ + ∆f), x− y)
(x− y)2 + (λ− λ′ + ∆f)2 ∂yf(y, t)dλ′dy, (3.6)

where u](x, λ, t) = u(x(x, λ, t), t) and ∆f = f(x, t)− f(y, t).
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The third and last step is to define the vector field m. In Ω±(t) we need to impose
m(x, t) = ∓u(x, t) x ∈ Ω±(t).

and in the mixing zone we will take

m = ρu−
(
γ + 1

2

)(
1− ρ2) (0, 1) (3.7)

where γ will be chosen later. Since, by construction, ρ, u and m are continuous on R2 for t > 0,
in order to find a weak solution of the system (3.1), (3.2) and (3.3) we have to solve

∇ ·m = −∂tρ on Ωmix(t), (3.8)

with ρ, u and m as in (3.5), (3.6) and (3.7) (notice here that because of the continuity there is no
any term coming from the boundary of Ωmix(t)).

Passing to (x, λ)−coordinates inside of the mixing zone, some computations yields the following
expression for γ](x, λ, t) = γ(x(s, λ, t), t), from (3.8)

γ](x, λ, t) = c− 1
2 + 1

1− (ρ])2
1
ε

∫ λ

−ε

(
u](x, λ′, t) · (−∂xf(x, t), 1)− ∂tf(x, t)

)
dλ′ . (3.9)

In addition the inclusion (3.4) reads

|γ| ≤ 1
2 . (3.10)

Then, since we would like, both γ(x, λ, t) ∈ L∞ (recall m must be continuous in R2) and the
second term in (3.9) small to satisfy (3.10) we need to impose

∂tf(x, t) = 1
2ε

∫ ε

−ε
u](x, λ′, t) · (−∂xf(x, t), 1)dλ′ (3.11)

which is an equation for our pseudo-interface.
This choice of f(x, t) allow to prove (see [4]) that

|γ| ≤ |c− 1|
2 + o(1),

when t→ 0, which implies (3.10) for small enough time t fixed c ∈ (0, 2).
This concludes the construction of a subsolution for IPM (but we have to show existence of

solutions for (3.11)).
Coming back to the distribution of the density inside of the mixing zone. The following should

hold: there exist infinitely many solutions (ρ,u) such that

lim
R→∞

1
2R

∫ R

−R

R1/2

2

∫ λ+ 1
R1/2

λ− 1
R1/2

ρ](x, λ′, t)dλ′dx = λ

ε
∀t ∈ (0, T ) and |λ| < ε,

where ρ](x, λ, t) = ρ(x(x, λ, t), t). Thus, the mixing goes from +1 to -1 linearly from the top to the
bottom of the mixing zone, for all of these solutions (they are the same to a macroscopic level).

An alternative proof of the existence of mixing solutions has been recently published in [25]. In
this paper the authors used a piecewise constant density for the subsolution.

4. The equation for the pseudo-interface

Then, in order to show the existence of a subsolution for the IPM system we just have to solve the
equation (3.11).

Here we just will explain the main behaviour of this equation by using a toy model and present
the main theorems in [4] which give rise to the existence of solutions.

To understand equation (3.11) it is convenient looking first to Muskat equation (1.6). If we
assume that the interface Γ(t) can be parameterize as the graph of a function, i.e., Γ(t) = {x ∈
R2 : x = (x, f(x, t)), x ∈ R}, we find from (1.6) the following equation

∂tf(x, t) = ρ+ − ρ−

2π

∫
R

y

y2 + (f(x, t)− f(x− y, t))2 (∂xf(x, t)− ∂xf(x− y, t))dy.
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Linearizing this equation around the flat solution f = 0 we find

∂tf(x, t) = −ρ
+ − ρ−

2 Λf(x, t). (4.1)

The operator Λ is square root of the Laplacian, Λ = (−∆) 1
2 , with Fourier symbol Λ̂f(ξ, t) =

|ξ|f̂(ξ, t) and representations

Λf(x, t) = 1
π
P.V.

∫
R

∂xf(x− y, t)
y

dy = 1
π
P.V.

∫
R

f(x)− f(x− y)
y2 dy.

Then, by looking to the Fourier side, we can solve (4.1) to find

f̂(ξ, t) = e−(ρ+−ρ−)t|ξ|f̂0(ξ, t).

From, this expression, it is easy to see that the solutions strongly depend on the sign of ρ+ − ρ−.
If the denser part of the fluid is below, then ρ+ > ρ− and the problem is well-posed in Sobolev
spaces among many other good properties. But if the denser part of the fluid is above the problem
is ill-posed.

It happens that the local existence theory for equation (1.6) behaves in a similar way that its
linear version. The reason way of this phenomenon is the following: by taking four derivatives (this
is not sharp but enough for this explanation) in (1.6) we find that

∂tF (α, t) = −σ(α, t)ΛF + a(α, t)∂αF (α, t) +G(α, t),

where F (α, t) = ∂4
αz(α, t), a(α, t) and G(α, t) satisfy that

||∂αa||L∞ ≤ ||z− (α, 0)||H4 , ||G||H4 ≤ ||z− (α, 0)||H4 ,

and the Rayleigh-Taylor function σ(α, t) is given by

σ(α, t) = (ρ+ − ρ−) ∂αz1(α, t)
|∂αz(α, t)|2 .

Therefore G is a low order term, a(α, t)∂αF (α, t) is a transport term with a smooth velocity and
the main term in the equation is −σ(α, t)ΛF . From this splitting is easy to see that, if σ(α, t) > 0
the local in time behaviour of the equation is nice and quite the opposite if σ(α, t) is negative in
some point.

For the equation for our pseudo-interface we have that a time t = 0

∂tf(x, t)|t=0 = − 1
π

∫
R

y

y2 + (f(x, 0)− f(x− y, 0))2 (∂xf(x, 0)− ∂xf(x− y, 0)dy,

which is the same expression we have for the Muskat equation at time t = 0. This is a problem
because we are loosing a derivative through a term of the form Λf(x, 0) (with the bad sign).
However for any t > 0 the density is not a step function any more but a Lipschitz function and the
velocity becomes nicer and the equation (3.11) does not lose any derivative through a Λ-operator.

In the same spirit, by taking five derivatives we can split the equation (3.11) into three terms

∂tF = K∂xf(x,t) ⊗ Fx + a(x, t)∂xF +G (4.2)

where

K∂xf(x,t) ⊗ Fx ≡
1

2πε

∫ ∞
−∞

∫ ε

−ε

(−(λ− λ′ + ∂xf(x, t)), x− y)
(x− y)2 + (λ− λ′ + ∂xf(x, t))2 ∂yF (y, t)dλ′dy,

and F = ∂5
xf , and a(x, t) and G(x, t) can be considered harmless functions (a precise definition of

“harmless” can be found in [4]).
To sketch the behavior of the first term on the right hand side of (4.2) we will analyze the

following toy model

∂tf(x, t) = Lf(x, t) (4.3)

where

L̂f(ξ) = |ξ|
1 + t|ξ|

f̂(ξ).
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For this equation it is easy to see that a t = 0 we lose a derivative through a Λ-operator, i.e.,
∂tf(x, t)|t=0 = Λf(x, 0)

but for any t > 0 we do not lose any derivative any more. In fact, (4.3) can be integrated to obtain
explicit solutions given by

f(x, t) = f0(x) + tΛf0(x)
Therefore there exist solutions for the toy model and they lose a derivative with respect to the
initial data. This is effect of the lost of a derivative a time t = 0.

For equation 3.11 there are no many hopes to find explicit solutions and a different strategy
need to be applied. For example we could think about how to use energy estimates to show the
existence of solution. For the toy model we could proceed in the following way. Since

d

dt

f̂(ξ, t)
1 + t|ξ|

= 0

we have that
d

dt

∣∣∣∣D−1f
∣∣∣∣
Hk+1 = 0

where D̂−1 = 1
1+t|ξ| . This energy estimate allows us to prove local existence of solution in Hk for

an initial data in Hk+1. Next we will explain how to apply this idea to our pseudo-interface. First
we look to equation (4.2) and we consider just the first term on the right hand side, i.e.,

∂tF = K∂xf(x,t) ⊗ ∂xF.
Second we freeze the term ∂xf(x, t) to obtain the equation

∂tF = KA ⊗ ∂xF,
with A =cte.

For this last equation it can be proven that
d

dt

∣∣∣∣m̃D−1F
∣∣∣∣
L2 = 0

where ̂̃mF (ξ, t) = m̃(ξ, t)F̂ (ξ, t)
with

m̃(ξ, t) = e−H(t|ξ|,A)+log(1+t|ξ|) (4.4)
and

H(t|ξ|, A(x, t))

=
∫ t|ξ|

0

1
τ

{
1 + 1

4πτ
(
e−4πτσ (cos(4πτσA)−A sin(4πτσA))− 1

)}
dτ.

Here it is remarkable that
1
C
≤ ||m̃||L∞ ≤ C (4.5)

and because of that we can think of m̃D−1 just like D−1.
Finally we put all this ingredients together. In order to do it we define the pseudo-differential

operator

m̃F (x, t) =
∫
R
e2πiξxm̃(ξ, x, t)F̂ (ξ, t)dξ

where m̃(ξ, x, t) is like in (4.4) but replacing A by ∂xf(x, t) and we compute
d

dt

∣∣∣∣m̃D−1F
∣∣∣∣
L2

by using (4.2). Of course, this derivative is not zero anymore, but fortunately it does not lose any
derivative at any time and it is possible to close a suitable estimate to show local existence for
(3.11).
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The main lemmas in order to show that estimate are the following

Lemma 1. Let F (·, t) a distribution such that, its Fourier transform F̂ (·, t) is a function and∣∣∣∣∣∣∣∣ 1
1 + t| · |

F̂ (·, t)
∣∣∣∣∣∣∣∣
L2(R)

<∞

for every t ∈ [0, T ], for some T > 0. Then
||c1F (·, t)||L2 ≤ 〈A〉

∣∣∣∣D−1F (·, t)
∣∣∣∣
L2

where

c1F (x, t) ≡
∫
R
e2πiξxm(ξ, x, t)

(
K̂A(x)(ξ)∂̂xF (ξ, t)−F

[
KA(x) ⊗ ∂xF

]
(ξ, t)

)
dξ.

This lemma allows to deal with the first term on the right hand side of (4.2).

Lemma 2. Let F (·, t) a distribution such that, its Fourier transform F̂ (·, t) is a function and∣∣∣∣∣∣∣∣ 1
1 + t| · |

F̂ (·, t)
∣∣∣∣∣∣∣∣
L2(R)

<∞

for every t ∈ [0, T ], for some T > 0. Then
||c2F (x, t)||L2(dx) ≤ 〈A〉||a||H3

∣∣∣∣D−1F (x, t)
∣∣∣∣
L2(dx)

where
c2F (x, t) =

∫
R
e2πixξm(ξ, x, t)

(
a(x, t)∂̂xF −F [a∂xF ](ξ, t)

)
dξ.

This lemma allows to deal with the transport term on the right hand side of (4.2).

Lemma 3. Let F (·, t) ∈ L2(R) for every t ∈ [0, T ] for some T > 0. Then the pseudo-differential
operator

m̃F (x) ≡
∫
R
e2πixξm̃(ξ, x, t)F̂ (ξ)dξ

satisfies
||m̃F (x)||L2 ≥ 〈A〉(1− 〈A〉t)||F ||L2 .

This lemma shows coercivity for m̃ (an analogous fact to (4.5)).
In these three lemmas 〈A〉 is a constant that depend on ||A||H3 .
The proofs of these lemmas can be found in [4]. In them some ideas from [27] are used. In this

last paper one can find the L2-boundedness of the operator m̃F .

5. Numerical analysis

In this section we present a numerical analysis of the equation (3.11) in which the formation
of fingers in the pseudo-interface can be observed. In order to avoid problems with the numerical
integration at the infinity we will work with periodic boundary conditions in the horizontal variable.
Although the well-posedness has been proven in [4] for a asymptotically flat interfaces, is reasonable
to think of a similar proof can be provided to the periodic in the horizontal variable case. In this
paper we will assumed that this last fact holds. Then, our mixing zone will be given by

Ωmix(t) = {x ∈ R2 : x = (x, λ+ f(x, t)), |λ| < ct, x ∈ R}
with f(x+ 2π, t) = f(x, t) for all x ∈ R.

In order to obtain equation (3.11) in this new setting, we notice that the stream function ψ
satisfying ∆ψ(x, t) = −∂x1ρ(x, t) can now be written as follows (see [14]):

ψ(x, t) = 1
4π

∫
T×R

log (cosh(x2 − y2)− cos(x1 − y1)) (−∂y1ρ(y, t)) dy,

and then

u(x, t) = 1
4π

∫
T×R

(− sinh(x2 − y2), sin(x1 − y1))
cosh(x2 − y2)− cos(x1 − y1) (−∂y1ρ(y, t)) dy.
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Changing to (x, λ)-coordinates

x(x, λ, t) = (x, λ+ f(x, t)),

and using that

−∂x1ρ(x(x, λ, t), t) = ∂xf(x, t)1
ε

with ε = ct, we obtain that

u(x, t) = 1
4π

∫
T

∫ ε

−ε

(− sinh(x2 − λ′ − f(x′, t)), sin(x1 − x′))
cosh(x2 − λ− f(x′, t))− cos(x1 − x′)

∂x′f(x′, t)dx′dλ′.

Thus, the identity

∂x′ log (cosh(x2 − λ− f(x′, t))− cos(x1 − x′))

= − sinh(x2 − λ′ − f(x′, t))
cosh(x2 − λ− f(x′, t))− cos(x1 − x′)

∂x′f(x′, t)− sin(x1 − x′)
cosh(x2 − λ− f(x′, t))− cos(x1 − x′)

yields

u(x, t) = 1
4πε

∫
T

∫ ε

−ε

sin(x1 − x′)
cosh(x2 − λ′ − f(x′, t))− cos(x1 − x′)

(1, ∂x′f(x′, t))dλ′dx′.

The integration in λ′ can be computed explicitly. We get

∫ ε

−ε

sin(x1 − x′)
cosh(x2 − λ′ − f(x′, t))− cos(x1 − x′)

dλ′

= 2 arctan
(
eε+f(x′,t)−x2

sin(x− x′)

)
− 2 arctan

(
e−ε+f(x′,t)−x2

sin(x− x′)

)
.

By evaluating in x = x(x, λ, t), we obtain that in the mixing zone

u](x, λ, t) = 1
2πε

∫
R

(1, ∂xf(x′, t))
(

arctan
(

eε−λ−∆f

sin(x− x′)

)
− arctan

(
e−ε−λ−∆f

sin(x− x′)

))
dx′.

Since the equation for our pseudo-interface is given by

ft(x, t) = 1
2ε

∫ ε

−ε
u](x, λ, t) · (−∂xf(x, t), 1)dλ

we finally obtain

∂tf(x, t) = −
∫
T
(∂xf(x, t)− ∂xf(x′, t))Kct(x, x′)dx′ (5.1)

where

Kε(x, x′) = 1
4πε

∫ 1

−1

(
arctan

(
e(ε(1−λ)−∆f) − cos(x− x′)

sin(x− x′)

)
− arctan

(
e(−ε(1+λ)−∆f) − cos(x− x′)

sin(x− x′)

))
dλ.
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(a) Speed of propagation c = 0.5. (b) Speed of propagation c = 1.

(c) Speed of propagation c = 2.

Figure 5.1: Initial data: f0(x) = sin(x). Evolution from t = 0 to t = 2.5

(a) Speed of propagation c = 0.5. (b) Speed of propagation c = 1.

(c) Speed of propagation c = 2.

Figure 5.2: Initial data: f0(x) = sin5(x). Evolution from t = 0 to t = 2
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In both figures 5.1 and 5.2 we present numerical simulations of equation (5.1) with initial data
f0(x) = sin(x) and f0(x) = sin5(x) respectively, for different speeds of propagation c. As we can
see in these draws the evolution is similar as predicted by the toy model (4.3), whose solutions
are given by f(x, t) = f0(x) + tΛf0(x): the creation of a fingers which grow with time. Of course
the dynamics is much more complicated and other phenomena also arise as for example a turning
effect. Here we recall that given a solution for (5.1) in [0, T ] we only can guarantee the existence
of a subsolution for IPM for a short time T ∗ < T .

In these simulations we have used a Runge-Kutta fourth-order method to carry out the integra-
tion on time. The discretization on space only causes problems a time t = 0. Because of that for
the first step in the integration on time we have used the Euler method and we have taken into
account that

lim
ε→0

Kε(x, x′) = 1
2π

sin(x− x′)
cosh(∆f)− cos(x− x′) .

We compute the Principal Value of the integral removing the integration at the point x = x′. The
derivatives have been performed by using fourth-order splines and the quadratures by using the
trapezoidal rule. The codes have been run in MATLAB.
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