Seminar

Number Theory Seminar

Cohomología Weil-étale para n < 0

Speaker:  Alexey Beshenov (CIMAT, México)
Date:  Tuesday, 09 March 2021 - 17:30
Place:  Online - Microsoft Teams. Please, contact daniel.macias@icmat.es to join the team

Abstract:
Sea X un esquema aritmético (= separado de tipo finito sobre Spec Z). A este se puede asociar la función zeta correspondiente zeta (X,s), definida mediante el producto de Euler sobre los puntos cerrados. Stephen Lichtenbaum conjeturó la existencia de la "cohomología Weil-étale" H^i_W (X, Z(n)) que codifica el valor especial de zeta (X,s) en s = n in Z. Matthias Flach y Baptiste Morin han construido esta teoría de cohomología de manera explícita, para X propio y regular. En mi reciente trabajo logré generalizar su construcción a cualquier esquema aritmético, mientras n < 0. Hablaré del contexto general detrás del programa Weil-étale, mis resultados y problemas abiertos.