

Rigidity theory for von Neumann algebras

Joint Mathematics Colloquium (ICMAT-UAM-UC3M-UCM)

22 September 2022

Stefaan Vaes - KU Leuven

Operator algebras

We consider *-subalgebras $M \subset B(H)$, where the *-operation is the Hermitian adjoint.

• **Operator norm:** for $T \in B(H)$, we put $||T|| = \sup\{||T\xi|| \mid \xi \in H, ||\xi|| \le 1\}$.

C*-algebras: norm closed *-subalgebras of B(H).

• Weak topology: $T_i \to T$ if and only if $\langle T_i \xi, \eta \rangle \to \langle T\xi, \eta \rangle$ for all $\xi, \eta \in H$.

Von Neumann algebras: weakly closed *-subalgebras of B(H).

Intimate connections to group theory, dynamical systems, quantum information theory, representation theory, ...

Commutative operator algebras

• Unital commutative C*-algebras are of the form C(X) where X is compact Hausdorff.

~ algebraic topology, K-theory, continuous dynamics, geometric group theory.

Commutative von Neumann algebras are of the form L[∞](X, μ) where (X, μ) is a standard probability space.

ergodic theory, measurable dynamics, measurable group theory.

Discrete groups and operator algebras

Let G be a countable (discrete) group.

- ► The group algebra C[G] is the vector space (over C) with basis G and the natural product.
- Left regular unitary representation $\lambda : G \to \mathcal{U}(\ell^2(G)) : (\lambda_g \xi)(h) = \xi(g^{-1}h).$
- ► Take the norm closure: (reduced) group C*-algebra $C_r^*(G)$.
- **•** Take the weak closure: group von Neumann algebra L(G).

We have $G \subset \mathbb{C}[G] \subset C_r^*(G) \subset L(G)$.

At each inclusion, information gets lost \frown natural rigidity questions.

Open problems

- ► Kaplansky's conjectures for torsion-free groups *G*.
 - Unit conjecture: the only invertibles in $\mathbb{C}[G]$ are multiples of group elements λ_g .
 - Idempotent conjecture: 0 and 1 are the only idempotents in $\mathbb{C}[G]$.
 - Kadison-Kaplansky: 0 and 1 are the only idempotents in $C_r^*(G)$.
- Free group factor problem: is $L(\mathbb{F}_n) \cong L(\mathbb{F}_m)$ if $n \neq m$?
- ▶ Connes' rigidity conjecture: $L(PSL(n, \mathbb{Z})) \cong L(PSL(m, \mathbb{Z}))$ if $3 \le n < m$.
- Stronger form: if G has property (T) and $\pi : L(G) \to L(\Gamma)$ is a *-isomorphism, then $G \cong \Gamma$ and π is essentially given by such an isomorphism.
- Structure and classification of operator algebras is highly nontrivial.

II₁ factors

Fundamental work of Murray – von Neumann, 1943

- ▶ Weakly closed *-subalgebras $M \subset B(H)$. Nowadays called von Neumann algebras.
- **Bicommutant theorem:** $M' = \{T \in B(H) \mid ST = TS \text{ for all } S \in M\}$ and M = M''.
- **Factor:** $\mathcal{Z}(M) = M \cap M' = \mathbb{C}1.$
- Factors come in different types: I, II₁, II_{∞} and III, with B(H) being of type I.
- ▶ II₁ factors: factors with a tracial state $\tau : M \to \mathbb{C}$.
- $\frown L(G)$ is a II₁ factor for every icc group G with trace $\tau(T) = \langle T\delta_e, \delta_e \rangle$.
- \frown Continuous dimension $\tau(p) \in [0, 1]$.
- One of the most fascinating mathematical structures, sometimes extremely rich in symmetries, sometimes extremely rigid.

The hyperfinite II_1 factor: a first isomorphism theorem

Murray-von Neumann: a factor M is **approximately finite dimensional (AFD)** if there exists an increasing sequence $A_n \subset M$ of finite dimensional *-subalgebras with $\bigcup_n A_n$ weakly dense in M.

Canonical construction of a hyperfinite II₁ factor: $R = M_2(\mathbb{C}) \otimes M_2(\mathbb{C}) \otimes \cdots$.

Theorem (Murray-von Neumann, 1943)

► All hyperfinite II₁ factors are isomorphic!

• Every II₁ factor M contains copies of $R \hookrightarrow M$.

"The possibility exists that any factor in the case II_1 is isomorphic to a sub-ring of any other such factor."

Digression: amenability for groups

Definition (von Neumann, 1929)

A countable group G is amenable if there exists a finitely additive probability measure m on the subsets of G such that $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in G$ and $\mathcal{U} \subset G$.

 \sim The *m* is never explicit (if *G* is infinite), but approximations of *m* are explicit.

 (Banach - Tarski, 1924) It is possible to partition the ball of radius one into finitely many subsets, move these subsets by rotations and translations,

and obtain two balls of radius one !

- **Reason:** group of motions of \mathbb{R}^3 is not amenable (as a discrete group).
- ► (Tarski, 1929) There is no paradoxical decomposition of the unit disk.
- **Reason:** group of motions of \mathbb{R}^2 is amenable (as a discrete group).

Examples

The following groups are **amenable**.

- Finite groups.
- Abelian groups.
- Stable under subgroups, direct limits and extensions.
- The following groups are **non-amenable**.
 - ▶ The free groups \mathbb{F}_n .
 - ► Groups containing **F**₂.
 - Also other examples (von Neumann Day problem).

Open problem :

Is the Thompson group amenable ?

KILL EUV

Amenability for von Neumann algebras

Definition (von Neumann, 1929)

A countable group G is amenable if there exists a finitely additive probability measure m on the subsets of G such that $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in G$ and $\mathcal{U} \subset G$.

 \frown Equivalently: there exists a *G*-invariant state $\omega : \ell^{\infty}(G) \to \mathbb{C}$.

Hakeda-Tomiyama: a von Neumann algebra $M \subset B(H)$ is amenable if there exists a conditional expectation $P : B(H) \to M$.

 $\sim L(G)$ is amenable iff G is amenable.

Theorem (Connes, 1976)

Every amenable von Neumann algebra is AFD ! In particular, all amenable II₁ factors are isomorphic with R ! For every amenable icc group $L(G) \cong R$!

Classification of amenable factors

Type III factor $M \longrightarrow$ (Connes, Takesaki) associated ergodic flow $\mathbb{R} \curvearrowright (Z, \eta)$.

Definition (Connes)

A type III factor M is of

- type III_{λ} if the flow is periodic: $\mathbb{R} \curvearrowright \mathbb{R}/(\log \lambda)\mathbb{Z}$,
- type III₁ if the flow is trivial: $Z = \{\star\}$,
- ▶ type III₀ if the flow is properly ergodic.

Classification of amenable factors

- (Connes) For each of the following types, there is a unique amenable factor: type II₁, type II_∞, type III_λ with 0 < λ < 1.</p>
- ▶ (Connes, Krieger) Amenable factors of type III₀ are classified by the associated flow.
- (Haagerup) There is a unique amenable III₁ factor.

W*-superrigidity for group von Neumann algebras

Recall: for every amenable icc group G, we have $L(G) \cong R$.

Theorem (Ioana-Popa-V, 2010)

There are countable groups \mathcal{G} such that $L(\mathcal{G})$ entirely remembers \mathcal{G} :

if Λ is an arbitrary countable group with $L(\mathcal{G}) \cong L(\Lambda)$, then $\mathcal{G} \cong \Lambda$.

 \checkmark These groups are of the form $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{(l)} \rtimes \Gamma$:

Given an action $\Gamma \curvearrowright I$, consider the action of Γ by automorphisms of the direct sum $(\mathbb{Z}/2\mathbb{Z})^{(I)}$, and make a semidirect product.

Theorem (Berbec-V, 2012)

The same is true for $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{(\Gamma)} \rtimes (\Gamma \times \Gamma)$, where $\Gamma \times \Gamma$ acts on Γ by left and right multiplication, for many groups Γ , including free groups and free products $\Gamma = \Gamma_1 * \Gamma_2$.

Operator algebras and dynamical systems

Let G be a countable group.

Continuous dynamics and C*-algebras

An action $G \curvearrowright X$ of G by homeomorphisms of a compact Hausdorff space X gives rise to the C*-algebra $C(X \rtimes G)$.

Measurable dynamics and von Neumann algebras

An action $G \curvearrowright (X, \mu)$ of G by measure preserving transformations of (X, μ) gives rise to a von Neumann algebra $L(X \rtimes G)$.

- These operator algebras contain C(X), resp. $L^{\infty}(X)$, as subalgebras.
- They contain G as unitary elements $(u_g)_{g \in G}$.

► They encode the group action: $u_g F u_g^* = \alpha_g(F)$ where $(\alpha_g(F))(x) = F(g^{-1} \cdot x)$.

Superrigidity: Popa's deformation/rigidity theory

Consider the **Bernoulli action** $G \curvearrowright (X, \mu) = \prod_{g \in G} (X_0, \mu_0) : (g \cdot x)_h = x_{g^{-1}h}$.

- $M = L(X \rtimes G)$ is a II₁ factor.
- Whenever G is amenable, we have $M \cong R$.

W^{*}-superrigidity theorem (Popa, Ioana, V, 2003-2010)

If G has property (T), e.g. $G = SL(n, \mathbb{Z})$ for $n \geq 3$,

or if $G = G_1 \times G_2$ is a non-amenable direct product group, e.g. $G = \mathbb{F}_2 \times \mathbb{Z}$, then $L(X \rtimes G)$ remembers the group G and its action $G \curvearrowright (X, \mu)$.

More precisely: if $L(X \rtimes G) \cong L(Y \rtimes \Gamma)$ for any other free ergodic measure preserving action $\Gamma \curvearrowright (Y, \eta)$, then $G \cong \Gamma$ and the actions are conjugate (isomorphic).

Free groups

Big open problem: is $L(\mathbb{F}_n) \cong L(\mathbb{F}_m)$ for $n \neq m$?

Theorem (Popa-V, 2011)

Whenever $n \neq m$, we have that $L(X \rtimes \mathbb{F}_n) \cong L(Y \rtimes \mathbb{F}_m)$,

for arbitrary free, ergodic, pmp actions of the free groups.

- Our main result is the **uniqueness of the Cartan subalgebra**: if $L(X \rtimes \mathbb{F}_n) \cong L(Y \rtimes \mathbb{F}_m)$, there exists an isomorphism π with $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.
- Such a π induces an **orbit equivalence:** a measurable bijection $\Delta : X \to Y$ such that $\Delta(\mathbb{F}_n \cdot x) = \mathbb{F}_m \cdot \Delta(x)$ for a.e. $x \in X$.
- (Gaboriau) The L^2 -Betti numbers of a group are invariant under orbit equivalence. We have $\beta_1^{(2)}(\mathbb{F}_n) = n - 1$.

L²-Betti numbers of groups

Atiyah, Cheeger-Gromov, Lück: $\beta_n^{(2)}(G) = \dim_{L(G)} H^n(G, \ell^2(G)).$

 $\sim L(G)$ -modules have a relative dimension, such that $\dim_{L(G)}(\ell^2(G)^{\oplus n}) = n$.

Gaboriau: invariant under orbit equivalence.

Conjecture (Popa, Ioana, Peterson)

If $L(X \rtimes G) \cong L(Y \rtimes \Gamma)$ for some free, ergodic, pmp actions, then $\beta_n^{(2)}(G) = \beta_n^{(2)}(\Gamma)$.

Big dream (many authors)

Define some kind of L^2 -Betti numbers for II₁ factors.

Prove that $\beta_1^{(2)}(L(\mathbb{F}_n)) = n - 1$.

Embeddings of II₁ factors

Recall Murray & von Neumann: "The possibility exists that any factor in the case II_1 is isomorphic to a sub-ring of any other such factor."

Notation: $N \hookrightarrow M$ if there exists an embedding of N into M.

Recall: $R = M_2(\mathbb{C}) \otimes M_2(\mathbb{C}) \otimes \cdots$ and $R \hookrightarrow M$ for every II₁ factor M.

Amenability is inherited by subalgebras

If $N \hookrightarrow R$, then N must be amenable. Thus, $L(\mathbb{F}_2) \not\hookrightarrow R$.

Haagerup property is inherited by subalgebras (Connes-Jones, 1983)

If Λ has Kazhdan's property (T) and if Γ has the Haagerup property, then $L(\Lambda) \nleftrightarrow L(\Gamma)$. For example, $L(SL(3,\mathbb{Z})) \nleftrightarrow L(\mathbb{F}_2)$.

Embeddings of II₁ factors

The Cowling-Haagerup increases under embeddings (Cowling-Haagerup, 1988)

If Γ_n is a lattice in $\operatorname{Sp}(n, 1)$, then $L(\Gamma_n) \not\hookrightarrow L(\Gamma_m)$ for n > m.

✓ These are qualitative results. More rigid objects do not embed in less rigid objects.

Open problems.

- ▶ **Conjecture.** If n > m, then $L(PSL(n, \mathbb{Z})) \nleftrightarrow L(PSL(m, \mathbb{Z}))$.
- Does L(𝔽₂) → M for any nonamenable II₁ factor M ? (von Neumann – Day problem for II₁ factors)
- Which II₁ factors M embed into $L(\mathbb{F}_2)$?

Embeddings of Bernoulli crossed products

Theorem (Popa-V, 2021)

Let $\Gamma = \mathbb{F}_n$ be a free group and (A_0, τ) amenable (e.g. abelian).

We build: $M(A_0, \tau) = (A_0, \tau)^{\otimes \Gamma} \rtimes (\Gamma \times \Gamma).$

Then, $M(B_0, \tau) \hookrightarrow M(A_0, \tau)$ if and only if the initial data embed: $(B_0, \tau) \hookrightarrow (A_0, \tau)$.

- With $A_0 = \mathbb{C}^2$ and $\tau(x, y) = ax + (1 a)y$: mutually non embeddable $(M_a)_{a \in (0, 1/2)}$.
- With $A_0 = L^{\infty}([0, a] \cup \{1\})$ and $\tau =$ Lebesgue on [0, a] and atom 1 a at 1, we get $M_a \hookrightarrow M_b$ iff $a \le b$.

 \bigwedge A chain of II₁ factors $(M_a)_{a \in [0,1]}$.

• With $A_0 = R \oplus R$ and varying τ : all mutually embeddable, but not isomorphic.