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Introduction

The Calderón problem

In a seminal paper of 1980, A. Calderón asked whether it was possible to
determine the electrical conductivity of a body by making current and
voltage measurements at the boundary.

Mathematical formulation: let Ω be a bounded open set in Rn, the
electrical conductivity is represented by a positive bounded function γ.
Given a potential f on the boundary, the induced potential on Ω satisfies

div(γ∇u) = 0, u|∂Ω = f.

The voltage to current map is given by

Λγf = (γ∂νu)|∂Ω

where ν is the exterior unit normal. The question raised by Calderón is
whether the map γ 7→ Λγ is injective.
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Introduction

The linearized Calderón problem

In fact, Calderón dealt with the linearized problem. We have

Qγ(f, g) =

∫
∂Ω

Λγf g ds =

∫
Ω
γ∇u∇v dx

if u is a solutions to the former Dirichlet problem with boundary data f
and v an harmonic extension of g.

Then the differential of the map γ 7→ Qγ at γ = 1 is given by

DγQ|γ=1(δγ)(f, g) =

∫
Ω
δγ∇u∇v dx

if u and v are harmonic functions with trace f, g at the boundary.

The linearized problem is the injectivity of the former differential at γ = 1.

David Dos Santos Ferreira (LAGA) Inverse Problems 5 ICMAT 5 / 26



Introduction

The linearized Calderón problem

The linearized problem can be reformulated in these terms: does the
cancellation of the integral ∫

Ω
δγ∇u∇v dx = 0

for all couple of harmonic functions (u, v) imply δγ = 0?

The answer can easily seen to be yes: take u and v to be two conjugate
harmonic exponentials

e−ix·ζ , ζ ∈ Cn, ζ2 = 0

and one obtains

0 = |ζ|2
∫

Ω
δγ e−ix·(ζ+ζ̄)dx = |ζ|2 1̂Ωδγ(2 Re ζ)

hence δγ = 0 since any vector ξ ∈ Rn is the real part of a ζ ∈ Cn such
that ζ2 = 0.
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Introduction

Inverse problem for the Schrödinger equation

We have

div(γ∇u) = γ∆u+∇γ · ∇u =
1
√
γ

(∆− q)(√γu)

where q = ∆
√
γ/
√
γ. When γ is smooth enough, (using boundary

determination) the Calderón problem is a particular case of the following
inverse problem on the Schrödinger equation: does the equality of the
Dirichlet-to-Neumann maps Λsq1 = Λsq2 imply q1 = q2 ?

The Dirichlet-to-Neumann map Λsq associated to the Schrödinger equation
is

Λsq : H
1
2 (∂Ω) 3 f 7→ ∂νu

where u is a solution to the Dirichlet problem

−∆u+ qu = 0, u|∂Ω = f.
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Introduction

The linearized version

The linearized version of the inverse problem for the Schrödinger equation
can be reformulated in these terms: does the cancellation of the integral∫

Ω
δq uv dx = 0

for all couple of harmonic functions (u, v) imply δq = 0?

As for the Calderón problem, the answer can easily seen to be yes.
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Introduction

Local problem

The local problem or the problem with partial data are also of great
interest.

Partial data:
Does the Dirichlet-to-Neumann map measured only on one part of the
boundary uniquely determine the conductivity? More precisely, if

Λγ1f |Σ = Λγ2f |Σ for all f ∈ H
1
2 (∂Ω)

where Σ is, say, an open neighbourhood of a point x0 of the boundary, do
we have γ1 = γ2?
Local problem:
If for all functions f ∈ H

1
2 (∂Ω) supported in Σ we have

Λγ1f |Σ = Λγ2f |Σ

where Σ is, say, an open neighbourhood of a point x0 of the boundary, do
we have γ1 = γ2?
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Introduction

Some references

A few dates:

1980 Calderon’s seminal paper: linearization of the problem and uniqueness
for conductivities close to a constant

1985 Kohn and Vogelius: boundary determination and real analytic case

1987 Sylvester and Uhlmann: resolution of the identifiability problem in
dimension n ≥ 3

1996 Nachmann: uniqueness in the 2D case

2002 Bukhgeim and Uhlmann: partial data on big subsets of the boundary

2004 Kenig, Sjöstrand and Uhlmann: partial data on possibly small subsets

2006 Astala, Päivärinta: resolution of the Calderón problem in 2D

2008 Bukhgeim: Schrödinger 2D

2008 Imanuvilov, Uhlmann and Yamamoto: partial data and local problem
in 2D
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Introduction

Main Theorem

We investigate the linearized version of the local problem (on the
Schrödinger equation, but the proof also works for the conductivity
problem): does the cancellation of the integral∫

Ω
f uv dx = 0

for all couple of harmonic functions (u, v) vanishing on some open subset
Γ of the boundary imply f = 0?

Theorem

Let Ω be a connected bounded open set in Rn, n ≥ 2, with smooth
boundary. The set of products of harmonic functions on Ω which vanish
on a closed proper subset Γ ( ∂Ω of the boundary is dense in L1(Ω).
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Introduction

From local to global

In fact, it is enough to prove local uniqueness.

Theorem

Let Ω be a bounded open set in Rn, n ≥ 2, with smooth boundary. Let
x0 ∈ ∂Ω assume that we have the cancelation∫

Ω
f uv dx = 0

for any couple of harmonic functions u and v vanishing on the
complementary Γ of an open neighbourhood of x0. Then there exists
δ > 0 such that f vanishes on B(x0, δ) ∩ Ω.

Using a conformal transformation, one can suppose without loss of
generality that Ω is on one side of the tangent hyperplane to Ω at x0.
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Harmonic exponentials

The setting

Our setting will therefore be as follows: x0 = 0, Tx0(Ω) : x1 = 0 and

Ω ⊂
{
x ∈ Rn : |x+ e1| < 1}, Γ =

{
x ∈ ∂Ω : x1 ≥ −2c

}
.

We assume ∫
Ω
fuv dx = 0

for any couple of harmonic functions u and v on Ω satisfying

u|Γ = v|Γ = 0

The Laplacian on Rn has p(ξ) = ξ2 as a principal symbol, we consider the
(complex) characteristic set

p−1(0) =
{
ζ ∈ Cn : ζ2 = 0

}
.
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Harmonic exponentials

Decomposition of the frequencies

In dimension n = 2, this set is the union of two complex lines

p−1(0) = Cγ ∪Cγ

where γ = ie1 + e2 = (i, 1) ∈ C2. The differential of the map

s : p−1(0)× p−1(0)→ Cn

(ζ, η) 7→ ζ + η

at (ζ0, η0) is surjective

Ds(ζ0, η0) : Tζ0p
−1(0)× Tη0p

−1(0)→ Cn

(ζ, η) 7→ ζ + η

provided Cn = Tζ0p
−1(0) + Tη0p

−1(0), i.e. provided ζ0 and η0 are linearly
independent. This is the case if ζ0 = γ and η0 = −γ; if ε > 0 is small
enough, all w ∈ Cn, |w − 2ie1| < 2ε may be decomposed under the form

w = ζ + η, with ζ, η ∈ p−1(0), |ζ − γ| . ε, |η + γ| . ε.
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Harmonic exponentials

Harmonic exponentials

The exponentials with linear weights

e−
i
h
x·ζ , ζ ∈ p−1(0)

are harmonic functions. We need to add a correction term in order to
obtain harmonic functions u satisfying the boundary requirement u|Γ = 0.
Let χ ∈ C∞0 (Rn) be a cutoff function which equals 1 on Γ, we consider
the solution w to the Dirichlet problem{

∆w = 0 in Ω

w|∂Ω = −(e−
i
h
x·ζχ)|∂Ω.

The function

u(x, ζ) = e−
i
h
x·ζ + w(x, ζ)

is harmonic and satisfies u|Γ = 0.
David Dos Santos Ferreira (LAGA) Inverse Problems 5 ICMAT 16 / 26
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Harmonic exponentials

Exponential estimates

We have the following bound on w:

‖w‖H1(Ω) ≤ C1‖e−
i
h
x·ζχ‖

H
1
2 (∂Ω)

(1)

≤ C2(1 + h−1|ζ|)
1
2 e

1
h
HK(Im ζ)

where HK is the supporting function of the compact subset
K = suppχ ∩ ∂Ω of the boundary

HK(ξ) = sup
x∈K

x · ξ, ξ ∈ Rn.

In particular, if we take χ to be supported in x1 ≤ −c and equal to 1 on
x1 ≤ −2c then the bound (1) becomes

‖w‖H1(Ω) ≤ C2(1 + h−1|ζ|)
1
2 e−

c
h

Im ζ1 e
1
h
| Im ζ′| when Im ζ1 ≥ 0. (2)
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Harmonic exponentials

Exponential estimates

Using those exponential solutions, we obtain from the cancellation of the
integral the following bound∣∣∣∣ ∫

Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ ‖f‖L∞(Ω)

(
‖e−

i
h
x·ζ‖L2(Ω)‖w(x, η)‖L2(Ω)

+ ‖e−
i
h
x·η‖L2(Ω)‖w(x, ζ)‖L2(Ω) + ‖w(x, η)‖L2(Ω)‖w(x, ζ)‖L2(Ω)

)
thus when Im ζ1 ≥ 0, Im η1 ≥ 0 and ζ, η ∈ p−1(0)∣∣∣∣ ∫

Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ C3‖f‖L∞(Ω)(1 + h−1|η|)
1
2 (1 + h−1|ζ|)

1
2

× e−
c
h

min(Im ζ1,Im η1) e
1
h

(| Im ζ′|+| Im η′|)

In particular if |ζ − aγ| < εa and |η + aγ| < εa with ε ≤ 1/2 then∣∣∣∣ ∫
Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2εa
h

We need to extrapolate the exponential decay.
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Harmonic exponentials

Exponential estimates

Using those exponential solutions, we obtain from the cancellation of the
integral the following bound∣∣∣∣ ∫

Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ ‖f‖L∞(Ω)

(
‖e−

i
h
x·ζ‖L2(Ω)‖w(x, η)‖L2(Ω)

+ ‖e−
i
h
x·η‖L2(Ω)‖w(x, ζ)‖L2(Ω) + ‖w(x, η)‖L2(Ω)‖w(x, ζ)‖L2(Ω)

)
thus when Im ζ1 ≥ 0, Im η1 ≥ 0 and ζ, η ∈ p−1(0)∣∣∣∣ ∫

Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ C3‖f‖L∞(Ω)(1 + h−1|η|)
1
2 (1 + h−1|ζ|)

1
2

× e−
c
h

min(Im ζ1,Im η1) e
1
h

(| Im ζ′|+| Im η′|)

In particular if |ζ − aγ| < εa and |η + aγ| < εa with ε ≤ 1/2 then∣∣∣∣ ∫
Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2εa
h

We need to extrapolate the exponential decay.
David Dos Santos Ferreira (LAGA) Inverse Problems 5 ICMAT 18 / 26



Harmonic exponentials

Exponential estimates

Using those exponential solutions, we obtain from the cancellation of the
integral the following bound∣∣∣∣ ∫

Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ ‖f‖L∞(Ω)

(
‖e−

i
h
x·ζ‖L2(Ω)‖w(x, η)‖L2(Ω)

+ ‖e−
i
h
x·η‖L2(Ω)‖w(x, ζ)‖L2(Ω) + ‖w(x, η)‖L2(Ω)‖w(x, ζ)‖L2(Ω)

)
thus when Im ζ1 ≥ 0, Im η1 ≥ 0 and ζ, η ∈ p−1(0)∣∣∣∣ ∫

Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ C3‖f‖L∞(Ω)(1 + h−1|η|)
1
2 (1 + h−1|ζ|)

1
2

× e−
c
h

min(Im ζ1,Im η1) e
1
h

(| Im ζ′|+| Im η′|)

In particular if |ζ − aγ| < εa and |η + aγ| < εa with ε ≤ 1/2 then∣∣∣∣ ∫
Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2εa
h

We need to extrapolate the exponential decay.
David Dos Santos Ferreira (LAGA) Inverse Problems 5 ICMAT 18 / 26



Harmonic exponentials

Exponential estimates

Using those exponential solutions, we obtain from the cancellation of the
integral the following bound∣∣∣∣ ∫

Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ ‖f‖L∞(Ω)

(
‖e−

i
h
x·ζ‖L2(Ω)‖w(x, η)‖L2(Ω)

+ ‖e−
i
h
x·η‖L2(Ω)‖w(x, ζ)‖L2(Ω) + ‖w(x, η)‖L2(Ω)‖w(x, ζ)‖L2(Ω)

)
thus when Im ζ1 ≥ 0, Im η1 ≥ 0 and ζ, η ∈ p−1(0)∣∣∣∣ ∫

Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ C3‖f‖L∞(Ω)(1 + h−1|η|)
1
2 (1 + h−1|ζ|)

1
2

× e−
c
h

min(Im ζ1,Im η1) e
1
h

(| Im ζ′|+| Im η′|)

In particular if |ζ − aγ| < εa and |η + aγ| < εa with ε ≤ 1/2 then∣∣∣∣ ∫
Ω
f(x)e−

i
h
x·(ζ+η) dx

∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2εa
h

We need to extrapolate the exponential decay.
David Dos Santos Ferreira (LAGA) Inverse Problems 5 ICMAT 18 / 26



The Watermelon approach

Outline

1 Introduction

2 Harmonic exponentials

3 The Watermelon approach

David Dos Santos Ferreira (LAGA) Inverse Problems 5 ICMAT 19 / 26



The Watermelon approach

The Segal-Bargmann transform

The Segal-Bargmann transform of an L∞ function f on Rn is given by
the following formula

Tf(z) =

∫
Rn

e−
1

2h
(z−y)2

f(y) dy

with z = x+ iξ ∈ Cn.
The analytic wave front set WFa(f) of f is the complementary of the set
of all covectors (x0, ξ0) ∈ T ∗Rn \ 0 such that there exists a
neighbourhood Vz0 of z0 = x0 − iξ0 in Cn, χ ∈ C∞0 (Rn) with χ(x0) = 1,
and c > 0 and C > 0 such that

|T (χf)(z)| ≤ Ce−
c
h

+ 1
2h
| Im z|2 , ∀z ∈ Vz0 , ∀h ∈ (0, 1].

The analytic wave front set WFa(f) is a closed conic set and its image by
the first projection T ∗Rn → Rn is the analytic singular support of f , i.e.
the set of points x0 ∈ Rn for which there is no neighbourhood on which f
is a real analytic function.
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The Watermelon approach

Kashiwara’s Watermelon theorem

If a distribution f is supported on one side of a plane H and if
x0 ∈ ∂H ∩ supp f then f cannot be analytic at a x0, so the analytic wave
front set of f cannot be empty. The following result gives explicitly a
covector which is in the wave front set.

Theorem

Let f be a distribution supported in a half-space H, let x0 ∈ ∂H ∩ supp f
then the analytic wave front set of f contains all non-zero conormal
vectors to the hyperplane at x0.

In fact the microlocal version of Holmgren’s uniqueness theorem is a
consequence of a more general result due to Kashiwara

Watermelon Theorem

Let f be a distribution supported in a half-space H, if (x0, ξ0) belongs to
the analytic wave front set of f , then so does (x0, ξ0 + tν) where ν
denotes a conormal to the hyperplane ∂H provided ξ0 + tν 6= 0.
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The Watermelon approach

Segal-Bargmann and Fourier transform

The kernel of the Segal-Bargmann transform of a function f ∈ L∞ can be
written as a linear superposition of exponentials with linear weights

e−
1

2h
(z−y)2

= e−
z2

2h (2πh)−
n
2

∫
e−

t2

2h e−
i
h
y·(t+iz) dt

therefore we get

Tf(z) = (2πh)−
n
2

∫∫
e−

1
2h

(z2+t2)e−
i
h
y·(t+iz)f(y) dt dy.

Note that there is an a priori exponential bound

|Tf(z)| ≤ e
1

2h
| Im z|2‖f‖L∞ .

If f is supported in the half-space x1 ≤ 0 then the former estimate can be
improved into

|Tf(z)| ≤ e
1

2h
(| Im z|2−|Re z1|2)‖f‖L∞

when Re z1 ≥ 0.
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The Watermelon approach

The Watermelon approach

The idea of the proof of the Watermelon theorem is to propagate the
exponential decay by use of the maximum principle. If f is supported in
the half-space x1 ≤ 0, one works with the subharmonic function

ϕ(z1) +
1

2
(Re z1)2 − 1

2
(Im z1)2 + h log |Tf(z0 + z1e1)|

on a rectangle R.

One of the edges of R is contained in the neighbourhood Vz0 where there
is the additional exponential decay of the Segal-Bargmann transform and
one chooses ϕ to be a non-negative harmonic function vanishing on the
boundary of R except for the segment where there is the exponential
decay. The fact that ϕ is positive on the interior of the rectangle R allows
to propagate the exponential decay of the Segal-Bargmann transform and
this translates into the propagation of singularities described in the
Watermelon theorem.
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The Watermelon approach

Estimates on the Segal-Bargmann transform

If |t| < εa and |z − 2ae1| < εa with ε� 1, the decomposition of
frequencies gives

t+ iz = ζ + η, ζ, η ∈ p−1(0), |ζ − aγ| < εa, |η + aγ| < εa

in that setting the estimate that we have established reads∣∣∣∣ ∫
Ω
f(y)e−

i
h
y·(t+iz) dy

∣∣∣∣ ≤ C4‖f‖L∞(Ω)e
− ca

2h e
2εa
h

thus cutting in two the integral (in t) giving Tf(z) as a linear
superposition we get

|Tf(z)| . h−1‖f‖L∞(Ω)e
1

2h
(| Im z|2−|Re z|2) e

2εa
h
(
e−

ca
2h + e−

ε2a2

4h
)

provided |z − 2ae1| < εa and Re z1 ≥ 0. Now choosing ε� 1 and a . ε

|Tf(z)| . h−1‖f‖L∞(Ω)e
1

2h
(| Im z|2−|Re z|2− ca

2
).
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The Watermelon approach

Back to the Watermelon approach

To sum-up we have obtained the following bounds on the Segal-Bargmann
transform of f

e−
Φ(z1)

2h |Tf(z1, x
′)| . h−1‖f‖L∞(Ω){

1 when z1 ∈ C

e−
a
2h when Re z1 = 2a, | Im z1|2 + |x′|2 ≤ εa

where the weight Φ is given by the following expression

Φ(z1) =

{
| Im z1|2 when Re z1 ≤ 0

| Im z1|2 − |Re z1|2 when Re z1 ≥ 0.
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The Watermelon approach

The central lemma

Lemma

Let F be an entire function satisfying the following bounds

e−
Φ(s)
2h |F (s)| ≤

{
1 when s ∈ C

e−
c

2h when Re s = L, | Im s| ≤ b.

then there exist c′, δ > 0 such that F satisfies

|F (s)| ≤ e−
c′
2h , when |Re s| ≤ δ and | Im s| ≤ b/2.

Applying the former lemma we obtain

|Tf(x)| ≤ Ch−1‖f‖L∞(Ω)e
− c′

2h

for all x ∈ Ω, |x1| ≤ δ � 1. Letting h tend to 0 we deduce

f(x) = 0, ∀x ∈ Ω, 0 ≥ x1 ≥ −δ.
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