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The Calderén problem
In a seminal paper of 1980, A. Calderén asked whether it was possible to

determine the electrical conductivity of a body by making current and
voltage measurements at the boundary.

Mathematical formulation: let €2 be a bounded open set in R", the
electrical conductivity is represented by a positive bounded function .
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The Calderén problem

In a seminal paper of 1980, A. Calderén asked whether it was possible to
determine the electrical conductivity of a body by making current and
voltage measurements at the boundary.

Mathematical formulation: let €2 be a bounded open set in R", the
electrical conductivity is represented by a positive bounded function .
Given a potential f on the boundary, the induced potential on € satisfies

div(yVu) =0, wulgq = f.
The voltage to current map is given by
Avf = (v0,u)|on

where v is the exterior unit normal.
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The Calderén problem

In a seminal paper of 1980, A. Calderén asked whether it was possible to
determine the electrical conductivity of a body by making current and
voltage measurements at the boundary.

Mathematical formulation: let €2 be a bounded open set in R", the
electrical conductivity is represented by a positive bounded function .
Given a potential f on the boundary, the induced potential on € satisfies

div(yVu) =0, wulgq = f.
The voltage to current map is given by
Avf = (v0,u)|on

where v is the exterior unit normal. The question raised by Calderén is
whether the map v — A, is injective.
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The linearized Calderén problem

In fact, Calderén dealt with the linearized problem. We have

Qy(f.9) = /6 A fgds = /Q VuVeds

if u is a solutions to the former Dirichlet problem with boundary data f
and v an harmonic extension of g.

Then the differential of the map v — @, at v = 1 is given by

D, Qly=1(67)(f, 9) —/Q&quVvdm

if 4 and v are harmonic functions with trace f, g at the boundary.

The linearized problem is the injectivity of the former differential at v = 1.
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Introduction

The linearized Calderén problem

The linearized problem can be reformulated in these terms: does the
cancellation of the integral

/ 0y VuVovdr =0
Q

for all couple of harmonic functions (u,v) imply §v = 0?
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Introduction

The linearized Calderén problem

The linearized problem can be reformulated in these terms: does the
cancellation of the integral

/ 0y VuVovdr =0
Q

for all couple of harmonic functions (u,v) imply §v = 0?

The answer can easily seen to be yes: take u and v to be two conjugate
harmonic exponentials

eT ¢ ceC, (?=0
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The linearized Calderén problem

The linearized problem can be reformulated in these terms: does the
cancellation of the integral

/ 0y VuVovdr =0
Q

for all couple of harmonic functions (u,v) imply §v = 0?
The answer can easily seen to be yes: take u and v to be two conjugate
harmonic exponentials
e ceCt, (*=0
and one obtains

0=I[¢/? /Qéve‘““*@dx — |¢? Ta67(2Re ()

hence 6y = 0 since any vector £ € R" is the real part of a ( € C” such
that (2 = 0.
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Inverse problem for the Schrodinger equation

We have

div(yVu) = vyAu+ Vv - Vu = (A —q)(y/yu)

Sl

where ¢ = A\ /7/\/7.
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Inverse problem for the Schrodinger equation

We have

1

(A = q)(Vyu)
ALV
where ¢ = A, /7/,/7. When ~ is smooth enough, (using boundary
determination) the Calderdn problem is a particular case of the following
inverse problem on the Schrodinger equation: does the equality of the
Dirichlet-to-Neumann maps Ay = A7, imply ¢1 = g2 7

div(yVu) = vAu+ Vv - Vu =

The Dirichlet-to-Neumann map A} associated to the Schrodinger equation
is

AS:H2(0Q) 3 f s du
where wu is a solution to the Dirichlet problem

—Au+qu =0, ulpn=1F.
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Introduction

The linearized version

The linearized version of the inverse problem for the Schrodinger equation
can be reformulated in these terms: does the cancellation of the integral

/5quvd1‘:0
Q

for all couple of harmonic functions (u,v) imply dqg = 0?
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Introduction

The linearized version

The linearized version of the inverse problem for the Schrodinger equation
can be reformulated in these terms: does the cancellation of the integral

/5quvd1‘:0
Q

for all couple of harmonic functions (u,v) imply dqg = 0?

As for the Calderén problem, the answer can easily seen to be yes.
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Introduction

Local problem

The local problem or the problem with partial data are also of great
interest.

Partial data:

Does the Dirichlet-to-Neumann map measured only on one part of the
boundary uniquely determine the conductivity? More precisely, if

Ay fle =AMy, fls  forall f € H2(0Q)
where X is, say, an open neighbourhood of a point z( of the boundary, do
we have | = o7
Local problem: )
If for all functions f € H2(9S) supported in ¥ we have

Ay fle = Ay fls

where ¥ is, say, an open neighbourhood of a point x( of the boundary, do
we have v; = 57
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Some references

A few dates:

1980

1985
1987

1996
2002
2004
2006
2008
2008

Calderon’s seminal paper: linearization of the problem and uniqueness
for conductivities close to a constant

Kohn and Vogelius: boundary determination and real analytic case

Sylvester and Uhlmann: resolution of the identifiability problem in
dimension n > 3

Nachmann: uniqueness in the 2D case

Bukhgeim and Uhlmann: partial data on big subsets of the boundary
Kenig, Sjostrand and Uhlmann: partial data on possibly small subsets
Astala, Paivarinta: resolution of the Calderén problem in 2D
Bukhgeim: Schrédinger 2D

Imanuvilov, Uhlmann and Yamamoto: partial data and local problem
in 2D
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Introduction

Main Theorem

We investigate the linearized version of the local problem (on the

Schrodinger equation, but the proof also works for the conductivity
problem): does the cancellation of the integral

/fuvdx:O
Q

for all couple of harmonic functions (u, v) vanishing on some open subset
I" of the boundary imply f =07
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Main Theorem

We investigate the linearized version of the local problem (on the
Schrodinger equation, but the proof also works for the conductivity
problem): does the cancellation of the integral

/fuvdx:O
Q

for all couple of harmonic functions (u, v) vanishing on some open subset
I" of the boundary imply f =07

Theorem

Let Q) be a connected bounded open set in R™, n > 2, with smooth
boundary. The set of products of harmonic functions on €} which vanish
on a closed proper subset T' C O of the boundary is dense in L().
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From local to global

In fact, it is enough to prove local uniqueness.
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From local to global

In fact, it is enough to prove local uniqueness.

Theorem
Let 2 be a bounded open set in R™, n > 2, with smooth boundary. Let
xo € 0¥) assume that we have the cancelation

/fuvdw—O
Q

for any couple of harmonic functions u and v vanishing on the
complementary I' of an open neighbourhood of xy. Then there exists
0 > 0 such that f vanishes on B(xzq,d) N <.
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From local to global

In fact, it is enough to prove local uniqueness.

Theorem
Let 2 be a bounded open set in R™, n > 2, with smooth boundary. Let
xo € 0¥) assume that we have the cancelation

/fuvdw—O
Q

for any couple of harmonic functions u and v vanishing on the
complementary I' of an open neighbourhood of xy. Then there exists
0 > 0 such that f vanishes on B(xzq,d) N <.

Using a conformal transformation, one can suppose without loss of
generality that €2 is on one side of the tangent hyperplane to € at xg.
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The setting

Our setting will therefore be as follows: xg =0, T5,(€2) : 1 = 0 and

Qc{zeR":|z+e| <1}, T={2re€dQ:z >-2c}.
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Our setting will therefore be as follows: xg =0, T5,(€2) : 1 = 0 and
Qc{zeR":|z+e| <1}, T={2re€dQ:z >-2c}.

We assume

/fuvdx—O
Q

for any couple of harmonic functions u and v on Q satisfying

U|F:U|F:O
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The setting

Our setting will therefore be as follows: xg =0, T5,(€2) : 1 = 0 and
Qc{zeR":|z+e| <1}, T={2re€dQ:z >-2c}.

We assume

/fuvdx—O
Q

for any couple of harmonic functions u and v on Q satisfying
U|F = U|F =0

The Laplacian on R™ has p(¢) = €2 as a principal symbol, we consider the
(complex) characteristic set

pH(0)={CeC": ¢ =0}
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Decomposition of the frequencies

In dimension n = 2, this set is the union of two complex lines
p~H(0)=CyuCy

where v = ie; + ey = (i,1) € C2.

David Dos Santos Ferreira (LAGA) Inverse Problems 5 ICMAT

15 / 26



Harmonic exponentials

Decomposition of the frequencies

In dimension n = 2, this set is the union of two complex lines
p'(0)=CyuCy
where v = ie; + ey = (i,1) € C2. The differential of the map
s:p 1(0) x p7t(0) = C"
(C;m) = C+n
at (o, mo) is surjective
Ds(Co,m0) : Teyp™ ' (0) x Typ~'(0) — C™
(C;m) =+

provided C" = T,p~1(0) + T;,,p~(0), i.e. provided (y and 7 are linearly

independent. This is the case if {5 =~ and 9y = —7;
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Harmonic exponentials

Decomposition of the frequencies

In dimension n = 2, this set is the union of two complex lines
p'(0)=CyuCy
where v = ie; + ey = (i,1) € C2. The differential of the map
s:p 1(0) x p7t(0) = C"
(C;m) = C+n
at (o, mo) is surjective
Ds(Co,m0) : Teyp™ ' (0) x Typ~'(0) — C™
(C;m) =+

provided C" = T,p~1(0) + T;,,p~(0), i.e. provided (y and 7 are linearly
independent. This is the case if (5 =y and 19 = —7%; if € > 0 is small
enough, all w € C™, |w — 2ie1| < 2e may be decomposed under the form

w=C_+n, with(nep (0), (= Ze In+7] e
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Harmonic exponentials

The exponentials with linear weights
e i ¢, CepH(0)

are harmonic functions.
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Harmonic exponentials

Harmonic exponentials
The exponentials with linear weights
e~ TS

, Cep (0

are harmonic functions. We need to add a correction term in order to
obtain harmonic functions u satisfying the boundary requirement u|p = 0.
Let x € C§°(R"™) be a cutoff function which equals 1 on I', we consider
the solution w to the Dirichlet problem

{ Aw=0 1in$

wlog = —(e77x)|oq-
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Harmonic exponentials

Harmonic exponentials
The exponentials with linear weights
e ¢ epTi(0)

are harmonic functions. We need to add a correction term in order to
obtain harmonic functions u satisfying the boundary requirement u|p = 0.
Let x € C§°(R"™) be a cutoff function which equals 1 on I', we consider
the solution w to the Dirichlet problem

{ Aw = in
wlog = — (€7 ) |oq-

u(@,¢) = e+ 4 w(z,C)

The function

is harmonic and satisfies u|pr = 0.
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Harmonic exponentials

Exponential estimates
We have the following bound on w:

ey < Crlle X4 o

< Oy + W) 7 entln(tmO)

where Hp is the supporting function of the compact subset
K = supp x N 9N of the boundary

HK(&):Supx'g) geRn
zeK
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Harmonic exponentials

Exponential estimates
We have the following bound on w:

ey < Calle™ <Xy 0 M)

< Oy + W) 7 entln(tmO)

where Hp is the supporting function of the compact subset
K = supp x N 9N of the boundary

HK(&):Supl"g, EGRTL
zeK

In particular, if we take x to be supported in 1 < —c and equal to 1 on
x1 < —2c then the bound (1) becomes

w20y < Ca(1+h7H¢))2 e 7 erlmCT when Im¢y > 0. (2)
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Exponential estimates

Using those exponential solutions, we obtain from the cancellation of the
integral the following bound

/Qf(:r)e_“'(“”) da| < ||f ||z (™7l 2@y lw(e, m) | 220

+ [l Loy lw(z, Ol 2y + llw (@, m) |2 (@, Ollz2)
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Harmonic exponentials

Exponential estimates

Using those exponential solutions, we obtain from the cancellation of the
integral the following bound

:E)e—%w(éurn) dz

< £l ooy (e 7 2o llw (@, m) | 20

+ [l Loy lw(z, Ol 2y + llw (@, m) |2 (@, Ollz2)

thus when Im ¢; > 0,Imn; > 0 and ¢,n € p~(0)

Fo () g

< Ca| fllpoy(1 + A )7 (1 + hYC))?

« e~ £ min(im Gy Imny) o k(| Im ¢+ Tm'])
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Harmonic exponentials

Exponential estimates

Using those exponential solutions, we obtain from the cancellation of the
integral the following bound

/ f(:):)e_%x'@*”) dz
Q

< £l ooy (e 7 2o llw (@, m) | 20

+ [l Loy lw(z, Ol 2y + llw (@, m) |2 (@, Ollz2)
thus when Im ¢; > 0,Imn; > 0 and ¢,n € p~(0)

/ ) # o dg
Q

< Ca||f || ooy (1 + B m)2 (1 + A¢))?

<

« e~ rmin(Im ¢, Imm) 7 (| Im ¢’[+[Im ')
In particular if | — ay| < ea and |n + a7| < ea with € < 1/2 then

Q

_ _ca 2ea
< Cab™ Y f | ooye 2 e

David Dos Santos Ferreira (LAGA) Inverse Problems 5 ICMAT 18 / 26



Harmonic exponentials

Exponential estimates

Using those exponential solutions, we obtain from the cancellation of the
integral the following bound

/Qf(w)e_“'(“”) da| < ||f ||z (™7l 2@y lw(e, m) | 220

+ [l Loy lw(z, Ol 2y + llw (@, m) |2 (@, Ollz2)
thus when Im ¢; > 0,Imn; > 0 and ¢,n € p~(0)

/ F(@)e™ w5 g < C| fl poo ey (1 + B )2 (1 + h7Y¢))?
Q

<

« e~ rmin(Im ¢, Imm) 7 (| Im ¢’[+[Im ')
In particular if | — ay| < ea and |n + a7| < ea with € < 1/2 then
/ Fla)e wm () gy
Q

We need to extrapolate the exponential decay.
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The Watermelon approach

The Segal-Bargmann transform

The Segal-Bargmann transform of an L™ function f on R" is given by
the following formula

Tf(z)

with z = 2 4+ £ € C".

/ e 0 1 (y) dy
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The Watermelon approach

The Segal-Bargmann transform

The Segal-Bargmann transform of an L™ function f on R" is given by
the following formula

Tf(2) = / e ) dy

with z = 2 4+ £ € C".

The analytic wave front set WF,(f) of f is the complementary of the set
of all covectors (z,&p) € T*R™ \ 0 such that there exists a
neighbourhood V. of zg = z¢ —i&y in C", x € C°(R") with x(z9) =1,
and ¢ > 0 and C > 0 such that

IT(xf)(2)| < Ce itarlm=" vz ev, . vhe(01].
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The Segal-Bargmann transform

The Segal-Bargmann transform of an L™ function f on R" is given by
the following formula

Tf(2) = / e ) dy

with z = 2 4+ £ € C".

The analytic wave front set WF,(f) of f is the complementary of the set
of all covectors (z,&p) € T*R™ \ 0 such that there exists a
neighbourhood V. of zg = z¢ —i&y in C", x € C°(R") with x(z9) =1,
and ¢ > 0 and C > 0 such that

IT(xf)(2)| < Ce itarlm=" vz ev, . vhe(01].

The analytic wave front set WF,(f) is a closed conic set and its image by
the first projection T*R™ — R is the analytic singular support of f, i.e.
the set of points zg € R"™ for which there is no neighbourhood on which f
is a real analytic function.
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The Watermelon approach

Kashiwara's Watermelon theorem

If a distribution f is supported on one side of a plane H and if
xo € OH Nsupp f then f cannot be analytic at a x(, so the analytic wave

front set of f cannot be empty. The following result gives explicitly a
covector which is in the wave front set.
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The Watermelon approach

Kashiwara's Watermelon theorem

If a distribution f is supported on one side of a plane H and if

xo € OH Nsupp f then f cannot be analytic at a x(, so the analytic wave
front set of f cannot be empty. The following result gives explicitly a
covector which is in the wave front set.

Theorem
Let f be a distribution supported in a half-space H, let o € OH N supp f

then the analytic wave front set of f contains all non-zero conormal
vectors to the hyperplane at x.
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The Watermelon approach

Kashiwara's Watermelon theorem

If a distribution f is supported on one side of a plane H and if

xo € OH Nsupp f then f cannot be analytic at a x(, so the analytic wave
front set of f cannot be empty. The following result gives explicitly a
covector which is in the wave front set.

Theorem
Let f be a distribution supported in a half-space H, let o € OH N supp f

then the analytic wave front set of f contains all non-zero conormal
vectors to the hyperplane at x.

In fact the microlocal version of Holmgren's uniqueness theorem is a
consequence of a more general result due to Kashiwara

Watermelon Theorem

Let f be a distribution supported in a half-space H, if (xo,&y) belongs to
the analytic wave front set of f, then so does (x,&y + tv) where v
denotes a conormal to the hyperplane OH provided &y + tv # 0.
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Segal-Bargmann and Fourier transform

The kernel of the Segal-Bargmann transform of a function f € L® can be
written as a linear superposition of exponentials with linear weights

2

2 i .
e HC e i(amh)E [ ettt g
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The Watermelon approach

Segal-Bargmann and Fourier transform

The kernel of the Segal-Bargmann transform of a function f € L® can be
written as a linear superposition of exponentials with linear weights

2 2 3 .
e~ (=9 = 6_57(27711)_% /e_éhe_flzy'(tﬂz) dt

therefore we get

Tf( ) 27rh -5 // (22+t2) ;'Ly-(t+iz)f(y) dt dy.
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The Watermelon approach

Segal-Bargmann and Fourier transform

The kernel of the Segal-Bargmann transform of a function f € L® can be
written as a linear superposition of exponentials with linear weights

2 2 i .
e~V — o5 (QWh)_% /e_ghe_;ry'(t"'zz) dt
therefore we get

Tf( ) 27rh -5 // (22+t2) ;'Ly-(t+iz)f(y) dt dy.

Note that there is an a priori exponential bound

1
ITf(2)] < ear A £ oo
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The Watermelon approach

Segal-Bargmann and Fourier transform

The kernel of the Segal-Bargmann transform of a function f € L® can be
written as a linear superposition of exponentials with linear weights

2 2 3 .
e~ (=9 = 6_57(27711)_% /e_éhe_flzy'(tﬂz) dt

therefore we get

Tf( ) 27rh -5 // (22+t2) ;y-(t+iz)f(y) dt dy.

Note that there is an a priori exponential bound

1 2
Tf(2)] < e2r ™27 £ oo
If f is supported in the half-space x1 < 0 then the former estimate can be
improved into
IT(2)] < esn(tmelP=IRezl)) o

when Rez; > 0.
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The Watermelon approach

The Watermelon approach

The idea of the proof of the Watermelon theorem is to propagate the
exponential decay by use of the maximum principle. If f is supported in
the half-space 1 < 0, one works with the subharmonic function

1 1
o(z1) + §(Re 21)2 — i(Imzl)2 + hlog |Tf(z0 + z1€1)|

on a rectangle R.
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The Watermelon approach

The Watermelon approach

The idea of the proof of the Watermelon theorem is to propagate the
exponential decay by use of the maximum principle. If f is supported in
the half-space 1 < 0, one works with the subharmonic function

1 1
o(z1) + §(Re 21)2 — i(Imzl)2 + hlog |Tf(z0 + z1€1)|

on a rectangle R.

One of the edges of R is contained in the neighbourhood V,, where there
is the additional exponential decay of the Segal-Bargmann transform and
one chooses  to be a non-negative harmonic function vanishing on the

boundary of R except for the segment where there is the exponential
decay.
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The Watermelon approach

The idea of the proof of the Watermelon theorem is to propagate the
exponential decay by use of the maximum principle. If f is supported in
the half-space 1 < 0, one works with the subharmonic function

1 1
o(z1) + §(Re 21)2 — i(Imzl)2 + hlog |Tf(z0 + z1€1)|
on a rectangle R.

One of the edges of R is contained in the neighbourhood V,, where there
is the additional exponential decay of the Segal-Bargmann transform and
one chooses  to be a non-negative harmonic function vanishing on the
boundary of R except for the segment where there is the exponential
decay. The fact that ¢ is positive on the interior of the rectangle R allows
to propagate the exponential decay of the Segal-Bargmann transform and
this translates into the propagation of singularities described in the

Watermelon theorem.
David Dos Santos Ferreira (LAGA) Inverse Problems 5 ICMAT 23 /26



The Watermelon approach

Estimates on the Segal-Bargmann transform

If |t| < ea and |z — 2ae;| < ea with € < 1, the decomposition of
frequencies gives

t+iz=C+n (nep H0), [ —ay| <ea, n+a7| <ea

in that setting the estimate that we have established reads

‘/f hl/(t-l—zz dy <C4”fHL°°(Qe 2h€ ia
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The Watermelon approach

Estimates on the Segal-Bargmann transform

If |t| < ea and |z — 2ae;| < ea with € < 1, the decomposition of
frequencies gives

t+iz=C+n (nep H0), [ —ay| <ea, n+a7| <ea

in that setting the estimate that we have established reads

‘ / F)e WD) dy| < Cy| £ (e 5 5
Q

thus cutting in two the integral (in t) giving T'f(2) as a linear
superposition we get

2 2
ITH) Sl @yezr R 5 (75 e

provided |z — 2ae;| < ea and Re z; > 0.
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The Watermelon approach

Estimates on the Segal-Bargmann transform

If |t| < ea and |z — 2ae;| < ea with € < 1, the decomposition of
frequencies gives

t+iz=C+n (nep H0), [ —ay| <ea, n+a7| <ea

in that setting the estimate that we have established reads

‘ / F)e WD) dy| < Cy| £ (e 5 5
Q

thus cutting in two the integral (in t) giving T'f(2) as a linear
superposition we get

e2q2

TFE) B lpoeenn R 535 (o5 4 )
provided |z — 2ae;| < ea and Rez; > 0. Now choosing ¢ < 1 and a S ¢

(TF(2)] S WM fll oo e 2 TP Re =)
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Back to the Watermelon approach

To sum-up we have obtained the following bounds on the Segal-Bargmann
transform of f

_2(21)

e 2 |Tf(z1,2)| S B fllne(a)
{1 when z; € C

e~2r  when Rez; = 2a, |Tm 212 + |2/|? < ea
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To sum-up we have obtained the following bounds on the Segal-Bargmann
transform of f

_2(21)

e 2 |Tf(z1,2)| S B fllne(a)
{1 when z; € C

e~2r  when Rez; = 2a, |Tm 212 + |2/|? < ea

where the weight ® is given by the following expression

Im 2|2 when Rez; <0
®(z1)
YA =
' |Im z1|> — |Rez1/> when Rez; > 0.
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The central lemma

Lemma
Let F' be an entire function satisfying the following bounds

_2(s) 1 when s € C
e F(s) <9 .
e 2 when Res=L,|Ims| <b.

then there exist ¢/, > 0 such that F satisfies

|F(s)] <e 25, when |Res| <8 and |Ims| < b/2.
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Let F' be an entire function satisfying the following bounds

_2(s) 1 when s € C
e F(s) <9 .
e 2 when Res=L,|Ims| <b.

then there exist ¢/, > 0 such that F satisfies

|F(s)] <e 25, when |Res| <8 and |Ims| < b/2.

Applying the former lemma we obtain

/

T f(2)] < Ch™Y fllpoe e 2
for all z € Q, |z1| < < 1. Letting h tend to 0 we deduce
flx)=0, Ve, 0>x1>-0.
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