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The Calderén problem

In a foundational paper of 1980, A. Calderén asked the following question:
Is it possible to determine the electrical conductivity of a body by making
current and voltage measurements at the boundary?

The mathematical formulation is as follows: let 2 C R™ be a smooth
bounded open set, the conductivity is modelled by a bounded measurable
function v bounded from below by a positive constant ¢, If we consider the
Dirichlet problem

div(ygradu) =0
ulon = f € Hz(09)

and define the associated Dirichlet-to-Neumann map
A’Vf = ’YauU’aQ

the question is whether A, determine 7
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Remarks

o

There are a few problems related to this question (identifiability,
stability, reconstruction methods,...) but we will be concerned with
identifiability, i.e. injectivity of the map v — A,,.

The map v — A, is nonlinear, which explains part of the difficulty of
the problem (the other is that the problem is ill-posed).

Calderdn dealt with the linearized problem near constant
conductivities.

There are substancial differences between dimension n = 2 and higher
dimensions.

The problem is solved in dimension n = 2 (Astala-Paivarinta), open
in higher dimensions.

Partial data problems are of interests and tend to be more difficult
(e.g. the linearized problem is already much more difficult).
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Introduction

The Schrodinger equation

There is a classical argument to remove first order terms in elliptic
equations. Use conjugation:

div(ygradu) = yAu + grad vy - grad u
=Y(A+qv

where v = \/yu and
AV

q=- :

VY

This requires the conductivity v to be smooth enough (C?, W2, etc.).
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Inverse problem on the Schrodinger equation

Just as for the conductivity equation, one can define a
Dirichlet-to-Neumann map. Consider the Dirichlet problem

(A+qu=0
u’ag = f S H%(aQ)

and define the associated Dirichlet-to-Neumann map
Ay f = Ouuloq.

This is well defined provided 0 is not a Dirichlet eigenvalue of A + ¢.
Inverse problem: Does A, determine ¢?

If one knows the conductivity at the boundary (boundary determination),
then A, is known, so inverse problem on Schrodinger = Calderén problem
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Some references (full data case)

1980 Calderdn: linearized problem, introduction of harmonic exponentials
1984 Kohn-Vogelius: boundary determination, (piecewise) analytic case

1987 Sylvester-Uhlmann: Case n > 3, C? conductivities, use of complex
geometrical optics with linear weights

1996 Nachman: Case n = 2, WP conductivities, J-method

1997 Brown-Uhlmann: Case n = 2, W conductivities, conductivity
equation seen as a system

2003 Paivarinta-Panchenko-Uhlmann: Case n > 3, W30 conductivities,

2006 Astala-Paivarinta: Case n = 2, L° conductivities, use of
quasiconformal geometry
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Some references (partial data case)

2002

2007

2007

2008

2009

2010
2011

Bukhgeim-Uhlmann: big subsets of the boundary, n > 3, global
Carleman estimates with linear weights

Kenig-Sjostrand-Uhlmann: small subsets of the boundary,

n > 3,global Carleman estimates with logarithmic weights,
introduction of limiting Carleman weights.
DSF-Kenig-Sjostrand-Uhlmann: magnetic Schrodinger equation,
n > 3, L™ potential and C? magnetic potential, Radon transform
and microlocal Holmgren approach

Bukhgeim: full data case but Schrodinger equation with L*°
potentials, harmonic weights, stationary phase
DSF-Kenig-Sjostrand-Uhlmann: linearized problem, n > 2,
Watermelon principle

Imanuvilov-Uhlmann-Yamamoto: n = 2, local problem

Guillarmou-Tzou: n = 2, Schrodinger equation on Riemann surfaces.
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The anisotropic Calderén problem

In some applications to medical imaging, it might be interesting to
consider the case where the conductivity depends on the direction. This
amounts to taking v to be a matrix. If we consider the Dirichlet problem

0 g 0
i ) S —
aTj <7 a$k>u 0

ulon = f € H2(09)

and define the associated Dirichlet-to-Neumann map

the question is whether A, determine v = (77%)?
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Remarks

© The answer is no, because as was observed by Tartar there is a gauge
invariance

Apoy = Ay

where ¢ is a diffeomorphism which is the identity on the boundary
and the pushforward is defined as

1
" det %]

lm, /

,(PZJ’Y (Pm]

(0uy)?*

@ The inverse problem has to be reformulated modulo this gauge
invariance.

@ In dimension n = 2, there are isothermal coordinates (as observed by
Sylvester), which makes the problem not so different from the
isotropic one.
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Main focus

Indeed the analogue of the Astala-Paivarinta was proved by
Astala-Lassas-Paivarinta (2005).

Therefore, we are now concerned with the case n > 3, and mainly with
smooth conductivities.
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Riemannian rigidity

In fact, one can give a more geometric flavour to the problem.

Let (M, g) be a compact Riemannian manifold with boundary M of
dimension n > 3 and ¢ a bounded measurable function. Consider the
Dirichlet problem

(Ag+qu=0 1
ulons = f € H3(OM)

and define the associated Dirichlet-to-Neumann map (under a natural
spectral assumption)
Agqu = Oyulom

where v is a unit normal to the boundary.
If ¢ =0, we use Ay = Ay as a short notation.

David Dos Santos Ferreira (LAGA) Inverse Problems ICMAT 12 /29



Introduction

Riemannian rigidity

As for the conductivity equation, there is a gauge invariance, that is by
isometries which leave the boundary points unchanged:

Asa*g = Aga lom = Idans

Inverse problem: Does the Dirichlet-to-Neumann map A, , determine the
potential ¢ and the metric ¢ modulo such isometries?

If n > 3 and ¢ = 0 this is a generalization of the anisotropic conductivity
problem and one passes from one to the other by

yh = fdetg g™, g* = (dety) T2 gk,
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Introduction

Conformal metrics

As for the conductivity equation, there is a conformal gauge transformation

n+2 n—2

n—2
Aggu=c (Ag+g)(c T u), g=ci AglcT)
which translates at the boundary into

_n+42 n—2 n — 2

Acgaf = ¢ 2 Nggtq(c T u)+

c_%a,,cf.

So if one knows ¢ at the boundary (boundary determination) then one can
deduce one DN map from the other.

A more reasonable inverse problem: A,y = Ay = c=1.
Note that there is no isometry gauge invariance in this case.
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Some references n > 3

1989 Lee-Uhlmann: boundary determination, analytic metrics, no potential,
determination of the metric

2001 Lassas-Uhlmann: improvement on topological assumptions

2009 Guillarmou-Sa Baretto: Einstein manifolds, no potential,
determination of the metric, unique continuation argument

2009 DSF-Kenig-Salo-Uhlmann: fixed admissible geometries, determination
of a smooth potential, CGOs

2011 DSF-Kenig-Salo: fixed admissible geometries, determination of an
unbounded potential, CGOs
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Remarks

@ Analytic metrics case fairly well understood. The smooth case
remains a challenging problem.
@ There are limitations in the method using CGO construction as the
following lectures will show.
© We will concentrate on the case of identifiability of the metric within
a conformal class
Ag=Ag=c=1.

Q@ With boundary determination

Acg = Ag = C‘aM =1.

it is enough to solve the inverse problem on the Schrodinger equation
with a fixed metric

Agy = Nggp = @1 = 2.
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Outline

© The Euclidean case
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An integration by parts

Let u1,us be solutions to the Schrodinger equations

Aui +qrur =0 (1)
Aug + gous =0 (2)

then
/(ql — @)uiug dr = / (Agy — Agy)urug do.
Q o0
Hence the inverse problem is implied by the following density property:

the set of products ujuy of solutions to the Schrodinger equations with
respective potentials g1, ¢2 is dense in L.
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Complex geometrical optics with linear weights

Goal: Construct solutions to the Schrodinger equation

We start with harmonic exponentials (used by Calderén to deal with the
linearized problem)
T P =G+ G =0

Sylvester and Uhlmann constructed complex geometrical optics solutions
by perturbation of the form

e (1 +0(|Im¢| ™).
It is convenient to introduce a small parameter h

e (1 4 O(R)).
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The Euclidean case

Carleman estimates with linear weights

The correction term O(h) is constructed using solvability properties of
A+ q in L? weighted spaces (with exponential weights e_%lmc'x).

The a priori estimates in those L? weighted spaces are provided by
Carleman estimates with exponential with linear weights.

Theorem

There exists a constant C > 0 such that for all h € (0,1], all w € S™ and
all u € Cg°(R™) the following estimate holds

ler ul| + |l *hDul| < Chl|eh*(A + q)u]
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An important remark on the construction

In fact, there is some freedom in the CGO construction. Indeed
e h2Ae 17 = —(hD +i¢)2 = —h2D? — 2i¢ - hD
hence if a satisfies the Cauchy-Riemann equation
(-Da=0

then en?q is still an approximate solution and the CGOs construction
work as before.
For instance, we have solutions of the form

e hT¢ (e_m'g + O(h))

with &€ L C.
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The Euclidean case

|dentifiability of the potential

Plugging our CGOs solutions in the integration by parts formula, we get
/ e*%(ﬁﬁz)e*ixf(ql — @) dz = O(h)
Q

provided Im({1 + ¢2) = 0.
If we can choose (; = (, (2 = —( with

=0, ¢L¢ |Im¢>1,
then 19@?(12) = 0 leading to q1 = ¢o.
This is only possible in dimension n > 3 !l

Note that there is some flexibility since by analiticity of the Fourier
transform we don't need all frequencies £ € R".
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Alternative endings

© An amplitude of the form a(z - €),£ L ¢ also satisfies the
Cauchy-Riemann equation, and varying a and &, and translating the
phases, we get that the Radon transform of ¢; — g2 vanishes
R(la(q1 — ¢2))(H) = 0.
Again, there is some flexibility, because one can use microlocal
analytic theory to deal with the case where there is partial information
on the hyperplanes H.

@ If ¢ = ey +in, another possible amplitude is ¢"*¢*b(x - £) and
translating in x and varying 1 and £ one obtains information on the
weighted X-ray transform

/19(1?%)()\7 x4 t&)e Mdt = 0.

In all cases, one is in fact using the injectivity of some functional transform.
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Complex geometrical optics with logarithmic weights

Here we describe another construction by complex geometrical optics due
to Kenig, Sjostrand and Uhlmann.

Suppose 0 ¢ €2 and write the Laplace operator on R™ in polar coordinates
A=0?+n—1)r10, + r2Agn
and make the change of variable s = logr
A=e2(02+ (n—2)0s + Agn-1)

— 9)2 _
—e TS (352 + Agn-1 — (n=27 42) >en228.

Remark: This corresponds to seeing R™ as a warped product. By change
of variables, it is conformal to a product.
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The Euclidean case

Complex geometrical optics with logarithmic weights

The Laplace-Beltrami operator on the sphere reads

1 2
—_ e —— Agn-
(sin@)"—Qae((sme) %) + sin2g "

Asnfl -
1

=02+ (n—2)cotdp + — 9A5n2
sin?

We may rewrite the Laplace-Beltrami operator on the sphere as the
conjugated operator

(TL - 2)2 -2

4) (sinf) "z

(n—2)(n—4)
—

Asis = (sine) % (2

with
357172 — ASn72 -
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The Euclidean case

Complex geometrical optics with logarithmic weights

We get

n+2

A=e "7 5(sinf) " <82 + 05 +

Agn- 2>e 225(51119)%2
sin?

Note that the Riemannian distance to the north pole N = (0,...,0,1) is
given by

dgn-1(y, N) = 0.

An approximate solution to the Schrodinger equation looks like
. n— n— 1 ] Z
Ua:tpp ei%(ﬁw)ef%s(sine)*% — eih(loglx‘—i_stn_l(‘IVN))CL(LE).

since h2(A + q)u®P = ot log|zl)(h2).
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Remarks on the construction

© Note that a = efan?S(sin (9)771772 and that
dz = ™ (sin#)" 2 dsdf dogn-».

Thus if one uses two approximate solutions u%"?, u®*? then

/(Ch — @)uiPuPdx _/ 2// (¢1 — q2)dsdfdogn--2.
S'n

@ This construction can be modified in the following way: any
multiplication by a holomorphic function in z = ¢ + 4% and a smooth
function in w € S™? yields a similar approximate solution

uj:pp _ ei%(erlO) 2 (sm 9) 22f(s —+ l@)b(W)

with f € Hol(C) and b € C>(S"2).
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The Euclidean case

Carleman estimates with logarithmic weights

Once again the correction term O(h) is constructed using solvability
properties of A + ¢ in L? weighted spaces (with weights |x]i%)

The a priori estimates in those L? weighted spaces are provided by
Carleman estimates with exponential with logarithmic phase.

Theorem

There exists a constant C' > 0 such that for all h € (0,1], and all
u € C3°(Q) the following estimate holds

2= % ul| + |[[«|** hDul| < Chl||z[** (A + g)ul|
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Concluding remarks

The method to obtain the identifiability of the potential following
Sylvester and Uhlmann is the following
@ Use integration by parts to relate the information on the boundary to
the inside.

@ Construct an approximate solution to the Schrodinger equation using
complex geometrical optics.

© Construct a correction term (with corresponding estimates) using
Carleman weights.

@ Use the injectivity of a certain functional transform (Fourier, Radon
or X-ray transforms in the Euclidean case).

This is our roadmap.
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