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Introduction

The Calderón problem

In a foundational paper of 1980, A. Calderón asked the following question:
Is it possible to determine the electrical conductivity of a body by making
current and voltage measurements at the boundary?

The mathematical formulation is as follows: let Ω ⊂ Rn be a smooth
bounded open set, the conductivity is modelled by a bounded measurable
function γ bounded from below by a positive constant c, If we consider the
Dirichlet problem {

div(γ gradu) = 0

u|∂Ω = f ∈ H
1
2 (∂Ω)

and define the associated Dirichlet-to-Neumann map

Λγf = γ∂νu|∂Ω

the question is whether Λγ determine γ?
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Introduction

Remarks

1 There are a few problems related to this question (identifiability,
stability, reconstruction methods,. . . ) but we will be concerned with
identifiability, i.e. injectivity of the map γ → Λγ .

2 The map γ → Λγ is nonlinear, which explains part of the difficulty of
the problem (the other is that the problem is ill-posed).

3 Calderón dealt with the linearized problem near constant
conductivities.

4 There are substancial differences between dimension n = 2 and higher
dimensions.

5 The problem is solved in dimension n = 2 (Astala-Päivärinta), open
in higher dimensions.

6 Partial data problems are of interests and tend to be more difficult
(e.g. the linearized problem is already much more difficult).
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Introduction

The Schrödinger equation

There is a classical argument to remove first order terms in elliptic
equations. Use conjugation:

div(γ gradu) = γ∆u+ grad γ · gradu

=
√
γ(∆ + q)v

where v =
√
γu and

q = −
∆
√
γ

√
γ
.

This requires the conductivity γ to be smooth enough (C2,W 2,∞, etc.).
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Introduction

Inverse problem on the Schrödinger equation

Just as for the conductivity equation, one can define a
Dirichlet-to-Neumann map. Consider the Dirichlet problem{

(∆ + q)u = 0

u|∂Ω = f ∈ H
1
2 (∂Ω)

and define the associated Dirichlet-to-Neumann map

Λqf = ∂νu|∂Ω.

This is well defined provided 0 is not a Dirichlet eigenvalue of ∆ + q.
Inverse problem: Does Λq determine q?

If one knows the conductivity at the boundary (boundary determination),
then Λq is known, so inverse problem on Schrödinger ⇒ Calderón problem
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Introduction

Some references (full data case)

1980 Calderón: linearized problem, introduction of harmonic exponentials

1984 Kohn-Vogelius: boundary determination, (piecewise) analytic case

1987 Sylvester-Uhlmann: Case n ≥ 3, C2 conductivities, use of complex
geometrical optics with linear weights

1996 Nachman: Case n = 2, W 2,p conductivities, ∂̄-method

1997 Brown-Uhlmann: Case n = 2, W 1,p conductivities, conductivity
equation seen as a system

2003 Päivärinta-Panchenko-Uhlmann: Case n ≥ 3, W
3
2
,∞ conductivities,

2006 Astala-Päivärinta: Case n = 2, L∞ conductivities, use of
quasiconformal geometry
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Introduction

Some references (partial data case)

2002 Bukhgeim-Uhlmann: big subsets of the boundary, n ≥ 3, global
Carleman estimates with linear weights

2007 Kenig-Sjöstrand-Uhlmann: small subsets of the boundary,
n ≥ 3,global Carleman estimates with logarithmic weights,
introduction of limiting Carleman weights.

2007 DSF-Kenig-Sjöstrand-Uhlmann: magnetic Schrödinger equation,
n ≥ 3, L∞ potential and C2 magnetic potential, Radon transform
and microlocal Holmgren approach

2008 Bukhgeim: full data case but Schrödinger equation with L∞

potentials, harmonic weights, stationary phase

2009 DSF-Kenig-Sjöstrand-Uhlmann: linearized problem, n ≥ 2,
Watermelon principle

2010 Imanuvilov-Uhlmann-Yamamoto: n = 2, local problem

2011 Guillarmou-Tzou: n = 2, Schrödinger equation on Riemann surfaces.
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Introduction

The anisotropic Calderón problem

In some applications to medical imaging, it might be interesting to
consider the case where the conductivity depends on the direction. This
amounts to taking γ to be a matrix. If we consider the Dirichlet problem

∂

∂xj

(
γjk

∂

∂xk

)
u = 0

u|∂Ω = f ∈ H
1
2 (∂Ω)

and define the associated Dirichlet-to-Neumann map

Λγf = γjkνj
∂u

∂xk

∣∣∣∣
∂Ω

the question is whether Λγ determine γ = (γjk)?
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Introduction

Remarks

1 The answer is no, because as was observed by Tartar there is a gauge
invariance

Λϕ∗γ = Λγ

where ϕ is a diffeomorphism which is the identity on the boundary
and the pushforward is defined as

(ϕ∗γ)jk =
1

detϕ′
ϕ′ljγ

lmϕ′mj .

2 The inverse problem has to be reformulated modulo this gauge
invariance.

3 In dimension n = 2, there are isothermal coordinates (as observed by
Sylvester), which makes the problem not so different from the
isotropic one.

David Dos Santos Ferreira (LAGA) Inverse Problems ICMAT 10 / 29



Introduction

Main focus

Indeed the analogue of the Astala-Päivärinta was proved by
Astala-Lassas-Päivärinta (2005).

Therefore, we are now concerned with the case n ≥ 3, and mainly with
smooth conductivities.
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Introduction

Riemannian rigidity

In fact, one can give a more geometric flavour to the problem.

Let (M, g) be a compact Riemannian manifold with boundary ∂M of
dimension n ≥ 3 and q a bounded measurable function. Consider the
Dirichlet problem {

(∆g + q)u = 0

u|∂M = f ∈ H
1
2 (∂M)

and define the associated Dirichlet-to-Neumann map (under a natural
spectral assumption)

Λg,qu = ∂νu|∂M
where ν is a unit normal to the boundary.
If q = 0, we use Λg = Λg,0 as a short notation.

David Dos Santos Ferreira (LAGA) Inverse Problems ICMAT 12 / 29



Introduction

Riemannian rigidity

As for the conductivity equation, there is a gauge invariance, that is by
isometries which leave the boundary points unchanged:

Λϕ∗g = Λg, ϕ|∂M = Id∂M

Inverse problem: Does the Dirichlet-to-Neumann map Λg,q determine the
potential q and the metric g modulo such isometries?

If n ≥ 3 and q = 0 this is a generalization of the anisotropic conductivity
problem and one passes from one to the other by

γjk =
√

det g gjk, gjk = (det γ)−
2

n−2 gjk.
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Introduction

Conformal metrics

As for the conductivity equation, there is a conformal gauge transformation

∆cgu = c−1(∆g + qc)(c
n−2
4 u), qc = c

n+2
4 ∆g(c

n−2
4 )

which translates at the boundary into

Λcg,qf = c−
n+2
4 Λg,q+qc(c

n−2
4 u) +

n− 2

4
c−

1
2∂νcf.

So if one knows c at the boundary (boundary determination) then one can
deduce one DN map from the other.

A more reasonable inverse problem: Λcg = Λg ⇒ c=1.
Note that there is no isometry gauge invariance in this case.
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Introduction

Some references n ≥ 3

1989 Lee-Uhlmann: boundary determination, analytic metrics, no potential,
determination of the metric

2001 Lassas-Uhlmann: improvement on topological assumptions

2009 Guillarmou-Sa Baretto: Einstein manifolds, no potential,
determination of the metric, unique continuation argument

2009 DSF-Kenig-Salo-Uhlmann: fixed admissible geometries, determination
of a smooth potential, CGOs

2011 DSF-Kenig-Salo: fixed admissible geometries, determination of an
unbounded potential, CGOs
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Introduction

Remarks

1 Analytic metrics case fairly well understood. The smooth case
remains a challenging problem.

2 There are limitations in the method using CGO construction as the
following lectures will show.

3 We will concentrate on the case of identifiability of the metric within
a conformal class

Λcg = Λg ⇒ c = 1.

4 With boundary determination

Λcg = Λg ⇒ c|∂M = 1.

it is enough to solve the inverse problem on the Schrödinger equation
with a fixed metric

Λg,q1 = Λg,q2 ⇒ q1 = q2.
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The Euclidean case

An integration by parts

Let u1, u2 be solutions to the Schrödinger equations

∆u1 + q1u1 = 0 (1)

∆u2 + q2u2 = 0 (2)

then ∫
Ω

(q1 − q2)u1u2 dx =

∫
∂Ω

(Λq1 − Λq2)u1u2 dσ.

Hence the inverse problem is implied by the following density property:

the set of products u1u2 of solutions to the Schrödinger equations with
respective potentials q1, q2 is dense in L1.
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The Euclidean case

Complex geometrical optics with linear weights

Goal: Construct solutions to the Schrödinger equation

We start with harmonic exponentials (used by Calderón to deal with the
linearized problem)

e−ix·ζ , ζ2 = ζ2
1 + · · ·+ ζ2

n = 0.

Sylvester and Uhlmann constructed complex geometrical optics solutions
by perturbation of the form

e−ix·ζ
(
1 +O(| Im ζ|−1)

)
.

It is convenient to introduce a small parameter h

e−
i
h
x·ζ(1 +O(h)

)
.
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The Euclidean case

Carleman estimates with linear weights

The correction term O(h) is constructed using solvability properties of

∆ + q in L2 weighted spaces (with exponential weights e−
1
h

Im ζ·x).

The a priori estimates in those L2 weighted spaces are provided by
Carleman estimates with exponential with linear weights.

Theorem

There exists a constant C > 0 such that for all h ∈ (0, 1], all ω ∈ Sn and
all u ∈ C∞0 (Rn) the following estimate holds

‖e
1
h
ω·xu‖+ ‖e

1
h
ω·xhDu‖ ≤ Ch‖e

1
h
ω·x(∆ + q)u‖
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The Euclidean case

An important remark on the construction

In fact, there is some freedom in the CGO construction. Indeed

e
i
h
x·ζh2∆e−

i
h
x·ζ = −(hD + iζ)2 = −h2D2 − 2iζ · hD

hence if a satisfies the Cauchy-Riemann equation

ζ ·Da = 0

then e
i
h
x·ζa is still an approximate solution and the CGOs construction

work as before.
For instance, we have solutions of the form

e−
i
h
x·ζ(e−ix·ξ +O(h)

)
with ξ ⊥ ζ.
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The Euclidean case

Identifiability of the potential

Plugging our CGOs solutions in the integration by parts formula, we get∫
Ω

e−
i
h

(ζ1+ζ2)e−ix·ξ(q1 − q2) dx = O(h)

provided Im(ζ1 + ζ2) = 0.
If we can choose ζ1 = ζ, ζ2 = −ζ with

ζ2 = 0, ζ ⊥ ξ | Im ζ| ≥ 1,

then ̂1Ω(q1 − q2) = 0 leading to q1 = q2.

This is only possible in dimension n ≥ 3 !!

Note that there is some flexibility since by analiticity of the Fourier
transform we don’t need all frequencies ξ ∈ Rn.
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The Euclidean case

Alternative endings

1 An amplitude of the form a(x · ξ), ξ ⊥ ζ also satisfies the
Cauchy-Riemann equation, and varying a and ξ, and translating the
phases, we get that the Radon transform of q1 − q2 vanishes
R(1Ω(q1 − q2))(H) = 0.
Again, there is some flexibility, because one can use microlocal
analytic theory to deal with the case where there is partial information
on the hyperplanes H.

2 If ζ = e1 + iη, another possible amplitude is eiλζ·xb(x · ξ) and
translating in x and varying η and ξ one obtains information on the
weighted X-ray transform∫

̂1Ω(q1 − q2)(λ, x′0 + tξ′)e−λt dt = 0.

In all cases, one is in fact using the injectivity of some functional transform.
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The Euclidean case

Complex geometrical optics with logarithmic weights

Here we describe another construction by complex geometrical optics due
to Kenig, Sjöstrand and Uhlmann.

Suppose 0 /∈ Ω and write the Laplace operator on Rn in polar coordinates

∆ = ∂2
r + (n− 1)r−1∂r + r−2∆Sn−1

and make the change of variable s = log r

∆ = e−2s
(
∂2
s + (n− 2)∂s + ∆Sn−1

)
= e−

n+2
2
s

(
∂2
s + ∆Sn−1 −

(n− 2)2

4

)
e

n−2
2
s.

Remark: This corresponds to seeing Rn as a warped product. By change
of variables, it is conformal to a product.
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The Euclidean case

Complex geometrical optics with logarithmic weights

The Laplace-Beltrami operator on the sphere reads

∆Sn−1 =
1

(sin θ)n−2
∂θ
(
(sin θ)n−2∂θ

)
+

1

sin2 θ
∆Sn−2

= ∂2
θ + (n− 2) cot θ ∂θ +

1

sin2 θ
∆Sn−2 .

We may rewrite the Laplace-Beltrami operator on the sphere as the
conjugated operator

∆Sn−1 = (sin θ)−
n−2
2

(
∂2
θ +

1

sin2 θ
∆̂Sn−2 +

(n− 2)2

4

)
(sin θ)

n−2
2

with

∆̂Sn−2 = ∆Sn−2 −
(n− 2)(n− 4)

4
.
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The Euclidean case

Complex geometrical optics with logarithmic weights

We get

∆ = e−
n+2
2
s(sin θ)−

n−2
2

(
∂2
s + ∂2

θ +
1

sin2 θ
∆̂Sn−2

)
e

n−2
2
s(sin θ)

n−2
2 .

Note that the Riemannian distance to the north pole N = (0, . . . , 0, 1) is
given by

dSn−1(y,N) = θ.

An approximate solution to the Schrödinger equation looks like

uapp
± = e±

1
h

(s+iθ)e−
n−2
2
s(sin θ)−

n−2
2 = e

± 1
h

(
log |x|+idSn−1

(
x
|x| ,N

))
a(x).

since h2(∆ + q)uapp = e±
1
h

log |x|O(h2).
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The Euclidean case

Remarks on the construction

1 Note that a = e−
n−2
2
s(sin θ)−

n−2
2 and that

dx = ens(sin θ)n−2 ds dθ dσSn−2 .

Thus if one uses two approximate solutions uapp
+ , uapp

− then∫
Ω

(q1 − q2)uapp
+ uapp

− dx =

∫
Sn−2

∫∫
e2s(q1 − q2) ds dθ dσSn−2 .

2 This construction can be modified in the following way: any
multiplication by a holomorphic function in z = ϕ+ iψ and a smooth
function in ω ∈ Sn−2 yields a similar approximate solution

uapp
± = e±

1
h

(s+iθ)e−
n−2
2
s(sin θ)−

n−2
2 f(s+ iθ)b(ω).

with f ∈ Hol(C) and b ∈ C∞(Sn−2).
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The Euclidean case

Carleman estimates with logarithmic weights

Once again the correction term O(h) is constructed using solvability

properties of ∆ + q in L2 weighted spaces (with weights |x|±
1
h ).

The a priori estimates in those L2 weighted spaces are provided by
Carleman estimates with exponential with logarithmic phase.

Theorem

There exists a constant C > 0 such that for all h ∈ (0, 1], and all
u ∈ C∞0 (Ω) the following estimate holds

‖|x|±
1
hu‖+ ‖|x|±

1
hhDu‖ ≤ Ch‖|x|±

1
h (∆ + q)u‖
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The Euclidean case

Concluding remarks

The method to obtain the identifiability of the potential following
Sylvester and Uhlmann is the following

1 Use integration by parts to relate the information on the boundary to
the inside.

2 Construct an approximate solution to the Schrödinger equation using
complex geometrical optics.

3 Construct a correction term (with corresponding estimates) using
Carleman weights.

4 Use the injectivity of a certain functional transform (Fourier, Radon
or X-ray transforms in the Euclidean case).

This is our roadmap.
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