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1 Introduction

I am going to talk about the theory of differential spaces proposed by Sikorski in 1967,
[13], and further developed in his book published in 1972, [14]. Sikorski’s theory is
one of many approaches to study systems with singularities; for example, see [11],
[5], [15], [1] and [12]. I find Sikorski’s approach very easy comparing to those of other
authors. He defines the differential structure C∞(S) on a topological space S as a
family of functions on S deemed to be smooth. The topological space S endowed
with a differential structure C∞(S) is called a differential space. Once a differential
structure C∞(S) is specified, we study geometric constructs on S in terms of their
compatibility with C∞(S).
For example, a map ϕ : S → R between differential spaces (S,C∞(S)) and

(R,C∞(R)) is smooth if, for every f ∈ C∞(R), the pull-back ϕ∗f = f ◦ ϕ ∈ C∞(S).
The map ϕ : S → R is a diffeomorphism if it is smooth, invertible, and its inverse
ϕ−1 : R→ S is smooth.
We may also impose additional conditions on the differential space (S,C∞(S))

under investigation. For example, a differential space (S,C∞(S)) is a manifold of
dimension n if it is locally diffeomorphic to open subsets of Rn.

∗Lecture prepared for the Workshop on "Geometrical Aspects of Material Modelling", Madrid,
August 21-23, 2024.
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2 Differential structure and smooth maps

Definition 1 A differential structure on a topological space S is a family C∞(S) of
functions on S such that:
1. {f−1(a, b) | f ∈ C∞(S) and a < b ∈ R} is a subbasis for the topology of S.
2. If f1, ..., fn ∈ C∞(S) and F ∈ C∞(Rn) then F (f1, ..., fn) ∈ C∞(S).
3. For f : S → R such that, for every x ∈ S, there exist an open neighbourhood V of
x in S and fx ∈ C∞(S) such that fx|V = f|V .

The first condition of Definition 1 relates the topology of S to its differential
structure. The remaining conditions ensure that if S is a topological manifold then
S endowed with a differential structure C∞(S) is a smooth manifold in the usual
sense.

Definition 2 Amap ϕ : S → R between differential spaces (S,C∞(S)) and (R,C∞(R))
is smooth (of class C∞) if, for every f ∈ C∞(R), its pull-back ϕ∗f = f ◦ ϕ is in
C∞(S). A smooth map ϕ : S → R is a diffeomorphism if its invertible, and its
inverse ϕ−1 : R→ S is smooth.

Given a set S, we can define a differential structure on S as follows. First, choose
a family FS of functions on S such that

{f−1(a, b) | f ∈ FS and a < b ∈ R}

is a subbasis for the desired topology of S.

Definition 3 The differential structure C∞(S) generated by FS consists of functions
f : S → R such that, for every x ∈ S, there exists an open neighbourhood V of x ∈ S,
an integer k ∈ N, functions f1, ..., fn ∈ FS and a function F ∈ C∞(Rk) such that

h|V = F (f1, ..., fn)|V .

If S is a subset of a differential space R differential structure C∞(R), and FS =
{f|S | f ∈ C∞(R)} is the space of restrictions to S of smooth functions on R,
then S endowed with the differential structure C∞(S) generated by FS is called a
differential subspace of R. In particular, if R = Rn and C∞(R) = C∞(Rn) is the
standard differential structure of Rn, then S endowed with the differential structure
C∞(S) generated by FS is a differential subspace of Rn.

Definition 4 A differential space (S,C∞(S)) is locally Euclidean if, for every x ∈
S, there exist an open neighbourhood V of x ∈ S and n ∈ N∪{0}, such that the
differential subspace (V,C∞(V )) is diffeomorphic to a differential subspace of Rn.
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In the following, refering to a differential space (S,C∞(S)), we omit C∞(S) and
say a differential spaces S, provided there is no danger of confusing which differental
structure C∞(S) is implied.
The definition of a differential structure C∞(S) on a topological space S, allows

various operations like products, fibre products, quotients etc.

Theorem 5 Let S be a differential space with differential structure C∞(S) and let
{Uα} be an open cover of S. If S is Hausdorff, locally compact and second countable,
then there exists a countable partition of unity {fi} ⊆ C∞(S) subordinate to {Uα}
and such that the support of each fi is compact.

Proof. See Theorem 2.2.4 in [18].

2.1 Tangent bundle1

Following the principle that the differential structure C∞(S) of a differential space S
encodes all the geometric information about S, we define tangent vectors in terms of
their actions on C∞(S).

Definition 6 Vectors tangent to a differential space S at a point x ∈ S are deriva-
tions of C∞(S) at x, that is, they are linear maps vx : C∞(S) → R : f 7→ vxf that
satisfy Leibniz’s rule at x:

vx(f1f2) = (vxf1)f2(x) + f1(x)(vxf2).

The tangent space to S at a point x it the space TxS of all derivations vx : C∞(S)→ R
at x. The tangent bundle of S is

TS =
∐
x∈S

TxS. (1)

The tangent bundle projection is the map τS : TS → S : vx 7→ τ(vx) = x.

Since the point x of attachment of a vector vx ∈ TS is determined by the tangent
bundle projection τS : TS → S, we may write vx = v and x = τ(v).

.Every f ∈ C∞(S) gives rise to two functions on TS: the pull-back by the tangent
bundle projection

τ ∗Sf = f ◦ τS : TS → R,

and the differential
df : TS → R : v 7→ df(v) = vf.

1It should be noted that the tangent bundle of a differential space as defined here is not a locally
trivial fibration. Therefore, some authors are using the term "pseudobundle".
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Definition 7 We endow TS with the differential structure C∞(TS) generated by
FTS = {τ ∗Sf, df | f ∈ C∞(S)}. In this differential structure the tangent bundle
projection is smooth.

Definition 8 The tangent map (derived map) of a map ϕ : S → R between differ-
ential spaces with differential structures C∞(S) and C∞(R), respectively, is a map
Tϕ : TS → TR : v 7→ Tϕ(v) such that, τR(Tϕ(v)) = τS(v) and, for every f ∈ C∞(R)

Tϕ(v)f = v(ϕ∗f) = v(f ◦ ϕ).

Proposition 9 The tangent map Tϕ : TS → TR is smooth in the differential
structures C∞(TS) and C∞(TR) generated by FTS = {τ ∗Sf, df | f ∈ C∞(S)} and
FTR = {τ ∗Rf, df | f ∈ C∞(R)}, respectively.

3 Derivations

Definition 10 Let S be a differential space. A (global)2 derivation of C∞(S) is a
linear map X : C∞(S)→ C∞(S) : f 7→ Xf satisfying Leibniz’s rule

X(f1f2) = (Xf1)f2 + f1(Xf2) (2)

for every f1, f2 ∈ C∞(S).

Let DerC∞(S) denote the space of deriviations of C∞(S). It is a Lie algebra with
Lie bracket

[X1, X2]f = X1(X2f)−X2(X1f) (3)

for every X1, X2 ∈ DerC∞(S) and every f ∈ C∞(S). In addition, DerC∞(S) is a
module over the ring C∞(S) with [fX1, X2] = f [X1, X2] and

[X1, fX2] = (X1f)X2 + f [X1, X2] (4)

for every X1, X2 ∈ DerC∞(S) and every f ∈ C∞(S).

Definition 11 A section of the tangent bundle projection τS : TS → S is a map
σ : S → TS such that τS ◦ σ = idS.

2If there is a possibility of confusion of tangent vectors,which are derivations at points of S, with
derivations defined here, we add a descriptor "global".
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Every derivation X ∈ DerC∞(S) corresponds to a section of the tangent bundle
projection τS : TS → S

X : S → TS : x 7→ X(x),

where X(x)f = (Xf)(x) for every f ∈ C∞(S).
In Example 40, we show a differential space S such that TS is not spanned by

derivations X ∈ DerC∞(S).
Suppose that the map ϕ : R → S in Definition 8 is a diffeomorphism, that is

ϕ−1 : R→ S exists and is smooth. For every derivation X ∈ DerC∞(R) there exists
a unique derivation ϕ∗X ∈ DerC∞(S),

ϕ∗X : C∞(S)→ C∞(S) : f 7→ (ϕ∗X)f = (ϕ
−1)∗(X(ϕ∗f)), (5)

which is ϕ-related to X. It is called the push-forward of X by ϕ. Moreover,

ϕ∗ : DerC
∞(R)→ DerC∞(S) : X 7→ ϕ∗X

is a Lie algebra diffeomorphism.

4 Integral curves of derivations and vector fields

From this section on, we make an additional assumption that the differential spaces
under consideration are locally Euclidean. This means that they are locally diffeo-
morphic to differential subspaces of Euclidean spaces.

Definition 12 Let S be a locally Euclidean differential space and X a derivation of
C∞(S). An integral curve of X originating at x0 ∈ S is a map c : I → S, where I is
a connected subset of R containing 0, such that c(0) = x0 and

d

dt
f(c(t)) = (Xf)(c(t)) for every f ∈ C∞(S) and every t ∈ I,

whenever the interior of I is not empty.

Integral curves of a given derivation X of C∞(S) starting at x0 can be ordered by
inclusion of their domains. In other words, if c1 : I1 → S and c2 : I2 → S are two
integral curves of X, such that c1(0) = c2(0) = x0, and I1 ⊆ I2, then c1 � c2. An
integral curve c : I → S of X is maximal if c � c1 implies that c = c1.

Theorem 13 Let S be a locally Euclidean differential space space and let X be a
derivation of C∞(S). For every x ∈ S, there exists a unique maximal integral curve
c of X such that c(0) = x.

Proof. See [16] or the proof of Theorem 3.2.1 in [18].
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Remark 14 Note that Definition 12 is somewhat different from the standard defini-
tion of an integral curve of a vector field on manifold. In particular, integral curves
with domain consisting of a single point are permitted. These modifications allow for
the generality of the statement of Theorem 13.

We denote by etX(x) the point on the maximal integral curve of X, originating at
x, corresponding to the value t of the parameter. Given x ∈ S, etX(x) is defined for
t in an interval Ix containing zero, and e0X(x)(x) = x. If t, s, and t + s are in Ix,
s ∈ IetX(x), and t ∈ IesX(x), then

e(s+t)X(x) = esX(etX(x)) = etX(x)(esX(x)).

Proposition 15 For every derivation X of the differential structure C∞(S) of a lo-
cally Euclidean differential space S, and a diffeomorphism ϕ : S → R,

etϕ∗X = ϕ ◦ etX ◦ ϕ−1.

Proof. See [18]

In the case when X is a derivation of C∞(M), where M is a manifold, it is a
vector field on M, and etX : x 7→ etX(x) is a local one-parameter group of local
diffeomorphisms of M . For a subcartesian space S, etX : x 7→ etX(x) might fail to be
a local diffeomorphism.

Definition 16 A vector field on a locally Eucliean differential space S is a derivation
X of C∞(S) such that for every x ∈ S, there exist an open neighbourhood V of x in
S and ε > 0 such that for every t ∈ (−ε, ε), the map etX(x) is defined on V , and its
restriction to V is a diffeomorphism from V onto an open subset of S. In other words,
X is a vector field on S if etX is a local 1-parameter group of local diffeomorphisms
of S.

We denote by X(S) the familly of all vector fields on a locally Euclidean differential
space S.

Proposition 17 X(S) is a Lie subalgebra of the Lie algebra DerC∞(S) of derivations
of C∞(S).

Proof. See [21].

Theorem 18 Let S be a locally Ecliean differential space. A derivation X of C∞(S)
is a vector field on S if the domain of every maximal integral curve of X is open in
R.

Proof. See [6].
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5 Orbits of family X(S) of vector fields on S

For X1, . . . , Xn in the Lie algebra X(S) of all vector fields on a locally Euclidean
differential space S, consider a piece-wise smooth integral curve c in S, originating at
x0 ∈ S, given by a sequence of steps. First, we follow the integral curve of X1 through
x0 for time τ 1; next we follow the integral curve of X2 though x1 = ϕXτ1(x0) for time
τ 2; and so on. For each i = 1, . . . , n let Ji be [0, τ i] ⊆ R if τ i > 0 or [τ i, 0] if τ i < 0.
Note that τ i < 0 means that the integral curve of Xi is followed in the negative time
direction. For every i, Ji is contained in the domain Ixi−1 of the maximal integral
curve of Xi starting at xi−1. In other words, for t = τ 1 + ...+ τn−1 + τn,

c(t) = c(τ 1 + τ 2 + ...+ τn−1 + τn) = ϕXnτn ◦ ϕ
Xn−1
τn−1 ◦ .... ◦ ϕX1τ1 (x0).

Definition 19 The orbit through x0 of the family X(S) of vector fields on S is the
set M of points x in S that can be joined to x0 by a piece-wise smooth integral curve
of vector fields in X(S);

M = {ϕXntn ◦ ϕ
Xn−1
tn−1 ◦ .... ◦ ϕ

X1
t1 (x0) | X1, ..., Xn ∈ X(S) t1, ..., tn ∈ R, n ∈ N} .

Theorem 20 Orbits M of the family X(S) of vector fields on a subcartesian space
S are submanifolds of S. In the manifold topology of M , the differential structure on
M induced by its inclusion in S coincides with its manifold differential structure.

Proof. See [17], or the proof of Theorem 3.4.5 in [18].

Notation 21 We denote by M(S) the family of orbits of X(S).

By Theorem 20, every orbit M of X(S) is a manifold. Moreover, the manifold
structure ofM is its differential structure induced by the inclusion ofM in S. Hence,
M is a submanifold of the differential space S. The orbits of X(S), give a partition
M(S) of S by connected smooth manifolds. Since the notion of a vector field on
a subcartesian space S is intrinsically defined in terms of its differential structure,
it follows that every locally Euclidean differential space has a natural partition by
connected smooth manifolds. In particular, every subset S of Rn has natural partition
by connected smooth manifolds.

Proposition 22 Let X be a derivation of C∞(S). If, for each M ∈M(S) and each
x ∈M , the maximal integral curve of X originating at x ∈M is contained inM , then
X ∈ X(S), that is, X is a derivation of C∞(S) that generates local one parameter
groups of local diffeomorphisms of S.

Proof. See [6].
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Proposition 23 (Frontier Condition) For M,M ′ ∈ M(S), if M ′ ∩M 6= ∅, then
either M ′ =M or M ′ ⊂M\M .

Proof. See [6].

Proposition 24 (Whitney’s Condition A) Consider a differential subspace S of
Rn. Let y ∈ M ′ ⊆ M\M, where M,M ′ ∈ M(S), and let m = dimM . If xi is
a sequence of points in M such that xi → y ∈ M ′, and TxiM converges to some
m-plane E ⊆ TyS ⊆ TyRn then TyM ′ ⊆ E.

Proof. See [6].

In general the partitionM(S) need not be locally finite. IfM(S) is locally finite,
then it is a stratification of S.

6 The cotangent bundle

6.1 Covectors

Definition 25 Covectors at x ∈ S are differentials df|x at x of functions f ∈ C∞(S).
The space of covectors at x ∈ S is called the cotangent space of S at x, and it is
denoted T ∗xS. Thus,

T ∗xS = {df|x | f ∈ C∞(S)}.

The cotangent bundle space of S is the space of

T ∗S =
∐
x∈S

T ∗xS = {df|x | x ∈ S, f ∈ C∞(S)}

of all covectors at all points of S.The cotangent bundle projection is the map πS :
T ∗S → S assigning to each df|x ∈ T ∗S the point x ∈ S at which the differential df
is evaluated,

πS(df|x) = x.

For V ⊆ S,
T ∗V S =

∐
x∈V

T ∗xS = π−1S (V ) ⊆ T ∗S.

The definition of the differential of a function can be re-interpreted as the evaluation
function on the fibre product T ∗S ×S TS,

〈· | ·〉 : T ∗S ×S TS → R : (df|x, vx) 7→
〈
df|x | vx

〉
= vxf.
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Since C∞(S) is closed under the operations of addition and multiplication by
constants, and the derivation i /n TxS are linear, it follows that T ∗xS is closed under
addition and multiplication by constants. For every df1|x and df2|x in T ∗xS and every
a1, a2 ∈ R,

a 1df1|x + a2df2|x = d(a1f1 + a2f2)|x ∈ T ∗xS.
Hence, T ∗xS is a vector space for every x ∈ S.

Proposition 26 If the dimension of TS is locally finite, then the dimension of T ∗S
is locally finite and dimT ∗xS = dimTxS for every x ∈ S.

Proof. [19].
Let ϕ : S → R be a smooth map of differential spaces. It gives rise to the derived

map Tϕ : TS → TR, see Definition 7. For every x ∈ S, the restriction of Tϕ to TxS
is a linear map Tϕx : TxS → TyR, where y = ϕ(x). Moreover, for every vx ∈ TxS
and f ∈ C∞(R), Tϕx(vx) ∈ TyR and ϕ∗h = f ◦ ϕ ∈ C∞(S) because ϕ : S → R is
smooth. Hence,〈

d(ϕ∗f)|x | v
〉
= v(ϕ∗f) = Tϕx(v)f =

〈
df|y | Tϕx(v)

〉
This equation describes a covector d(ϕ∗f)|x ∈ T ∗xS acting on an arbitrary vector
v ∈ TxS in terms of a covector df|y ∈ T ∗yR acting on Tϕ(v), where y = ϕ(x). We
can rewrite this equation in the form

d(ϕ∗f)|x = df|ϕ(x) ◦ Tϕ.

Definition 27 A smooth map ϕ : S → R gives rise to the cotangent map of ϕ given
by

T ∗ϕ : T ∗ϕ(S)R→ T ∗S : df|ϕ(x) 7→ T ∗ϕ(df|ϕ(x)) = df|ϕ(x) ◦ Tϕ = d(f ◦ ϕ)x = d(ϕ∗f)|x.

It follows from the definition that the following diagram commutes

T ∗ϕ
T ∗|ϕ(S)R → T ∗S

πR ↓ ↓ πS
ϕ(S) ←− S

ϕ

.

In particular, if ϕ : S → R is a diffeomorphism of differential spaces, then ϕ(S) =
R and T ∗ϕ : T ∗R → T ∗S is a bijection, and T ∗ϕ|T ∗yR : T

∗
yR → T ∗ϕ−1(y)S is a vector

space isomorphism for every y ∈ R.

Lemma 28 Let V be a differential subspace of S with the inclusioon map ιV : V → S.
If V is open in S, then
(i) T ∗V = T ∗V S = π−1S (V ) ⊆ T ∗S and
(ii) T ∗ιV : T ∗V S → T ∗V : d f|x 7→ d f|x is the identity map.

9



Proof. [19]

In Definition 7 we specified the differential structure C∞(TS) of the tangent bun-
dle of a differential space S as generated by the family of functions

F(TS) = {f ◦ τS, df | f ∈ C∞(S)},

where τS : TS → S is the tangent bundle projection. We may attempt a similar
approach to the differential structure C∞(T ∗S) of the cotangent bundle. For every
differential space S, the evaluation map allows for interpretations of derivations X ∈
Der C∞(S) as functions

Xev : T ∗S → R : df|x 7→ Xev(df|x) =
〈
df|x | X(x)

〉
= (Xf)(x).

Proposition 29 If the tangent bundle TS of a locally Euclidean differential space S
is spanned by derivations in Der C∞(S), then the family

F(T ∗S) = {f ◦ πS, Xev | f ∈ C∞(S), and X ∈ Der C∞(S)},

of functions on T ∗S separates points in TS and generates a locally Hausdorff, locally
Euclidean differential structure C∞(T ∗S) of T ∗S.

Among locally Euclidean differential spaces only regular spaces satisfy the condi-
tion that TS is locally spanned by derivations in DerC∞(S), [7], [?].

6.2 Differential structure of T ∗S for S ⊆ Rn

Let S ⊆ Rn be a differential subspace of Rn, and ιS : S → Rn the inclusion map.
Then T ∗S is the quotient of T ∗SRn by the equivalence relation

dfx ∼ df ′ ⇐⇒ x = x′ and 〈df | v〉 = 〈df ′ | v〉 ∀ v ∈ TxS.

Definition 30 For every x ∈ S ⊆ Rn, the subspace of TxRn normal to TxS is

T⊥x S = { u ∈ TxRn | ( v | u) = 0 ∀ v ∈ TxS}.

Clearly, TxS ⊕ T⊥x S = TxRn. The normal bundle of S is

T⊥S =
∐

x∈S
T⊥x S = { u ∈ TSRn | ( v | u) = 0 ∀ v ∈ TτW (u)S}.

For every x ∈ S, the annihilator of T⊥x S is

AT⊥x S = {dFx ∈ T ∗xRn | 〈dFx | v〉 = 0 ∀ v ∈ T⊥x S},

and the the annihilator of T⊥S is the disjoint union of the annihilators of T⊥x S,

AT⊥S =
∐
x∈S

AT⊥x S.
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The direct sum decomposition

T ∗SRn = ATS ⊕ AT⊥S,

ensures that, there exists a map

δ : T ∗S → AT⊥S : df|x 7→ dF|x

where dF|x ∈ AT⊥x S is the unique element of the intersection of (T ∗ιS)−1(df|x) and
AT⊥x S. Also, there is a map

γ = T ∗ιW ◦ ιAT⊥W = T ∗ιW |AT⊥W : AT⊥W → T ∗W : dF|x 7→ d(ι∗WF )|x,

where dF|x ∈ AT⊥x W .

Proposition 31 The map δ : T ∗S → AT⊥x S is a bijection and γ = δ−1

Proof. [19].

Definition 32 (i) Since T ∗SRn ⊆ T ∗Rn, we endow T ∗SRn with the differential struc-
ture C∞(T ∗S Rn) of a differential subspace of T ∗Rn.
(ii) Since AT⊥S ⊆ T ∗SRn ⊆ T ∗Rn, we endow AT⊥S with the differential structure
C∞(AT⊥S) of a differential subspace of T ∗SRn.
(iii) We endow T ∗S with the unique differential structure given by the pull-back to
T ∗S of functions in C∞(AT⊥S) by the bijection

γ = T ∗ι
S
◦ ιAT⊥S : AT⊥S → T ∗S.

It is easy to see that in these differential structures the bijections δ : T ∗S → AT⊥S
and γ : AT⊥S → T ∗S are diffeomorphims. Moreover, the inclusion maps
ιT ∗SRn : T

∗
SRn → T ∗Rn, ιAT⊥S : AT

⊥S → T ∗Rn, and the projections maps
T ∗ι

S
: T ∗SRn, πS : T ∗S → S and π̂S : T

∗
SRn → S are smooth.

Proposition 33 (i) A function h : T ∗S → R is in C∞(T ∗S) if h◦T ∗ι
S
: T ∗SRn → R

is in C∗(T ∗SRn).
(ii) The evaluation map

T ∗S ×S TS → R : (df|x, v) 7→
〈
df|x | v

〉
is smooth.
(iii) For every X ∈ Der C∞(S), the function

Xev : T ∗S → R : dfx 7→ Xev(dfx) = 〈dfx | X(x)〉 = (Xf)(x)

is smooth.

Proof. [19].
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6.3 Differential structure of T ∗S of locally Euclidean space S

Definition 34 Differential structure C∞(T ∗S) of a locally Euclidean space S is de-
termined by the condition that, for every x ∈ S, there exists an open neighbourhood V
of x in S, locally diffeomorphic to a differential subspace W of Rn, where n depends
on x, and that T ∗V is diffeomorphic to T ∗W .

Proposition 35 Differential structure C∞(T ∗S) specified in Definition 34 satisfies
the conditions of Definition 1.

Proof. [19].

Corollary 36 If TS is spanned by derivations X in DerC∞(S), then the family of
functions then the family

F(T ∗S) = {f ◦ πS, Xev | f ∈ C∞(S), and X ∈ Der C∞(S)},

generates the differential structure given in Definition 34.

7 Sections and forms

Definition 37 A section of the cotangent bundle T ∗S of S is a smooth map ϑ : S →
T ∗S such that π ◦ϑ = idS, where π : T ∗S → S is the cotangent bundle projection and
idS : S → S : x 7→ x is the identity mapping of S to itself. We denote by Sec(T ∗S)
the space of sections of the cotangent bundle of S.

It is easy to see that, for every f ∈ C∞(S), the map df :S → T ∗S : x 7→ df|x, is
a section of T ∗S. Therefore, every covector df|x ∈ T ∗S is in the range of a section
df :S → T ∗S.
The space Sec(T ∗S) of sections of T ∗S is closed under the operations of addition

of sections, multiplication of sections by smooth functions

Sec(T ∗S)× Sec(T ∗S) → Sec(T ∗S) : (ϑ1, ϑ2) 7→ ϑ1 + ϑ2,

C∞(S)× Sec(T ∗S) → Sec(T ∗S)(S) : (f, ϑ) 7→ fϑ.

Moreover, the differential d may be interpreted as a linear map from C∞(S) to
Sec(T ∗S),

d : C∞(S)→ Sec(T ∗S) : f 7→ df .

Proposition 38 For every x in a locally Euclidean differential space S there exists
an open neighbourhood V of x in S such that, for every section ϑ : S → T ∗S, the
restriction ϑ|V : V → T ∗V S can be written in the form

ϑ|V =
n∑
i=1

pidqi,

where p1, ..., pn, q1, ..., qn ∈ C∞(V ) and n = dimTxS.
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Proof. [19].

The notion of a section ϑ : S → T ∗S of a cotangent bundle of a subcartesian
space S may be extended to sections of the of wedge products ∧kT ∗S of the cotangent
bundle.

Definition 39 Let π : ∧kT ∗S → S be the projection map of the wedge product of the
cotangent bundle T ∗S of a locally Eucliean differential space S. A section of ∧kT ∗S
is a smooth map σ : S → ∧kT ∗S such that π ◦ σ = idS. The space of sections of
∧kT ∗S is denoted by Sec(∧kT ∗S).

If M is a manifold, one can construct smooth local sections of ∧kT ∗M in terms
of wedge products ϑ1 ∧ ... ∧ ϑk of smooth sections ϑ1, ..., ϑk of T ∗M . The algebraic
construction of the wedge product of sections of the cotangent bundle T ∗S of a sub-
cartesian space S is well defined. However, it does not guarantee that the wedge
product of smooth sections is smooth.

Example 40 Let S = {(x, y) ∈ R2 | xy = 0}. It is a stratified space with 5 strata:
the origin M0 = {(0, 0)} and four open coordinate half-lines M1, ...,M4. The tangent
bundle of S is

TS =

(
4∐
i=1

TMi

)∐(
T(0,0)R2

)
.

Every derivation X ∈ DerC∞(S) vanishes at (0, 0), [18].
The cotangent bundle of S is

T ∗S =

(
4∐
i=1

T ∗Mi

)∐(
T ∗(0,0)R2

)
.

Moreover,

∧2T ∗S =
(

4∐
i=1

0Mi

)∐(
∧2T ∗(0,0)R2

)
.

Thus, ∧2T ∗S has no smooth non-zero section.
At present, we do not know how to resolve successfully problems presented by this
example.

Differential multiforms on a manifold are sections of the corresponding wedge
products of the corresponding cotangent bundle. Our example shows that a straight-
forward application of this approach is unlikely to succeed.
Another possibility is to get an appropriate definition of differential forms on a

locally Euclidean differential space which would overcome these diffi culties. There are
several definitions of differential forms on singular spaces which satisfy an analogue
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of the de Rham theorem, e.g. [15], [8], [10]. However, we do not know which of them
solve concrete problems in understanding the structure of singular spaces.
Differential forms on orbit spaces proper actions of Lie groups on manifolds were

studied in [4]. The authors write in the introduction:

"Here, in our search for an intrinsic notion of a differential form, we have
been led to see them as multilinear maps on vector fields."

In the paper [19], to be submitted to the special issue of Mathematics and Mechanics
of Solids, we use the space ∧X(S)∗ of differential forms consisting of multilinear
alternating maps on vector fields on S to describe the presymplectic structure and
the corresponding reduced symplectic structure of the cotangent bundle of a locally
Euclidean differential space S.
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