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Goals

� Generalize both the multisymplectic and the contact frameworks to
introduce the so-called multicontact structures.

� Develop the Lagrangian formulation for field theories in the multicontact
setting.

� Contactify the steady Navier–Cauchy equations.
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Idea

We want to develop a geometric framework to describe non-conservative field
theories generalizing the notion of cocontact manifold and compatible with
the k-contact and k-cocontact formalisms.

This new geometric framework has to lead to the Herglotz–Euler–Lagrange
equations:

∂

∂xµ

(
∂L

∂yiµ

)
= ∂L

∂yi
+ ∂L

∂sµ
∂L

∂yiµ
.

In order to find this new structure, we first consider the fiber bundle J1π of
π : E →M .

We also consider Λm−1(T∗M) which, based on the Herglotz’s variational
principle for fields, is the natural structure to define the new variables sµ that
represent the dependence of the Lagrangian on the action.
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Idea

In these fiber bundles we have several natural forms: the Poincaré–Cartan
m-form associated with a Lagrangian function L in J1π, the tautological
form associated to Λm−1(T∗M), and a volume form on M .

We want to obtain a new form defined in an appropriate extension of the jet
bundle, whose coordinate expression reads

ΘL = − ∂L

∂yiµ
dyi ∧ dm−1xµ +

(
∂L

∂yiµ
yiµ − L

)
dmx+ dsµ ∧ dm−1xµ ,

for a Lagrangian function L defined in that jet bundle extension. The new
variables sµ must give account for the “non-conservation”.

This form will be used to characterize the field equations so that we reach the
Herglotz–Euler–Lagrange equations.
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Geometric elements

Let P be a manifold with dimP = m+N and N ≥ m ≥ 1, and two forms
Θ, ω ∈ Ωm(P ) with constant rank. These forms play different roles: one of
them, ω, is a “reference form”, while the other, Θ, is the one that gives the
structure that we want to introduce, properly said.

First, given a regular distribution D ⊂ TP , consider Γ(D), the set of sections
of D. For every k ∈ N, define

Ak(D) := {α ∈ Ωk(P ) | ιZα = 0 , ∀Z ∈ Γ(D)} ;

that is, the set of differential k-forms on P vanishing by the vector fields of
Γ(D).

At a point p ∈ P , the point-wise version is

Akp(D) :=
{
α ∈ ΛkT∗pP | ιvα = 0 , ∀v ∈ Dp

}
.
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Geometric elements

Lemma
If D is an involutive distribution and α ∈ Ak(D), we have

ιXιY dα = 0 ,

for every X,Y ∈ Γ(D).

For a form α ∈ Ωk(P ), with k > 1, the ‘1-ker of α’ will be simply denoted as
kerα; that is, kerα = {Z ∈ X(P ) | ιZα = 0}. With this in mind, the above
definition of Ak(D) can be written as

Ak(D) =
{
α ∈ Ωk(P ) | Γ(D) ⊂ kerα

}
.
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The Reeb distribution

For a pair (Θ, ω) we define:

Definition
The Reeb distribution associated to the pair (Θ, ω) is the distribution
DR ⊂ TP defined, at every point p ∈ P , as

DR
p =

{
v ∈ (kerω)|p | ιvdΘp ∈ Amp (kerω)

}
,

and DR =
⋃
p∈P

DR
p . The set of sections of the Reeb distribution is denoted by

R := Γ(DR), and its elements R ∈ R are called Reeb vector fields. Then, if
kerω has constant rank,

R =
{
R ∈ Γ(kerω) | ιRdΘ ∈ Am(kerω)

}
.

Note that kerω ∩ ker dΘ ⊂ R.

Lemma
If ω is a closed form and has constant rank, then R is involutive.



11/50

Multicontact structures

Definition
The pair (Θ, ω) is a premulticontact structure if ω is a closed form and, for
0 ≤ k ≤ N −m, we have that:
(1) rank kerω = N .

(2) rankDR = m+ k.

(3) rank (kerω ∩ ker Θ ∩ ker dΘ) = k.

(4) Am−1(kerω) = {ιRΘ | R ∈ R},
Then, the triple (P,Θ, ω) is said to be a premulticontact manifold and Θ is
called a premulticontact form on P . The distribution
C ≡ kerω ∩ ker Θ ∩ ker dΘ is called the characteristic distribution of
(P,Θ, ω).

If k = 0, the pair (Θ, ω) is a multicontact structure, (P,Θ, ω) is a
multicontact manifold and, in this situation, Θ is said to be a multicontact
form on P .



12/50

The dissipation form σΘ

Lemma
The characteristic distribution of a (pre)multicontact manifold (P,Θ, ω) is
involutive and

kerω ∩ ker Θ ∩ ker dΘ = DR ∩ ker Θ .

Associated to a (pre)multicontact structure, we have the following one-form:

Proposition
Given a (pre)multicontact manifold (P,Θ, ω), there exists a unique 1-form
σΘ ∈ Ω1(P ) verifying that

σΘ ∧ ιRΘ = ιRdΘ , for every R ∈ R .

Definition
The 1-form σΘ is called the dissipation form.
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The operator d

Using this dissipation form we can define the following operator, which will be
used later to set the field equations in a (pre)multicontact manifold.

Definition
Let σΘ ∈ Ω1(P ) be the dissipation form. We define the operator

d : Ωk(P ) −→ Ωk+1(P )
β 7−→ dβ = dβ + σΘ ∧ β .

We have that d2 = 0 if, and only if, dσΘ = 0. In this case, it induces a
Lichnerowicz–Jacobi cohomology. One consequence is that, locally, there exists
a function such that σΘ = df and dβ = e−fd(efβ). In this case, we say that
the pair (Θ, ω) is a closed multicontact structure. This is also the condition
required in order to consider variational higher-order contact Lagrangian field
theories.
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Adapted coordinates

A premulticontact manifold (P,Θ, ω) has three associated distributions: kerω,
the Reeb distribution DR, and the characteristic distribution C. They are all
involutive and are nested: C ⊂ DR ⊂ kerω. We can use these facts to obtain
adapted coordinates.

Theorem
Around every point p ∈ P of a premulticontact manifold (P,Θ, ω), there exists
a local chart of adapted coordinates
(U ;x1, . . . , xm, u1 . . . , uN−m−k, s1 . . . , sm, w1, . . . , wk) such that

kerω|U =
〈
∂

∂u1 , . . . ,
∂

∂uN−m−k
,
∂

∂s1 , . . . ,
∂

∂sm
,
∂

∂w1 , . . . ,
∂

∂wk

〉
,

DR|U =
〈
∂

∂s1 , . . . ,
∂

∂sm
,
∂

∂w1 , . . . ,
∂

∂wk

〉
,

C|U =
〈

∂

∂w1 , . . . ,
∂

∂wk

〉
.

For multicontact manifolds, since C = {0}, there are no coordinates (wj).
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Local Reeb vector fields

On these charts, the coordinates (xµ) can be chosen in such a way that the
form ω reads ω|U = dx1 ∧ · · · ∧ dxm ≡ dmx, and so we shall do henceforth.
Then we denote dm−1xµ = ι

(
∂

∂xµ

)
dmx.

Taking into account these results, we can give a local characterization of the
Reeb vector fields.

Proposition
If (P,Θ, ω) is a multicontact manifold, in the above chart of coordinates, there
exists a unique local basis {Rµ} of R such that

ιRµΘ = dm−1xµ .

In addition, [Rµ, Rν ] = 0.

Definition
The above vector fields Rµ ∈ R are the local Reeb vector fields of the
multicontact manifold (P,Θ, ω) in the chart U ⊂ P .
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Local Reeb vector fields

There exist local functions Γµ ∈ C∞(U) associated with the basis {Rµ}, which
are given by

ιRµdΘ = Γµ ω , ∀µ ,

because ιRµdΘ ∈ Amp (kerω) = 〈ω〉. As a consequence, the dissipation form
can be locally expressed as

σΘ = Γµdxµ ,

because σΘ ∧ dm−1xµ = Γµ ω = Γµ dmx, for every µ.

Proposition
If (P,Θ, ω) is a premulticontact manifold, there exist local vector fields {Rµ}
of R such that R = 〈Rµ〉+ C and ιRµΘ = dm−1xµ. They are unique up to a
term in the characteristic distribution. Moreover [Rµ, Rν ] ∈ Γ(C).

Using adapted coordinates, the local Reeb vector fields read Rµ = ∂

∂sµ
.
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Bundle structures

Associated to a (pre)multicontact structure (Θ, ω) in a manifold P there are
the two involutive distributions: kerω and the Reeb distribution DR, with
DR ⊂ kerω. We can consider the corresponding quotient sets, M ≡ P/ kerω
and E ≡ P/DR.

From now on we assume we will assume that the quotients M and E are
smooth manifolds.

We have the natural projections

τ : P −→ M
(xµ, uI , sµ, wr) 7−→ (xµ) ,

ς : P −→ E
(xµ, uI , sµ, wr) 7−→ (xµ, uI) ,

ε : E −→ M
(xµ, uI) 7−→ (xµ) .

Furthermore, the form ω is obviously τ -projectable to a form ωM ∈ Ωm(M),
which is a volume form in M .
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Bundle structures

Proposition
Every (pre)multicontact manifold (P,Θ, ω) is locally diffeomorphic to a fiber
bundle τ : P −→M , where M is an orientable manifold with volume form ωM ,
and ω = τ∗ωM .

From now on, we assume this as the canonical model for (pre)multicontact
manifolds since, in addition, this is the situation which is interesting in field
theories.

Thus, we consider a fiber bundle τ : P →M , with dimM = m,
dimP = m+N , and such that M is an orientable manifold with volume form
ωM ∈ Ωm(M).

Let ω = τ∗ωM ∈ Ωm(P ). We always take local coordinates (xµ, zA) in P
(1 ≤ µ ≤ m, 1 ≤ A ≤ N), adapted to the bundle structure, and such that
ω = dx1 ∧ · · · ∧ dxm ≡ dmx.



19/50

Bundle structures

The τ -vertical bundle is defined as

V (τ) =
⋃
p∈P

V (τp) =
⋃
p∈P

{v ∈ TpP | Tpτ(v) = 0} .

Let XV (τ)(P ) denote the C∞(P )-module of τ -vertical vector fields and V (τ)
the corresponding τ -vertical distribution.

A form α ∈ Ωk(P ) is τ -semibasic if ιY α = 0, for every Y ∈ XV (τ)(P ).

Let Ak(V (τ)) denote the C∞(P )-module of τ -semibasic k-forms and
Akp(V (τ)) the corresponding fiber at p ∈ P . We have that

Γ(kerω) = XV (τ)(P ) .

Taking this forms ω ∈ Ωm(P ) and Θ ∈ Ωm(P ), the definition of
(pre)multicontact structure adapted to this context (where condition (1) holds
automatically) is:
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Multicontact bundles

Definition
The pair (Θ, ω) is a multicontact bundle structure and (P,Θ, ω) is said to be
a multicontact bundle if:
(1) rankDR = m.
(2) kerω ∩ ker Θ ∩ ker dΘ = {0}.
(3) Am−1(kerω) = {ιRΘ | R ∈ R}.
The pair (Θ, ω) is a premulticontact bundle structure and (P,Θ, ω) is said to
be a premulticontact bundle if, for 0 < k ≤ N −m, we have that:

(1) rankDR = m+ k.

(2) rank (kerω ∩ ker Θ ∩ ker dΘ) = k.

(3) Am−1(kerω) = {ιRΘ | R ∈ R},

In classical field theories we will be specially interested in the situation in which
P = E × Λm−1(T∗M), where E −→M is a (pre)multisymplectic bundle and,
in particular, a jet bundle or a bundle of forms.
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Multicontact structures of variational type

We are going to restrict the kind of (pre)multicontact structures we are
interested in.

This is motivated by the following fact: If (P,Θ, ω) is a (pre)multicontact
manifold, we can introduce a system of pdes associated with the
(pre)multicontact structure.

We want these equations, when expressed in coordinates, to coincide with those
derived from the variational Herglotz principle for fields, which are also those
obtained in the k-(co)contact formulation of non-conservative field theories.

In the particular case when P −→M are certain kinds of fiber bundles, we can
formulate Lagrangian and Hamiltonian descriptions for these systems and the
pdes associated with the “variational” multicontact structure are the
corresponding Euler–Lagrange (Herglotz) equations and the Hamilton–de
Donder–Weyl (Herglotz) equations (we will maintain the usual terminology of
the Lagrangian and the Hamiltonian formalisms of multisymplectic field
theories).
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Multicontact structures of variational type

Definition
If (P,Θ, ω) is a (pre)multicontact manifold such that

i(X)i(Y )Θ = 0 , for every X,Y ∈ Γ(kerω) , (1)

then (Θ, ω) is said to be a variational (pre)multicontact structure and
(P,Θ, ω) is a variational (pre)multicontact manifold.

The terminology comes from the above comment and from the fact that this
condition (1) is precisely what is imposed to the multisymplectic potential
forms in the multisymplectic formulation of field theories in order to ensure
that the theory is variational and, hence, it comes from a Lagrangian (in these
cases, kerω is just the vertical distribution on the corresponding bundles).
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Darboux coordinates

Now, from previous results, we can state a Darboux-like theorem for this class
of (pre)multicontact manifolds:

Theorem
If (P,Θ, ω)is a variational (pre)multicontact manifold, then there exist local
charts of adapted coordinates (U ;xµ, uI , sµ, wr) (1 ≤ µ ≤ m,
1 ≤ I ≤ N −m− k, 1 ≤ r ≤ k) in P such that the local expression of the
(pre)multicontact form Θ is

Θ|U = H(xν , uI , sν) dmx+ fµI (xν , uJ) duI ∧ dm−1xµ + dsµ ∧ dm−1xµ .

Furthermore, in these coordinates,

σΘ|U = Γµ dxµ = ∂H

∂sµ
dxµ .

In most physical models of field theory, (xµ) are spacetime coordinates, (uI)
are coordinates related to the physical fields, (wr) are gauge variables, and (sµ)
are the ‘contact variables’ related to ‘damping’ or ‘dissipative’ phenomena and
also to the variational action.
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(Pre)multicontact variational systems: field equations

The equations for variational multicontact and premulticontact bundles can be
stated using different geometric elements as follows:

Definition
Let (P,Θ, ω) be a variational (pre)multicontact bundle.
(1) The (pre)multicontact field equations for sections ψ : M −→ P are

ιψ(m) (Θ ◦ ψ) = 0 , ιψ(m) (dΘ ◦ ψ) = 0 . (2)

(2) The (pre)multicontact field equations for τ -transverse, locally
decomposable multivector fields X ∈ Xm(P ) are

ιXΘ = 0 , ιXdΘ = 0 , (3)

where the condition of τ -transversality is ιXω = 1.
(3) The (pre)multicontact field equations for Ehresmann connections ∇

on P −→M are

ι∇Θ = (m− 1)Θ , ι∇dΘ = (m− 1)dΘ . (4)
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(Pre)multicontact variational systems: field equations

The relations among all these field equations are given by the following results:

Theorem
If X ∈ Xm(P ) is a representative of a class of τ -transverse and integrable
m-multivector fields {X} ⊂ Xm(P ) satisfying the (pre)multicontact field
equations for multivector fields (3), then the integral sections of X are
solutions to the (pre)multicontact field equations for sections (2).

Conversely, if ψ : M −→ P is a solution to the (pre)multicontact field equations
for sections (2), then there exist a tubular neighborhood U ⊂ P of Imψ and a
τ -transverse and integrable multivector field X ∈ Xm(U) such that:
(1) ψ is an integral section of X.
(2) X is a solution to the (pre)multicontact field equations for multivector

fields (3) on Imψ.
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(Pre)multicontact variational systems: field equations

Theorem
The (integrable) Ehresmann connections ∇ which are the solutions to the
(pre)multicontact field equations for Ehresmann connections (4) are locally
associated with classes of (integrable) τ -transverse, locally decomposable
multivector fields {X} ⊂ Xm(P ) which are solutions to the (pre)multicontact
field equations for multivector fields (3), and conversely.
As a last result, the field equations for sections can be expressed in an
equivalent way which is analogous to what is commonly used to write such
equations in the multisymplectic formulation of classical field theories (see
Saunders):

Proposition
The (pre)multicontact field equations for sections (2) are equivalent to

ψ∗Θ = 0 , ψ∗ιY dΘ = 0 , for every Y ∈ X(P ) . (5)
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(Pre)multicontact variational systems: field equations

Definition
A variational (pre)multicontact bundle (P,Θ, ω) along with some of the field
equations (2), (3) or (4) is said to be a (pre)multicontact system.

Remark
In the premulticontact case, in general, for the premulticontact system
(P,Θ, ω), the field equations for sections ψ : M −→ P , multivector fields
X ∈ Xm(P ), and Ehresmann connections ∇ on P are not compatible on P
and a constraint algorithm must be implemented in order to find a submanifold
Pf ↪→ P (when it exists) where there are integrable distributions whose
associated multivector fields X and Ehresmann connections ∇ are solutions to
the premulticontact field equations on Pf and are tangent to Pf .

In this situation note that the constraint algorithm and the final solutions are
independent of the Reeb vector fields selected for the premulticontact system,
as a consequence of the construction of σΘ.
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(Pre)multicontact variational systems: field equations

Summarizing,
� we have introduced different ways of setting the field equations in classical

field theories: for sections, fields, and connections.
� The equations for sections, written in its two equivalent forms (2) and (5),

give straightforwardly the system of pdes to be solved to describe the
behaviour of the system.

� On the other hand, the equations for multivector fields and connections
give a more geometrical interpretation of the solutions (as distributions)
that often make it easier to study and characterize qualitative properties of
such solutions.

� In particular, these geometric characterizations are the most suitable in
order to apply the constraint algorithms in the case of premulticontact
theories.

� Note that one can write these equations for a general (pre)multicontact
system although, if the structure is not variational, the resulting equations
may not correspond to those of the Herglotz principle for fields.
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Geometric elements

Let π : E →M be a fiber bundle over the spacetime M , where dimM = m,
dimE = m+ n, and hence dim J1π = m+ n+mn. In the Lagrangian
setting, consider the bundle

P = J1π ×M Λm−1(T∗M) ' J1π × Rm ,

whose natural projections are presented in the next diagram:

P = J1π ×M Λm−1(T∗M)

τ1 ))
ρ

vv

τ

��

J1π

π̄1

""

π1

��

Λm−1(T∗M)

τo

zz

E

π

))
M
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Geometric elements

If (xµ, yi) are natural coordinates in E, then the induced natural coordinates in
P are (xµ, yi, yiµ, sµ) where, taking {dm−1xµ} as the local basis of
Λm−1(T∗M), we have that ξ = sµ dm−1xµ, for every ξ ∈ Λm−1(T∗M).

Note that, since Λm−1(T∗M) is a bundle of forms over M , it is endowed with
a canonical structure θ ∈ Ωm−1(Λm−1(T∗M)), the tautological form, which
is defined as follows: for every ξ ≡ (x, ξ) ∈ Λm−1(T∗M) and
X1
ξ , . . . , X

m−1
ξ ∈ Tξ(Λm−1(T∗M)),

θξ(X1
ξ , · · · , Xm−1

ξ ) := ξ
(

Tξτo(X1
ξ), . . . ,Tξτo(Xm−1

ξ )
)
.

Its local expression in natural coordinates is θ = sµ dm−1xµ.
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The canonical action form S

Definition
The canonical action form is the differential form S ∈ Ωm−1(P) defined as

S := τ∗1 θ ,

or, what is equivalent, at every point p ∈ P,

Sp(X1
p , · · · , Xm−1

p ) := τ1(p)τ(p)(Tpτ(X1
p), . . . ,Tpτ(Xm−1

p )) ,

for every X1
p , . . . , X

m−1
p ∈ TpP.

Note that every section ψ : M → P of τ defines the (m− 1)-form
τ1 ◦ψ ∈ Λm−1(T∗M) and then ψ∗S = τ1 ◦ψ. It is also immediate to check
that S is a τ -semibasic form, whose expression in coordinates is

S = sµ dm−1xµ .

The terminology is justified because this form S is closely related to the action
of the system: in fact, dS is the Lagrangian action that appears in the action
functional.
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Holonomic sections

Definition
Let ψ : M → P be a section of the projection τ . Then ψ is a holonomic
section in P if the section ψ := ρ ◦ψ : M −→ J1π is holonomic in J1π.

We also say that ψ is the canonical prolongation of ψ to P.

Then, we can write ψ = (ψ, s) = (j1φ, s), where s : M −→ Λm−1(T∗M) is a
section of the projection τ0 : Λm−1(T∗M) −→M .
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SOPDEs

Definition
An m-multivector field Γ ∈ Xm(P) is a second-order partial differential
equation (or sopde) in P if
(1) it is τ -transverse,
(2) it is integrable,
(3) the multivector field X := ΛmTρ ◦ Γ, which is obviously integrable and

π̄1-transverse, is a sopde in J1π.
An Ehresmann connection ∇ in P is a second-order partial differential
equation (or sopde) in P if
(1) it is integrable,
(2) the natural restriction of ∇ to J1π is a sopde in J1π.
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Local expressions of sopdes

The local expression of a sopde multivector field in P verifying the
transversality condition ιΓω = 1 is

Γ =
m∧
µ=1

(
∂

∂xµ
+ yiµ

∂

∂yi
+ Γiµν

∂

∂yiν
+ gνµ

∂

∂sν

)
.

On the other hand, the local expression of a sopde connection is

∇ = dxµ ⊗
(

∂

∂xµ
+ yiµ

∂

∂yi
+ Γiµν

∂

∂yiν
+ gνµ

∂

∂sν

)
.

As usual, multivector fields and connections in P which have these local
expressions but are not integrable are called semi-holonomic.

A straightforward consequence of the above definitions is that Γ ∈ Xm(P) and
∇ are sopdes in P if, and only if, their integral sections are holonomic in P.
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Canonical endomorphism

Since P = J1π ×M Λm−1(T∗M), the canonical endomorphism J of J1π can
be extended to P in a natural way and has the same coordinate expression.

Denoting this extension with the same notation J, in natural coordinates

J =
(
dyi − yiµdxµ

)
⊗ ∂

∂yiν
⊗ ∂

∂xν
.

Now we can state the Lagrangian formalism of field theories with dissipation in
the multicontact setting.
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Lagrangian density, function, form, and energy

A Lagrangian density is a τ -semibasic form L ∈ Ωm(P). If ωM is the volume
form in M , we have that L = Lτ∗ωM , where L ∈ C∞(P) is the Lagrangian
function associated to L.

Definition
The Lagrangian form associated to L is the form

ΘL = −ιJdL − L+ dS ∈ Ωm(P) ,

and then dΘL = dΘL + σΘL ∧ΘL .
In natural coordinates, the expression of the form ΘL is

ΘL = − ∂L

∂yiµ
dyi ∧ dm−1xµ +

(
∂L

∂yiµ
yiµ − L

)
dmx+ dsµ ∧ dm−1xµ ,

and the local function EL := ∂L

∂yiµ
yiµ − L is called the Lagrangian energy

associated with L. Therefore, σΘL = ∂EL
∂sµ

dxµ.
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Alternative definition of the Lagrangian form

The (pre)multicontact form ΘL in P can also be obtained in an equivalent way
which is based on using the multisymplectic formalism for Lagrangian field
theories:

Taking the restriction of the Lagrangian function L ∈ C∞(P) to the fibers of
the projection τ1 (considering L with sµ ‘freezed’), since
P = J1π ×M Λm−1(T∗M), these fibers are identified with J1π, and hence this
restricted function is Ls ∈ C∞(J1π).

We can construct the Poincaré–Cartan m-form ΘLs ∈ Ωm(J1π) associated
with the Lagrangian density Ls = Ls π̄

1∗ω, which has local expression

ΘLs = ∂Ls
∂yiµ

dyi ∧ dm−1xµ −
(
∂Ls
∂yiµ

yiµ − Ls
)

dmx .

Proposition
The Lagrangian form associated with L is ΘL = −ρ∗ΘLs + dS.
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The Legendre maps

Definition
The Legendre map associated with the Lagrangian function L ∈ C∞(P) is the
map FL : P −→ P∗ given by FL(yi, yiµ, sµ) =

(
yi,

∂L

∂yiµ
, sµ
)

.

Proposition
For a Lagrangian function L ∈ C∞(P), the following conditions are equivalent:

(1) The Legendre map FL is a local diffeomorphism.

(2) The Hessian matrix (Wµν
ij ) =

(
∂2L

∂yiµ∂y
j
ν

)
is regular everywhere.

(3) The Lagrangian form ΘL is a multicontact form in P and (ΘL, ω) is a
multicontact structure.
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Multicontact Lagrangian systems

Definition
A Lagrangian function L ∈ C∞(P) is said to be regular if the above equivalent
conditions hold. Otherwise L is a singular Lagrangian. In particular, L is said
to be hyperregular if FL is a global diffeomorphism.
As we have seen, L is regular in P if, and only if, Ls is regular in J1π, for
every s ∈ Λm−1(T∗M).

Remark
Note that non-regular Lagrangians can induce premulticontact structures but
also structures which are neither multicontact nor premulticontact. For

example, the Lagrangian L =
n∑
i=1

yiµs
µ yields a structure (ΘL, ω) which has no

Reeb distribution associated to it.

Definition
The premulticontact bundle (P,ΘL, ω) is called a (pre)multicontact
Lagrangian system.
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Local expressions

Given a multicontact Lagrangian system (P,ΘL, ω), the Reeb vector fields
(RL)µ ∈ RL ⊂ X(P) are the only solutions to ι(RL)µΘ = dm−1xµ.

Since L is regular, there exists the inverse (W ij
µν) of the Hessian matrix, namely

W ij
µν

∂2L

∂yjν∂ykγ
= δikδ

γ
µ, and thus,

(RL)µ = ∂

∂sµ
−W ji

γν
∂2L

∂sµ∂yjγ

∂

∂yiν
.

Therefore, we have that
σΘL = − ∂L

∂sµ
dxµ .

If (P,ΘL) is a premulticontact Lagrangian system, the Reeb vector fields are
not uniquely determined from the equation ι(RL)µΘ = dm−1xµ.

In general, the natural coordinates in P are not adapted coordinates for the
(pre)multicontact structure (ΘL, ω).
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Multicontact Lagrangian field equations

Let (P,ΘL, ω) be a (pre)multicontact Lagrangian system.
(1) The (pre)multicontact Lagrangian equations for holonomic sections

ψ : M −→ P are

ιψ(m) (ΘL ◦ψ) = 0 , ιψ(m) (dΘL ◦ψ) = 0 . (6)

or equivalently

ψ∗ΘL = 0 , ψ∗ιY dΘL = 0 , for every Y ∈ X(P) . (7)

(2) The (pre)multicontact Lagrangian equations for τ -transverse, locally
decomposable multivector fields XL ∈ Xm(P) are

ιXL ΘL = 0 , ιXL dΘL = 0 , (8)

where the condition of τ -transversality is ιXLω = 1.
An m-multivector field solution to these equations is called a Lagrangian
multivector field.

(3) The (pre)multicontact Lagrangian equations for Ehresmann connections ∇L
on P −→M are

ι∇L ΘL = (m− 1)ΘL , ι∇L dΘL = (m− 1)dΘL . (9)

An Ehresmann connection solution to these equations is called a Lagrangian
connection.
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Multicontact Lagrangian field equations

Proposition
Let (P,ΘL, ω) be a multicontact (i.e., regular) Lagrangian system. Then:
(1) The multicontact Lagrangian field equations for multivector fields (8) and

for Ehresmann connections (9) have solutions on P. The solutions are not
unique if m > 1.

(2) The Lagrangian m-multivector fields XL solution to equations (8) and the
corresponding Ehresmann connections ∇L in P which are associated with
the classes {XL} and are solutions to (9), are semi-holonomic.

(3) In addition, if XL and ∇L are semi-holonomic and integrable solutions,
namely sopdes, their integral sections are solutions to the multicontact
Euler–Lagrange field equations (6) or (7).
In this case, these sopdes XL and ∇L are called the Euler–Lagrange
multivector fields and connections associated with the Lagrangian
function L.
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Multicontact Lagrangian field equations

Of course all these equations are the same as those obtained in the k-cocontact
formulation of non-conservative field theories and also match those of
k-contact formalism when the Lagrangian function does not depend on the
spacetime variables xµ. In coordinates, they read

∂sµ

∂xµ
= L ◦ψ , (10)

∂

∂xµ

(
∂L

∂yiµ
◦ψ
)

=
(
∂L

∂yi
+ ∂L

∂sµ
∂L

∂yiµ

)
◦ψ ,

Furthermore, equation (10) relates the canonical action form with the
variational formulation through the Lagrangian density. In fact, we have the
following.

Corollary
If ψ is a holonomic section such that ψ∗ΘL = 0, we have that

d(S ◦ψ) = L ◦ψ .
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A note on the singular case

As in the case of premultisymplectic field theories, when L is not regular and
(P,ΘL, ω) is a premulticontact system, the field equations (6), (7), (8), or (9)
have no solutions everywhere on P, in general.

In the most favourable situations, these equations have solutions on a
submanifold P which is obtained by applying a suitable constraint algorithm.

Nevertheless, solutions to equations (8) or (9) are not necessarily sopdes and,
as a consequence, if they are integrable, their integral sections are not
necessarily holonomic; so this requirement must be imposed as an additional
condition.

Hence, the final objective consists in finding the maximal submanifold Sf of P
where there are holonomic distributions whose associated Lagrangian
multivector fields XL and connections ∇L are sopde solutions to the
premulticontact Lagrangian field equations on Sf and are tangent to Sf .
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Navier–Cauchy equations

The steady Navier–Cauchy equations

(λ+ µ)∇(∇ · u) + µ∆u = 0 ,

where λ, µ are Lamé parameters, can be obtained from the Lagrangian function

L(qi, vij) =
(
λ

2 + µ
)(

(v1
1)2 + (v2

2)2 + (v3
3)2)

+ µ

2
(
(v1

2)2 + (v2
1)2 + (v3

1)2 + (v1
3)2 + (v3

2)2 + (v2
3)2)

+ (λ+ µ)(v1
1v

2
2 + v1

1v
3
3 + v2

2v
2
3) ,

with i, j = 1, 2, 3.
Contactifying this Lagrangian function by adding an extra term, namely

Lc(qi, vij , sj) = L+ γjs
j ,

where γ = (γ1, γ2, γ3) ∈ R3, we obtain the following modified Navier–Cauchy
equations:

(λ+ µ)∇(∇ · u) + µ∆u = γ(λ+ µ)∇ · u+ µγ · ∇u ,

where we understand γ · ∇u = (γ1 · ∇u1, γ2 · ∇u2, γ3 · ∇u3).
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Further work

� Find out whether this dissipation term (or other possible ones) have a
physical meaning.

� Extend this to time-dependent Navier–Cauchy equation.

� Run computer simulations of these equations.
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� M. de León, J. Gaset, M. C. Muñoz-Lecanda, X. Rivas and N. Román-Roy,
“Multicontact formulation for non-conservative field theories”, J. Phys. A:
Math. Theor. 56(2):025201, 2023. doi:10.1088/1751-8121/acb575
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