

Ayudas a Investigadores Tempranos UNED-SANTANDER 2023

Construction of differentiable structures: *a tool in continuum mechanics*

V.M. Jiménez

Universidad Nacional de Educación a Distancia (UNED)

GAMM 2024 (Workshop on Geometrical aspects of material modelling)

イロト 不得下 イヨト イヨト

Farget

• To show you how to use two algebraic structures (groupoids and vector spaces) to construct differentiable structures.

イロト 不得下 イヨト イヨト

Farget

- To show you how to use two algebraic structures (groupoids and vector spaces) to construct differentiable structures.
- To give you an overview about the use on material geometry.

ヘロト ヘ回ト ヘヨト ヘヨト

1 Overview on (Lie) groupoids.

E

イロト イヨト イヨト イヨト

- **1** Overview on (Lie) groupoids.
- 2 Characteristic distributions.

Э

イロト 不得 トイヨト イヨト

- **1** Overview on (Lie) groupoids.
- 2 Characteristic distributions.
- 3 Example.

Э

イロト 不得下 イヨト イヨト

Index

- ${f 1}$ Overview on (Lie) groupoids.
- 2 Characteristic distributions.
- 3 Example.
- 4 Material geometry.

э

イロト 不得 トイヨト イヨト

Overview on (Lie) groupoids

э

<ロト < 回ト < 回ト < 回ト < 回ト -

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

王

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

イロト イポト イヨト イヨト 二日

(日) (四) (王) (王) (王)

Structure maps: α , β , i, ϵ and \cdot .

臣

イロト イヨト イヨト イヨト

β-fibres:
$$\beta^{-1}(x) = \Gamma^x$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

$$\alpha$$
-fibres: $\alpha^{-1}(x) = \Gamma_x$

イロト イロト イヨト イヨト 二日

Isotropy groups: $\Gamma_x^x = \Gamma^x \cap \Gamma_x$

Overview on (Lie) groupoids

э

<ロト <回ト < 回ト < 回ト < 回ト -

Definition 1.1

A groupoid is a small category (the class of objects and the class of morphisms are sets) in which each morphism is invertible. If M is the set of objects and Γ is the set of morphisms, the groupoid is denoted by $\Gamma \rightrightarrows M$.

Structure maps: α , β , i, ϵ and \cdot .

イロト 不得 トイヨト イヨト

Definition 1.2

A Lie groupoid is a groupoid $\Gamma \Rightarrow M$ such that Γ is a smooth manifold, M is a smooth manifold and all the structure maps are smooth. Furthermore, α and β are submersions.

イロト イヨト イヨト -

Definition 1.2

A Lie groupoid is a groupoid $\Gamma \Longrightarrow M$ such that Γ is a smooth manifold, M is a smooth manifold and all the structure maps are smooth. Furthermore, α and β are submersions.

Definition 1.3

Let $\Gamma \rightrightarrows M$ be a groupoid with α and β the source and target map respectively. We may define the right translation on $g \in \Gamma$ as the map $R_g : \alpha^{-1} \left(\beta\left(g\right)\right) \rightarrow \alpha^{-1} \left(\alpha\left(g\right)\right)$, given by

 $h\mapsto h\cdot g.$

We may define the left translation on g, $L_g : \beta^{-1}(\alpha(g)) \rightarrow \beta^{-1}(\beta(g))$ similarly.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Characteristic distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From now on, we will consider a Lie groupoid $\Gamma\rightrightarrows M$ and a subgroupoid $\overline{\Gamma}\leq\Gamma.$

э

イロト 不得 トイヨト イヨト

From now on, we will consider a Lie groupoid $\Gamma \rightrightarrows M$ and a subgroupoid $\overline{\Gamma} \leq \Gamma$.

Let X be a (local) vector field on Γ . Then, X is called *admissible* if it satisfies that, F

(i) X is tangent to the β -fibres,

$$X(g) \in T_{g}\beta^{-1}(\beta(g)),$$

for all g in the domain of X.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From now on, we will consider a Lie groupoid $\Gamma \rightrightarrows M$ and a subgroupoid $\overline{\Gamma} \leq \Gamma$.

Let X be a (local) vector field on Γ . Then, X is called *admissible* if it satisfies that, F

(ii) X is invariant by the left translation,

$$X \circ L_g = TL_g \circ X,$$

for all g in the domain of X.

< ロト < 同ト < ヨト < ヨト

From now on, we will consider a Lie groupoid $\Gamma \rightrightarrows M$ and a subgroupoid $\overline{\Gamma} \leq \Gamma$.

Let X be a (local) vector field on Γ . Then, X is called *admissible* if it satisfies that, F

(iii) The (local) flow φ_t^X of X satisfies that

 $\varphi_t^X(\epsilon(x)) \in \overline{\Gamma}, \ \forall x \in M.$

イロト 不得 トイヨト イヨト

$g\in \Gamma \quad \mapsto \quad A\overline{\Gamma}_{\mid g}^{T}=Span\left(X\left(g\right) \ : \ \mathsf{X} \text{ is an admissible vector field}\right)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$g \in \Gamma \quad \mapsto \quad A\overline{\Gamma}_{|g}^{T} = Span\left(X\left(g\right) : \mathsf{X} \text{ is an admissible vector field}\right)$$

$$x \in M \quad \mapsto \quad A\overline{\Gamma}_{|x}^{\sharp} = T_x \alpha \left(A\overline{\Gamma}_{|\epsilon(x)}^T \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - の々ぐ

So, we have two well-defined (smooth) distributions $A\overline{\Gamma}^T$ and $A\overline{\Gamma}^{\sharp}$,

Theorem 2.1

Let $\Gamma \rightrightarrows M$ be a Lie groupoid and $\overline{\Gamma} \rightrightarrows M$ be a subgroupoid. Then, it satisfies that $A\overline{\Gamma}^T$ and $A\overline{\Gamma}^{\sharp}$ are integrable.

Theorem 2.1

Let $\Gamma \rightrightarrows M$ be a Lie groupoid and $\overline{\Gamma} \rightrightarrows M$ be a subgroupoid. Then, it satisfies that $A\overline{\Gamma}^T$ and $A\overline{\Gamma}^{\sharp}$ are integrable.

Namely, there exists a *foliation* $\overline{\mathcal{F}}$ of Γ and a *foliation* \mathcal{F} of M, in such a way that

(i)
$$T_g \overline{\mathcal{F}}(g) = A \overline{\Gamma}_{|g}^T$$

Theorem 2.1

Let $\Gamma \rightrightarrows M$ be a Lie groupoid and $\overline{\Gamma} \rightrightarrows M$ be a subgroupoid. Then, it satisfies that $A\overline{\Gamma}^T$ and $A\overline{\Gamma}^{\sharp}$ are integrable.

Namely, there exists a *foliation* $\overline{\mathcal{F}}$ of Γ and a *foliation* \mathcal{F} of M, in such a way that

(i)
$$T_{g}\overline{\mathcal{F}}(g) = A\overline{\Gamma}_{|g}^{T}$$

(ii) $T_{x}\mathcal{F}(x) = A\overline{\Gamma}_{|x}^{\sharp}$

Theorem 2.2 (Differentiability and transitivity)

For each $x \in M$ there exists a **transitive Lie** subgroupoid $\overline{\Gamma}(\mathcal{F}(x))$ of Γ with base $\mathcal{F}(x)$ such that $\overline{\Gamma}(\mathcal{F}(x)) \leq \overline{\Gamma}$.

Theorem 2.2 (Differentiability and transitivity)

For each $x \in M$ there exists a **transitive Lie** subgroupoid $\overline{\Gamma}(\mathcal{F}(x))$ of Γ with base $\mathcal{F}(x)$ such that $\overline{\Gamma}(\mathcal{F}(x)) \leq \overline{\Gamma}$.

Corollary 2.3 (Maximality)

Let $\overline{\mathcal{G}}$ be a left invariant foliation of Γ such that $\overline{\Gamma}$ is a union of leaves of $\overline{\mathcal{G}}$. Then, the characteristic foliation $\overline{\mathcal{F}}$ is **coarser** that $\overline{\mathcal{G}}$, i.e.,

$$\overline{\mathcal{G}}(g) \subseteq \overline{\mathcal{F}}(g), \ \forall g \in \Gamma.$$
(1)

Example

王

イロト イヨト イヨト イヨト

Let X be a subset of \mathbb{R}^n . Consider $\mathbb{R}^n \times \mathbb{R}^n$ the *pair groupoid*, i.e.,

$(t,y) \cdot (x,t) = (x,y), \quad \forall x,y,t \in \mathbb{R}^n$

э

イロト 不得下 イヨト イヨト

Let X be a subset of \mathbb{R}^n . Consider $\mathbb{R}^n \times \mathbb{R}^n$ the *pair groupoid*, i.e.,

$(t,y) \cdot (x,t) = (x,y), \quad \forall x,y,t \in \mathbb{R}^n$

Then, $X \times X$ may be considered as a subgroupoid of $\mathbb{R}^n \times \mathbb{R}^n$.

イロト イヨト イヨト -

Theorem 3.1

Let X be a subset of \mathbb{R}^n . Then, there exists a maximal foliation \mathcal{F} of \mathbb{R}^n such that X is union of leaves.

Image: A matrix and a matrix

Theorem 3.1

Let X be a subset of \mathbb{R}^n . Then, there exists a maximal foliation \mathcal{F} of \mathbb{R}^n such that X is union of leaves.

Notice that the maximal foliation given in Theorem 2.1 permits us to endow X with differential structure which generalizes the structure of manifold. Indeed, X is a submanifold of \mathbb{R}^n if, and only if, X consists of just one leaf of the foliation.

Material geometry

E

<ロト <回ト < 回ト < 回ト < 回ト -

• Simple medium: \mathcal{B}

E

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

• Configuration of $\mathcal{B}: \psi: \mathcal{B} \to \mathbb{R}^3$

E

イロト イヨト イヨト イヨト

• Reference configuration of $\mathcal{B}: \psi_0: \mathcal{B} \to \mathbb{R}^3$

Э

イロト イボト イヨト イヨト

• Infinitesimal configuration at X: $j^1_{X,\psi(X)}\psi$

E

イロト イボト イヨト イヨト

E

イロト イヨト イヨト イヨト

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣

• Infinitesimal deformation at $\psi_0(X)$: $j^1_{\psi_0(X),\psi(X)}\kappa$.

Э

イロト イボト イヨト イヨト

• *Mechanical response:* $W : \mathcal{B} \times Gl(3, \mathbb{R}) \to V$

Э

イロト イボト イヨト イヨト

イロト 不得 トイヨト イヨト

Let us take two material points $X, Y \in \mathcal{B}$.

E

<ロト <回ト < 回ト < 回ト < 回ト -

Let us take two material points $X, Y \in \mathcal{B}$. The mechanical response permits us to compare these two points.

э

イロト イボト イヨト イヨト

Let us take two material points $X, Y \in \mathcal{B}$. The mechanical response permits us to compare these two points. In particular, they are *made of same material* if the constitutive properties are the same.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let us take two **material points** $X, Y \in \mathcal{B}$ at **two instants** t and s, respectively. The mechanical response permits us to compare these two points. In particular, they are *made of same material* if the mechanical responses are equal respect, maybe, different reference configurations.

ヘロト A倒ト AEト AEト

Let us take two **material points** $X, Y \in \mathcal{B}$ at **two instants** t and s, respectively. The mechanical response permits us to compare these two points. In particular, they are *made of same material* if there exists a local diffeomorphism ψ from an open neighbourhood $\mathcal{U} \subseteq \mathcal{B}$ of X to an open neighbourhood $\mathcal{V} \subseteq \mathcal{B}$ of Y such that $\psi(X) = Y$ and

$$W\left(j_{Y,\phi(Y)}^{1}\phi \cdot j_{X,Y}^{1}\psi\right) = W\left(j_{Y,\phi(Y)}^{1}\phi\right),\tag{2}$$

for all $j_{Y,\phi(Y)}^1 \phi$. Any $j_{X,Y}^1 \psi$ satisfying Eq. (2) is called *material* isomorphism.

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

Definition 1.1

A body \mathcal{B} is said to be *uniform* if all the material points are made of the same material.

3

<ロト < 四ト < 回ト < 回ト < 回ト -

Definition 1.1

A body \mathcal{B} is said to be *uniform* if all the material points are made of the same material.

Field of material isomorphisms: $P: \mathcal{B} \times \mathcal{B} \rightarrow \Pi^1(\mathcal{B}, \mathcal{B})$

イロト イボト イヨト イヨト

Definition 1.2

A body \mathcal{B} is said to be *smoothly uniform* if for each point $X \in \mathcal{B}$ there is an infinitesimal neighbourhood \mathcal{U} around X such that for all $Y \in \mathcal{U}$ there exists a smooth field of material isomorphisms $P : \mathcal{U} \times \mathcal{U} \to \Pi^1(\mathcal{B}, \mathcal{B})$ such that

$$W(X,F) = W(Y,FP(Y)), \forall Y \in \mathcal{U}.$$

(日) (同) (三) (三)

• $\Omega(\mathcal{B}) := \{ \text{Set of all material isomorphisms} \}$ is a subgroupoid of the **1-jets groupoid** $\Pi^1(\mathcal{B}, \mathcal{B}) \rightrightarrows \mathcal{B}.$

э

イロト 不得下 イヨト イヨト

Proposition 1.1

Let \mathcal{B} be a body. \mathcal{B} is uniform if, and only if, $\Omega(\mathcal{B})$ is a transitive subgroupoid of $\Pi^{1}(\mathcal{B}, \mathcal{B})$.

- ∢ ∃ →

Proposition 1.1

Let \mathcal{B} be a body. \mathcal{B} is uniform if, and only if, $\Omega(\mathcal{B})$ is a transitive subgroupoid of $\Pi^{1}(\mathcal{B}, \mathcal{B})$.

Proposition 1.2

Let \mathcal{B} be a body. \mathcal{B} is smoothly uniform if, and only if, $\Omega(\mathcal{B})$ is a **transitive Lie** subgroupoid of $\Pi^1(\mathcal{B}, \mathcal{B})$.

Examples

臣

イロト イヨト イヨト

Material distribution $A\Omega(B)^T \mapsto \overline{B}(g)$ **Material foliation**

Body-material distribution $A\Omega(\mathcal{B})^{\sharp} \mapsto \mathcal{B}(x)$ Body-material foliation

ヘロト 不得 ト イヨト イヨト

Material distribution $A\Omega(B)^T \mapsto \overline{B}(g)$ **Material foliation**

Body-material distribution $A\Omega(\mathcal{B})^{\sharp} \mapsto \mathcal{B}(x)$ Body-material foliation

$$(iii) \mapsto TW = 0$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Theorem 2.2 (Differentiability and transitivity)

For each $x \in M$ there exists a **transitive Lie** subgroupoid $\overline{\Gamma}(\mathcal{F}(x))$ of Γ with base $\mathcal{F}(x)$ such that $\overline{\Gamma}(\mathcal{F}(x)) \leq \overline{\Gamma}$.

Corollary (Differentiability and transitivity)

For each material point $X \in \mathcal{B}$ there exists a **transitive Lie** subgroupoid $\Omega(\mathcal{B}(X))$ of $\Pi^{1}(\mathcal{B},\mathcal{B})$ with base $\mathcal{B}(X)$ composed by material isomorphisms between points on $\mathcal{B}(X)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 2.2 (Differentiability and transitivity)

For each $x \in M$ there exists a **transitive Lie** subgroupoid $\overline{\Gamma}(\mathcal{F}(x))$ of Γ with base $\mathcal{F}(x)$ such that $\overline{\Gamma}(\mathcal{F}(x)) \leq \overline{\Gamma}$.

Corollary 2.3 (Maximality)

Let $\overline{\mathcal{G}}$ be a left invariant foliation of Γ such that $\overline{\Gamma}$ is a union of leaves of $\overline{\mathcal{G}}$. Then, the characteristic foliation $\overline{\mathcal{F}}$ is **coarser** that $\overline{\mathcal{G}}$, i.e.,

$$\overline{\mathcal{G}}\left(g\right)\subseteq\overline{\mathcal{F}}\left(g\right),\;\forall g\in\Gamma.$$

Corollary (Differentiability and transitivity)

For each material point $X \in \mathcal{B}$ there exists a **transitive Lie** subgroupoid $\Omega(\mathcal{B}(X))$ of $\Pi^{1}(\mathcal{B},\mathcal{B})$ with base $\mathcal{B}(X)$ composed by material isomorphisms between points on $\mathcal{B}(X)$.

Corollary (Maximality)

The body-material foliation $\{\mathcal{B}(x)\}$ is coarser than any other foliation by smoothly uniform materials.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples

Theorem 3.1

For all $X \in \mathcal{B}$, $\Omega(\mathcal{B}(X))$ is a transitive Lie subgroupoid of $\Pi^{1}(\mathcal{B}, \mathcal{B})$. Thus, any body \mathcal{B} can be covered by a foliation of smoothly uniform material submanifolds.

< ロ ト < 同 ト < 三 ト < 三 ト

Examples

Theorem 3.1

For all $X \in \mathcal{B}$, $\Omega(\mathcal{B}(X))$ is a transitive Lie subgroupoid of $\Pi^{1}(\mathcal{B}, \mathcal{B})$. Thus, any body \mathcal{B} can be covered by a foliation of smoothly uniform material submanifolds.

Theory of non-uniform materials

Let B be a simple body. B is said to be *locally homogeneous* if, and only if, for all point X ∈ B there exists a local configuration ψ of B, with X ∈ U, which is a **foliated chart** and it satisfies that

$$j_{Y,Z}^1\left(\psi^{-1}\circ au_{\psi(Z)-\psi(Y)}\circ\psi\right)$$
 ,

is a material isomorphism for all $Z \in U \cap \mathcal{B}(Y)$. We will say that \mathcal{B} is *homogeneous* if $U = \mathcal{B}$.

Examples

Let B be a simple body. B is said to be *locally homogeneous* if, and only if, for all point X ∈ B there exists a local configuration ψ of B, with X ∈ U, which is a **foliated chart** and it satisfies that

$$j^1_{Y,Z}\left(\psi^{-1}\circ au_{\psi(Z)-\psi(Y)}\circ\psi
ight)$$
 ,

is a material isomorphism for all $Z \in U \cap \mathcal{B}(Y)$. We will say that \mathcal{B} is *homogeneous* if $U = \mathcal{B}$.

$$\frac{\partial W}{\partial X^L} = 0,$$

for all $L \leq dim(\mathcal{B}(X))$.

• For any body material evolution C, the evolution of a fixed material point X in time may be divided into maximal smooth remodeling processes.

э

イロト 不得 トイヨト イヨト

• The body-time manifold C may be canonically divided, in a maximal way, into submanifolds (the foliation \mathcal{NF}) in such a way that all the leaves are differentiable processes of evolution without morphogenesis.

イロト 不得 トイヨト イヨト

• There exists a maximal foliation of a Cosserat material which separates the macromedium into smoothly uniform Cosserat submanifolds

э

イロト 不得下 イヨト イヨト
• Any Cosserat material may be explicitly divided into maximal smoothly uniform second-grade material submanifolds

э

イロト 不得 トイヨト イヨト

THANKS!

E

イロト イヨト イヨト イヨト

THANKS!

 M. de León, M. Epstein, and V. M. Jiménez. *Material Geometry: Groupoids in Continuum Mechanics*. World Scientific, Singapore, 2021.