Construction of differentiable structures: a tool in continuum mechanics

Jiménez Morales, Víctor Manuel

Universidad Nacional de Educación a Distancia (UNED).

Abstract

Let $\overline{\Gamma}$ be a general (Lie or not) subgrupoid of Lie groupoid $\Gamma \rightrightarrows M$. For any element $g \in \Gamma$, we may define a vector space. So, the resulting structure is a *smooth distribution* on Γ , called the *characteristic distribution* of $\overline{\Gamma}$. This distribution permits us to prove, among others results, that there exists a foliation of Γ defining a maximal differentiable structure on $\overline{\Gamma}$ in such a way that $\overline{\Gamma}$ is a Lie subgroupoids of Γ if, and only if, the connected components of the β -fibres of $\overline{\Gamma}$ are the leaves of the foliation. This results may be applied to construct different differentiable structures generalizing the structure of smooth manifold. This development may be used to study non-uniform material bodies, by dividing the body into maximal uniform parts.

Keywords— Characteristic distribution; groupoid; distribution; vector space; manifold; continuum mechanics

References

- M. de León, M. Epstein, and V. M. Jiménez. Material Geometry: Groupoids in Continuum Mechanics. World Scientific, Singapore, 2021.
- [2] V. M. Jiménez, M. de León, and M. Epstein. Characteristic distribution: An application to material bodies. Journal of Geometry and Physics, 127:19 – 31, 2018.