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1. Introduction



Ideal fluid flow

Riemannian manifold (M, g) with induced volume form p and Levi-
Civita connection V.

The geodesic equation on the group G = Diffyy (M) of volume
preserving diffeomorphisms of a Riemannian manifold (M, g) for the
right invariant L2-metric

(u,’v> :/Mg(uav):ua u7/U€g:%VO|(M)

is Euler equation for ideal fluid flow with velocity v and pressure p:

oiu = —Vyu —gradp, divu = 0.

Allowed: M noncompact or with boundary



Geodesic on a Lie group with right invariant Riemannian metric



Vorticity

The vorticity 2-form o = du’ € dQ1(M) satisfies Helmholtz equation

Oro = —Lyo0,

hence it is driven by the flow. The vorticity is curluw in 3D resp. the
function o/p in 2D.

The smooth dual of g = Xyo|(M) is gieqg = QI(M)/dQ°(M):

() = [ A(un

If HY(M) =0, it is the space of vorticities gfeq = d21(M).
T he coadjoint action is the natural one, by pullback, so the vorticity
2-form is confined to a coadjoint orbit:

o(t) = Ad:;(t) a(0).



Lie-Poisson equations

The symplectic leaves of the Lie-Poisson bracket on g*
of dg
3@ =(a| 2], fgec™@.
do oo
are the coadjoint orbits endowed with the Kirilov-Kostant-Souriau
symplectic form

wi ks(adg o,ady o) = (o, [§,n]).

The Lie-Poisson equations for H € C°°(g*)

%a—ad}‘_HJZO

oo
restrict to symplectic Hamiltonian systems on each coadjoint orbit.



Reeb graphs
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Figure 2: A simple Morse function on a disk and the associated graph.

[Izosimov-Khesin'17] Classify coadjoint orbits in the smooth dual in
the 2D setting



Singular vorticities

Singular vorticities in g*, that are supported on submanifolds of M,
are expected to live on coadjoint orbits [Marsden-Weinstein'83].

1. codimension 2:
- point vortices in 2D
- vortex filaments in 3D

2. codimension 1:
- vortex loops in 2D
- vortex sheets in 3D



Coadjoint orbits and
momentum maps

The defining identity of the momentum map J : M — g* for a
Hamiltonian action is:

d<J,X> = iCXQ’ X €g

The inclusion O C g* is a momentum map for the coadjoint action
of G on the coadjoint orbit (O,wiKg).

Lemma: Let G act on a symplectic manifold (M, 2) by a Hamilto-
nian action with injective and equivariant momentum map J : M —
g*. If the action is transitive, then J(M) = O is a coadjoint orbit
and J*WKKS = €.
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2. Point vortices
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The Hamiltonian group of R?

Let R?2 be endowed with the standard volume form w and let G be
the group of compactly supported Hamiltonian diffeomorphisms

G = Ham.(R?)
with corresponding Lie algebra
8 = Xpam,c(R?) = CX°(R?)

consisting of Hamiltonian vector fields X, on R2.
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Point vortices

Let Confy(R?) = (R?2)N\ AN be the configuration space of N points
in R2, where the fat diagonal is

AN = {(21,...,zn) € RN 13, =x; for some i# j},

endowed with the symplectic form % | I, priw.
The momentum map for the action of G = Ham(R?)
N
J: Confy(R?) — g* = CO(R?)*,  J(x1,..,zy) = Y il
i=1

identifies (Coan(]Riz),Z;f\;l I pri w) with a coadjoint orbit.
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3. Vortex filaments
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Space of closed curves

Let G = Diffy) .(R>) with
0= Xy0,(R%) = {Xo : 0 € Q' (R?), ix,pu=da}.

(GG acts in a Hamiltonian way on the space of closed oriented un-
parametrized curves in ]R3, denoted by Grl(R3), endowed with the
Marsden-Weinstein symplectic form:

Qo(uc,ve) = /c lugluct

Ve
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Coadjoint orbit

The momentum map
JiGn@®) =g, (J(O),Xa) = [ a

identifies the vortex filaments space Gry(R3) with a coadjoint orbit.

Theorem [Haller-V.'04] Let dimM =n and H1(M) = 0.

If H2(M) = 0, all connected components of the codimension two
Grassmannian Gr,,_»>(M) are coadjoint orbits of Diff,,o(M).

If H2(M) # 0, the same holds for the Ismagilov central extension
of Diffyq (M).

J:Grao(M) g%, (J(N)a]) = [ @
[o] € g = Q"2(M) /dQ2" > (M)
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4. VVortex loops
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Singular vorticity

We consider closed oriented curves C in the plane, endowed with a
nowhere zero vorticity density 8 € Q1(0).

The momentum (C,8) € g* is

((C.8), Xp) = [ B
with coadjoint action of p € G

Ad%(C. ) = (9(C), 95
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Invariants

The only invariants of the coadjoint action are
- the enclosed volume a = [~ v, where w = dv
- the total vorticity w = |- 8

so the coadjoint orbits are

Oaw = {(C’,B) ; /CI/:CL and /Cﬁzw}.

Each contains a circle with uniform distributed vorticity.

It is the 2D case of the coadjoint orbits considered in [Weinstein'90,
Lee’'09]: isodrastic leaves of the space of weighted Lagrangian sub-
manifolds as coajoint orbits of the Hamiltonian group.
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Parametrization modulo rotations

S1 f(t) = x

(G, B)

C=Imf, B= fudt

Choosing a point zg € C with assigned parameter t = 0O,
an arbitrary point x € C' has parameter t = fi?oﬁ.
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Coadjoint orbit of vortex loops

The space of votex loops becomes
Oa,w — Emba(SQ}J,R2>/S/I]b
:{f:Si—HR{Q:/Slf*y:a}/S}U

Following our identification, we have

(L7, X0 = [ A(F®)at

and the coadjoint action by pullback

Adf] = [po f]
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KKS symplectic form

On Emb(SL,R?) we have the natural symplectic form
2 (up,vp) = [ wlup(®)vp(6)dt
The action of S} by rotations is Hamiltonian with momentum map:
J:Emb(SL R2) SR, J(f) :/51 Fu
Symplectic reduction at a > 0 yields the sympIeZtic manifold

Emba (S, R?)/SL = 04w

with reduced symplectic form wgkgs-.
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Canonical coordinates for wy g

Using the Euclidean metric on the plane we have the decomposition

which corresponds to the decomposition of Tf Emba(S}U,Rz) into
normal and tangential coordinates:

ufz,on—l—)\f/, p € C5°(C), A € C°(C).

The symplectic form becomes

(wrKs)(c,p)((p1:dA1), (p2,dA2)) = /C(pl)\z — p2A1)pe

= (p1,dA2) — (p2,dA1)
for the non-degenerate pairing (p,d\) = [o pAuc.
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Prequantization

Theorem [Gay-Balmaz, V.] The coadjoint orbit Oq 4 is prequanti-
zable if and only if aw € 27Z.

A prequantum bundle over a coadjoint orbit is a principal circle bun-
dle P — O, endowed with a principal connection whose curvature
IS WK KS-

A character to o € g* is a group homomorphism x : Go — S1 that
integrates o : g0 — R. (build P =G xg, S' - G/Gs = Op)

Theorem [Kostant, Tuynman] A character exists if and only if the
coadjoint orbit is prequantizable and the coadjoint action can be
lifted to an action on P by connection preserving automorphisms.

If 7T1(G) = 7T2(G) = 0, then 71‘2(00) = 7T1(Gg).
(see [Neeb’'02] for infinite dim.)
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Natural 1-form

On the principal Sk-bundle 7 : Embg(SL,R?) — Q4w the 1-form

w
©(vy) = /O v(vp(t))dt
satisfies
d© = ) = W*wKKs,

but © doesn’t reproduces the infinitesimal generator of the circle
action on the space of embeddings:

o(fy=[v=a

C
so it is not a principal connection in general.

With the assumption aw = 27k with k € N, this can be remediated:
we factorize by the subgroup Z; C S} .
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Factorization by Z;

k:1

f(%z) = Tj41 for:=20,1,.
p~1(0) = {z1,

..,k and Tp4+1 = T1

,Clj‘k}
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Prequantum bundle

We factorize the space of embeddings through the action of Z; by

composition with rotations of integer multiples of % = %T”:

P = Emba(S.,R?)/Z;
= {(C,p) | p: C — St k-fold covering}
with projection to Ogw the logarithmic derivative divided by a:

1= (C.p) = (C,5 = —p"dn).

The infinitesimal generator for the circle action on P is %f’, hence
© descends to a principal connection 1-form on P.
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Character

The isotropy subgroup of (C, 3) consists of Hamiltonian diffeomor-
phisms that preserve both C' and £.

x(p) = /C ApB mod 27Z
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Another formula for the character

Let v € Q1(R?) such that w = dv.

For each Hamiltonian diffeomorphism ¢ € G, there exists a unique
g € CX(R?) that satisfies p*v — v = dq,.

Proposition [Gay-Balmaz, V.] Under the prequantization condition
aw € 2nw/Z, the character is

x(p) = (a /wl(wO)ﬁ + /C q¢6> mod 2r7Z,

L0
with zq € C' arbitrary.
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Polarization

As a polarization subgroup H C G one takes the identity compo-
nent of the Hamiltonian diffeomorphisms that preserve the curve C
[Goldin, Menikoff, Sharp'87].

The character x can be extended to H with a similar algebric for-
mula

) =([([° 8 v+ [ a,8) mod 2nz

The geometric formula holds on H too.
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Pointed vortex loops

[Joint work with Ioana Ciuclea]
Let (C,B) be a vortex loop as before, assigned with (xq1,...,25) €
Conf,(C) and the circulations (I'1,...,t). We get a pointed vortex

loop:

k
(C.B, (), (F)), Xy = [ B+ Y Tih(ay)
1=1

The invariants of the (natural) coadjoint action:

- the enclosed volume a

- the total vorticity w

- w; = f;?“ﬁ with w1 +wo + ... +wp =w (i.e. [0S =w)
- the circulations ¢, ..., .

We identify yhe coadjoint orbit as Emb, (S, R?) via
®(f) = (F(SL), fxdt, (f(w1 + ... +w;)), (M)
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The KKS symplectic form

The KKS symplectic form on Emb,(SL,R?) is

w k i
(i) ugpop) = [ w(us®,vpE)dt+ 3 wlupu) (Y w))
1=1

J=1
is exact (hence prequantizable).
Using as before the decomposition into normal and tangent parts,
the tangent space to the coadjoint orbit is
Tt Embqa(Sy, R?) = C5°(C) x C°°(C)
‘T hese are canonical coordinates for wi g W.r.t. the non-degenerate

pairing

k
(p,A) = A+ ) (pA)(wy + -+ + w;)
p /Cp e i;p 1
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5. VVortex sheets
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Vortex sheets in R3

Collection of vortex filaments, i.e. a surface X fibered in circles (fil-
aments) with vorticity density 8 € Q1 (X) a closed 1-form such that
the integrable distribution ker 38 is tangent to the fibers [Khesin'12].

Thus 8 nowhere zero (genus of X is 1) with discrete period group
wZ.. There exist fibrations

b:Z—>S}U

with logarithmic derivative 3, i.e. b*dz = 3, up to multiplication by
a constant element in S}
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Ty En

The vortex sheet as an element of g*:

(.8),Xa) = [_anp



Nonlinear Grassmannians

Gr° ~ Grof Grg’ﬁ

S C R3 compact oriented surface of genus 1
Diff ;. (S): group of orientation preserving diffeomorphisms of S.

Emb(S,R3): Fréchet manifold of embeddings of S into R3;
Ty Emb(S,R3) = {uo fi18 >TR3:ue %(R3)}.

Gro = Emb(S,R3)/ Diff 4 (S): nonlinear Grassmannian of all ori-
ented surfaces in R3 of type S (including the orientations)

Ts Gr° = C®(X)
~» Principal Diff (S)-bundle

7 :Emb(S,R3) = Gr°, fi X = £(9),
Tfﬂ' : Tf Emb(S, R3) — T5 GFS, uo fr— u|Z ‘N,
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Decorated nonlinear Grassmannians

Diff 1 (S, 8) C Diff 1.(S), where 8 € Q1(S) nowhere zero.

Gr># = Emb(S,R3)/ Diff (S, 8)

With the ambient Euclidean metric we decompose the tangent
space

T(s gy GroPf = C°(X) x dC™°(X).

~» Principal Diff4 (S, 8)-bundle
P Emb(S,R3) = GroP  f s (f(S), f+8) = (Z,8)

waﬁ : Ty Emb(S, R3) — Ty 3 GroP  wo f <u|z -1, d(%gﬁ))
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T he manifold of vortex sheets

1 Euclidean volume form on R3, v € Q2(R3) such that p = dv.

Given a > O:
Embg(S,R3) = {f € Emb(S,R3) : /Sf*u = a}

Gr§:={ZEGI’S:/ Vza}
>

of oriented surfaces in R3 that enclose a constant volume a.

Ts Grg ~ Cy°(X) = {f c C>®(X): /Z fus = O}, s = ippt.

Diff (S, 8)-bundle 7 : Embg(S,R3) — Gry” .

Grgwg — {(Z,B) c Grob 3 ¢ Gl’g}
manifold of vortex sheets of type (S, 3)

T(s 5y Gra’ = CE(X) x dC™(X).
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Symplectic form on vortex sheets

From 8 € Q1(S) and volume p ~ 2-form w on Emb(S, R3):
wuro fruzo f) = [ (iughan) B, u1,uz € X(R?).
Invariant under right Diff (S, 8)-action and left Diff, o (R3)-action.

The restriction of w to Embg(S,R3) descends via 7#f : Embg(S,R3) —
Grg’ﬁ to a symplectic form €2 on Grg’ﬁz

w= (7?)*Q.

In general €2 is not an exact form, even though its pullback w is
exact.
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Canonical form for wg kg

Note that
T(s 5y Graf = Ts Gri xdC™(X)

by using the nondegenerate pairing

C8(D) x dC™(E) + R, (p,dN) = [_phux

The symplectic form €2 on Gryg’ 5, reads

Q(z,gz)((f)l,dh) (P27d>\2) /(P1>\2— P2AL) s

(well defined since pyjus and pous exact forms on X))
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Coadjoint orbit of vortex sheets

Left action of Diff s (R3) on Emb,(S,R3) descends to Hamiltonian
action on Grg’ﬁ:

e (X, 8x) = (p(X), pxfx)

with equivariant momentum map

T GrgP = 2B, (T, 85) Xa) = [_anB, aeQ'®).

e T he restriction of the momentum map to any connected com-
ponent of the manifold of vortex sheets Grg’ﬁ IS one-to-one onto
a coadjoint orbit

e T he KKS symplectic form on the coadjoint orbit satisfies
J*WKKS — Q.
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Prequantization

Theorem [Gay-Balmaz, V.] The coadjoint orbit Gr°f is prequan-
tizable if and only if aw € 27Z.

A description of the prequantum bundle is by the space of possible
fibration projections b : ¥ — S1 (i.e. 6b = B) factorized by the
subgroup Z; C Si.

Polarization subgroup H D G(Zm consists of volume preserving
diffeomorphisms that preserve the surface > [Goldin, Menikoff,
Sharp’91]. They also obtain a prequantization condition of the
same type, but for vortex ribbons/tubes.
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Character

The Feynman-Onsager condition aw € 2nZ also ensures the exis-
tence of a character

X - G(Z,B) — Sl

as well as an extension to the polarization subgroup H = Gy (ac-
tually the identity components of these groups).

Geometric description: let {p:} be an isotopy from identity to ¢
and let D, be any disk with boundary the fiber C,. We denote by
Vo(z) the volume swept out by D, under the isotopy. Then

() :/5110 Vo(2)dz mod 27Z
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Algebraic formula for the character

Given ¢ € G, there exist 1-forms ¢, € Q1(R3) such that

© v — v =dqy

Proposition [Gay-Balmaz, V.] Under the prequantization condition
aw € 277, the character y : H — St is

) =([(J7aw@ + [Lapnp) mod 2z

On the isotropy subgroup ¢ € G(Z’B) we have

—1 T
Fluxg(p|s) :/90 ( )[3 mod wZ

X
where

bozp_l
b

Fluxg : Diff(Z, 3) — sl Fluxg(y) =

43



References

F. Gay-Balmaz, C. Vizman, Vortex sheets in ideal 3D fluids, coadjoint orbits,
and characters, arXiv:1909.12485.

G. Goldin, R. Menikoff, D. Sharp, Diffeomorphism groups and quantized vortex
filaments, Phys. Rev. Lett. 58(1987), 2162—2164.

G. Goldin, R. Menikoff, D. Sharp, Quantum vortex configurations in three di-
mensions, Phys. Rev. Lett. 67(1991), 3499—-3502.

A. Izosimov, B. Khesin, Classification of Casimirs in 2D hydrodynamics, Mosc.
Math. J., 17(2017), 699-716.

B. Khesin, Symplectic structures and dynamics on vortex membranes Mosc.
Math. J., 12(2012), 413-434.

B. Lee, Geometric structures on spaces of weighted submanifolds, SIGMA 5(2009),
099, 46 pages.

J.E. Marsden, A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for
incompressible fluids, Phys. D 7(1983), 305—323.

A. Weinstein, Connections of Berry and Hannay type for moving Lagrangian
submanifolds, Adv. Math. 82(1990), 133—-1509.

44



