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1. Introduction
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Ideal fluid flow

Riemannian manifold (M, g) with induced volume form µ and Levi-

Civita connection ∇.

The geodesic equation on the group G = Diffvol(M) of volume

preserving diffeomorphisms of a Riemannian manifold (M, g) for the

right invariant L2-metric

〈u, v〉 =
∫
M
g(u, v)µ, u, v ∈ g = Xvol(M)

is Euler equation for ideal fluid flow with velocity u and pressure p:

∂tu = −∇uu− grad p, div u = 0.

Allowed: M noncompact or with boundary
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Vorticity

The vorticity 2-form σ = du[ ∈ dΩ1(M) satisfies Helmholtz equation

∂tσ = −Luσ,

hence it is driven by the flow. The vorticity is curlu in 3D resp. the

function σ/µ in 2D.

The smooth dual of g = Xvol(M) is g∗reg = Ω1(M)/dΩ0(M):

([γ], u) =
∫
M
γ(u)µ

If H1(M) = 0, it is the space of vorticities g∗reg = dΩ1(M).

The coadjoint action is the natural one, by pullback, so the vorticity

2-form is confined to a coadjoint orbit:

σ(t) = Ad∗ϕ(t) σ(0).
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Lie-Poisson equations

The symplectic leaves of the Lie-Poisson bracket on g∗

{f, g}(σ) =
〈
σ,

[
δf

δσ
,
δg

δσ

]〉
, f, g ∈ C∞(g∗).

are the coadjoint orbits endowed with the Kirilov-Kostant-Souriau

symplectic form

ωKKS(ad∗ξ σ,ad∗η σ) = 〈σ, [ξ, η]〉.

The Lie-Poisson equations for H ∈ C∞(g∗)

d
dtσ − ad∗δH

δσ

σ = 0

restrict to symplectic Hamiltonian systems on each coadjoint orbit.
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Reeb graphs

[Izosimov-Khesin’17] Classify coadjoint orbits in the smooth dual in
the 2D setting
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Singular vorticities

Singular vorticities in g∗, that are supported on submanifolds of M ,

are expected to live on coadjoint orbits [Marsden-Weinstein’83].

1. codimension 2:

- point vortices in 2D

- vortex filaments in 3D

2. codimension 1:

- vortex loops in 2D

- vortex sheets in 3D
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Coadjoint orbits and
momentum maps

The defining identity of the momentum map J : M → g∗ for a

Hamiltonian action is:

d〈J,X〉 = iζXΩ, X ∈ g

The inclusion O ⊂ g∗ is a momentum map for the coadjoint action

of G on the coadjoint orbit (O, ωKKS).

Lemma: Let G act on a symplectic manifold (M,Ω) by a Hamilto-

nian action with injective and equivariant momentum map J : M →
g∗. If the action is transitive, then J(M) = O is a coadjoint orbit

and J∗ωKKS = Ω.
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2. Point vortices
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The Hamiltonian group of R2

Let R2 be endowed with the standard volume form ω and let G be

the group of compactly supported Hamiltonian diffeomorphisms

G = Hamc(R2)

with corresponding Lie algebra

g = Xham,c(R2) = C∞c (R2)

consisting of Hamiltonian vector fields Xh on R2.
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Point vortices

Let ConfN(R2) = (R2)N\∆N be the configuration space of N points

in R2, where the fat diagonal is

∆N = {(x1, ..., xN) ∈ (R2)N : xi = xj for some i 6= j},

endowed with the symplectic form
∑N
i=1 Γi pr∗i ω.

The momentum map for the action of G = Hamc(R2)

J : ConfN(R2)→ g∗ = C∞c (R2)∗, J(x1, ..., xN) =
N∑
i=1

Γiδxi

identifies
(
ConfN(R2),

∑N
i=1 Γi pr∗i ω

)
with a coadjoint orbit.
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3. Vortex filaments
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Space of closed curves

Let G = Diffvol,c(R3) with

g = Xvol,c(R3) = {Xα : α ∈ Ω1(R3), iXαµ = dα}.
G acts in a Hamiltonian way on the space of closed oriented un-
parametrized curves in R3, denoted by Gr1(R3), endowed with the
Marsden-Weinstein symplectic form:

ΩC(uC, vC) =
∫
C
ivCiuCµ
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Coadjoint orbit

The momentum map

J : Gr1(R3)→ g∗, 〈J(C), Xα〉 =
∫
C
α

identifies the vortex filaments space Gr1(R3) with a coadjoint orbit.

Theorem [Haller-V.’04] Let dimM = n and H1(M) = 0.

If H2(M) = 0, all connected components of the codimension two

Grassmannian Grn−2(M) are coadjoint orbits of Diffvol(M).

If H2(M) 6= 0, the same holds for the Ismagilov central extension

of Diffvol(M).

J : Grn−2(M)→ ĝ∗, 〈J(N), [α]〉 =
∫
N
α

[α] ∈ ĝ = Ωn−2(M)/dΩn−3(M)
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4. Vortex loops
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Singular vorticity

We consider closed oriented curves C in the plane, endowed with a
nowhere zero vorticity density β ∈ Ω1(C).

The momentum (C, β) ∈ g∗ is

〈(C, β), Xh〉 =
∫
C
hβ

with coadjoint action of ϕ ∈ G

Ad∗ϕ(C, β) = (ϕ(C), ϕ∗β)
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Invariants

The only invariants of the coadjoint action are

- the enclosed volume a =
∫
C ν, where ω = dν

- the total vorticity w =
∫
C β

so the coadjoint orbits are

Oa,w =
{

(C, β) :
∫
C
ν = a and

∫
C
β = w

}
.

Each contains a circle with uniform distributed vorticity.

It is the 2D case of the coadjoint orbits considered in [Weinstein’90,

Lee’09]: isodrastic leaves of the space of weighted Lagrangian sub-

manifolds as coajoint orbits of the Hamiltonian group.
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Parametrization modulo rotations

C = Im f, β = f∗dt

Choosing a point x0 ∈ C with assigned parameter t = 0,
an arbitrary point x ∈ C has parameter t =

∫ x
x0
β.
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Coadjoint orbit of vortex loops

The space of votex loops becomes

Oa,w = Emba(S1
w,R2)/S1

w

= {f : S1
w → R2 :

∫
S1
w

f∗ν = a}/S1
w

Following our identification, we have

〈[f ], Xh〉 =
∫ w

0
h(f(t))dt

and the coadjoint action by pullback

Ad∗ϕ[f ] = [ϕ ◦ f ]
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KKS symplectic form

On Emb(S1
w,R2) we have the natural symplectic form

Ωf(uf , vf) =
∫ w

0
ω(uf(t), vf(t))dt

The action of S1
w by rotations is Hamiltonian with momentum map:

J : Emb(S1
w,R2)→ R, J(f) =

∫
S1
w

f∗ν

Symplectic reduction at a > 0 yields the symplectic manifold

Emba(S1
w,R2)/S1

w = Oa,w

with reduced symplectic form ωKKS.
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Canonical coordinates for ωKKS

Using the Euclidean metric on the plane we have the decomposition

T(C,β)Oa,w = C∞0 (C)× dC∞(C)

which corresponds to the decomposition of Tf Emba(S1
w,R2) into

normal and tangential coordinates:

uf = ρn+ λf ′, ρ ∈ C∞0 (C), λ ∈ C∞(C).

The symplectic form becomes

(ωKKS)(C,β)((ρ1, dλ1), (ρ2, dλ2)) =
∫
C

(ρ1λ2 − ρ2λ1)µC

= (ρ1, dλ2)− (ρ2, dλ1)

for the non-degenerate pairing (ρ, dλ) =
∫
C ρλµC.
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Prequantization

Theorem [Gay-Balmaz, V.] The coadjoint orbit Oa,w is prequanti-

zable if and only if aw ∈ 2πZ.

A prequantum bundle over a coadjoint orbit is a principal circle bun-

dle P → Oσ endowed with a principal connection whose curvature

is ωKKS.

A character to σ ∈ g∗ is a group homomorphism χ : Gσ → S1 that

integrates σ : gσ → R. (build P = G×Gσ S1 → G/Gσ = Oσ)

Theorem [Kostant, Tuynman] A character exists if and only if the

coadjoint orbit is prequantizable and the coadjoint action can be

lifted to an action on P by connection preserving automorphisms.

If π1(G) = π2(G) = 0, then π2(Oσ) ∼= π1(Gσ).

(see [Neeb’02] for infinite dim.)
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Natural 1-form

On the principal S1
w-bundle π : Emba(S1

w,R2)→ Oa,w the 1-form

Θf(vf) =
∫ w

0
ν(vf(t))dt

satisfies

dΘ = Ω = π∗ωKKS,

but Θ doesn’t reproduces the infinitesimal generator of the circle

action on the space of embeddings:

Θ(f ′) =
∫
C
ν = a,

so it is not a principal connection in general.

With the assumption aw = 2πk with k ∈ N, this can be remediated:

we factorize by the subgroup Zk ⊂ S1
w.
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Factorization by Zk

f(wk i) = xi+1 for i = 0,1, . . . , k and xk+1 = x1
p−1(0) = {x1, . . . , xk}
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Prequantum bundle

We factorize the space of embeddings through the action of Zk by

composition with rotations of integer multiples of w
k = 2π

a :

P = Emba(S1
w,R2)/Zk

= {(C, p) | p : C → S1 k-fold covering}

with projection to Oa,w the logarithmic derivative divided by a:

[f ] = (C, p) 7→ (C, β =
1

a
p∗dt).

The infinitesimal generator for the circle action on P is 1
af
′, hence

Θ descends to a principal connection 1-form on P.
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Character

The isotropy subgroup of (C, β) consists of Hamiltonian diffeomor-

phisms that preserve both C and β.

χ(ϕ) =
∫
C
Aϕβ mod 2πZ
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Another formula for the character

Let ν ∈ Ω1(R2) such that ω = dν.

For each Hamiltonian diffeomorphism ϕ ∈ G, there exists a unique

qϕ ∈ C∞c (R2) that satisfies ϕ∗ν − ν = dqϕ.

Proposition [Gay-Balmaz, V.] Under the prequantization condition

aw ∈ 2πZ, the character is

χ(ϕ) =
(
a
∫ ϕ−1(x0)

x0

β +
∫
C
qϕβ

)
mod 2πZ,

with x0 ∈ C arbitrary.
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Polarization

As a polarization subgroup H ⊂ G one takes the identity compo-

nent of the Hamiltonian diffeomorphisms that preserve the curve C

[Goldin, Menikoff, Sharp’87].

The character χ can be extended to H with a similar algebric for-

mula

χ(ϕ) =
( ∫

C
(
∫ ϕ−1(x)

x
β) ν(x) +

∫
C
qϕβ

)
mod 2πZ.

The geometric formula holds on H too.

30



Pointed vortex loops

[Joint work with Ioana Ciuclea]
Let (C, β) be a vortex loop as before, assigned with (x1, . . . , xk) ∈
Confk(C) and the circulations (Γ1, . . . ,Γk). We get a pointed vortex
loop:

〈(C, β, (xi), (Γi)), Xh〉 =
∫
C
hβ+

k∑
i=1

Γih(xi)

The invariants of the (natural) coadjoint action:
- the enclosed volume a

- the total vorticity w

- wi =
∫ xi+1
xi β with w1 + w2 + ...+ wk = w (i.e.

∫
C β = w)

- the circulations Γ1, ...,Γk.

We identify yhe coadjoint orbit as Emba(S1
w,R2) via

Φ(f) = (f(S1
w), f∗dt, (f(w1 + ...+ wi)), (Γi))
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The KKS symplectic form

The KKS symplectic form on Emba(S1
w,R2) is

(ωKKS)f(uf , vf) =
∫ w

0
ω(uf(t), vf(t))dt+

k∑
i=1

ω(uf , vf)(
i∑

j=1

wj)

is exact (hence prequantizable).

Using as before the decomposition into normal and tangent parts,

the tangent space to the coadjoint orbit is

Tf Emba(S1
w,R2) = C∞0 (C)× C∞(C)

These are canonical coordinates for ωKKS w.r.t. the non-degenerate

pairing

(ρ, λ) =
∫
C
ρλµC +

k∑
i=1

(ρλ)(w1 + · · ·+ wi)
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5. Vortex sheets
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Vortex sheets in R3

Collection of vortex filaments, i.e. a surface Σ fibered in circles (fil-

aments) with vorticity density β ∈ Ω1(Σ) a closed 1-form such that

the integrable distribution ker β is tangent to the fibers [Khesin’12].

Thus β nowhere zero (genus of Σ is 1) with discrete period group

wZ. There exist fibrations

b : Σ→ S1
w

with logarithmic derivative β, i.e. b∗dz = β, up to multiplication by

a constant element in S1
w.
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The vortex sheet as an element of g∗:

〈(Σ, β), Xα〉 =
∫

Σ
α ∧ β



Nonlinear Grassmannians

GrS ; GrS,β ; GrS,βa

S ⊂ R3 compact oriented surface of genus 1

Diff+(S): group of orientation preserving diffeomorphisms of S.

Emb(S,R3): Fréchet manifold of embeddings of S into R3:

Tf Emb(S,R3) =
{
u ◦ f : S → TR3 : u ∈ X(R3)

}
.

GrS := Emb(S,R3)/Diff+(S): nonlinear Grassmannian of all ori-
ented surfaces in R3 of type S (including the orientations)

TΣ GrS = C∞(Σ)

; Principal Diff+(S)-bundle

π : Emb(S,R3)→ GrS, f 7→ Σ = f(S),

Tfπ : Tf Emb(S,R3)→ TΣ GrS, u ◦ f 7→ u|Σ · n,
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Decorated nonlinear Grassmannians

Diff+(S, β) ⊂ Diff+(S), where β ∈ Ω1(S) nowhere zero.

GrS,β = Emb(S,R3)/Diff+(S, β)

With the ambient Euclidean metric we decompose the tangent

space

T(Σ,β) GrS,β = C∞(Σ)× dC∞(Σ).

; Principal Diff+(S, β)-bundle

πβ : Emb(S,R3)→ GrS,β, f 7→ (f(S), f∗β) = (Σ, β)

Tfπ
β : Tf Emb(S,R3)→ TΣ,β GrS,β, u ◦ f 7→

(
u|Σ · n,d(i

u|>Σ
β)
)
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The manifold of vortex sheets

µ Euclidean volume form on R3, ν ∈ Ω2(R3) such that µ = dν.

Given a > 0:

Emba(S,R3) :=
{
f ∈ Emb(S,R3) :

∫
S
f∗ν = a

}

GrSa :=
{

Σ ∈ GrS :
∫

Σ
ν = a

}
of oriented surfaces in R3 that enclose a constant volume a.

TΣ GrSa ' C∞0 (Σ) :=
{
f ∈ C∞(Σ) :

∫
Σ
fµΣ = 0

}
, µΣ = inµ.

Diff+(S, β)-bundle πβ : Emba(S,R3)→ GrS,βa .

GrS,βa :=
{

(Σ, β) ∈ GrS,β : Σ ∈ GrSa
}

manifold of vortex sheets of type (S, β)

T(Σ,β) GrS,βa = C∞0 (Σ)× dC∞(Σ).
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Symplectic form on vortex sheets

From β ∈ Ω1(S) and volume µ ; 2-form ω on Emb(S,R3):

ω(u1 ◦ f, u2 ◦ f) =
∫
S
f∗(iu2iu1µ) ∧ β, u1, u2 ∈ X(R3).

Invariant under right Diff+(S, β)-action and left Diffvol(R3)-action.

The restriction of ω to Emba(S,R3) descends via πβ : Emba(S,R3)→
GrS,βa to a symplectic form Ω on GrS,βa :

ω = (πβ)∗Ω.

In general Ω is not an exact form, even though its pullback ω is

exact.
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Canonical form for ωKKS

Note that

T(Σ,β) GrS,βa = TΣ GrSa ×dC∞(Σ)

by using the nondegenerate pairing

C∞0 (Σ)× dC∞(Σ)→ R, (ρ, dλ) =
∫

Σ
ρλµΣ

The symplectic form Ω on GrS,βa reads

Ω(Σ,βΣ)

(
(ρ1, dλ1), (ρ2, dλ2)

)
= −

∫
Σ

(ρ1λ2 − ρ2λ1)µΣ.

(well defined since ρ1µΣ and ρ2µΣ exact forms on Σ)
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Coadjoint orbit of vortex sheets

Left action of Diffvol(R3) on Emba(S,R3) descends to Hamiltonian

action on GrS,βa :

ϕ · (Σ, βΣ) = (ϕ(Σ), ϕ∗βΣ)

with equivariant momentum map

J : GrS,βa → Xvol(R3)∗, 〈J(Σ, βΣ), Xα〉 =
∫

Σ
α ∧ β, α ∈ Ω1(R3).

• The restriction of the momentum map to any connected com-

ponent of the manifold of vortex sheets GrS,βa is one-to-one onto

a coadjoint orbit

• The KKS symplectic form on the coadjoint orbit satisfies

J∗ωKKS = Ω.
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Prequantization

Theorem [Gay-Balmaz, V.] The coadjoint orbit GrS,β is prequan-

tizable if and only if aw ∈ 2πZ.

A description of the prequantum bundle is by the space of possible

fibration projections b : Σ → S1
w (i.e. δb = β) factorized by the

subgroup Zk ⊂ S1
w.

Polarization subgroup H ⊃ G(Σ,β) consists of volume preserving

diffeomorphisms that preserve the surface Σ [Goldin, Menikoff,

Sharp’91]. They also obtain a prequantization condition of the

same type, but for vortex ribbons/tubes.
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Character

The Feynman-Onsager condition aw ∈ 2πZ also ensures the exis-

tence of a character

χ : G(Σ,β) → S1

as well as an extension to the polarization subgroup H = GΣ (ac-

tually the identity components of these groups).

Geometric description: let {ϕt} be an isotopy from identity to ϕ

and let Dz be any disk with boundary the fiber Cz. We denote by

Vϕ(z) the volume swept out by Dz under the isotopy. Then

χ(ϕ) =
∫
S1
w

Vϕ(z)dz mod 2πZ
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Algebraic formula for the character

Given ϕ ∈ G, there exist 1-forms qϕ ∈ Ω1(R3) such that

ϕ∗ν − ν = dqϕ

Proposition [Gay-Balmaz, V.] Under the prequantization condition

aw ∈ 2πZ, the character χ : H → S1 is

χ(ϕ) =
( ∫

Σ
(
∫ ϕ−1(x)

x
β)ν(x) +

∫
Σ
qϕ ∧ β

)
mod 2πZ.

On the isotropy subgroup ϕ ∈ G(Σ,β) we have

Fluxβ(ϕ|Σ) =
∫ ϕ−1(x)

x
β mod wZ

where

Fluxβ : Diff(Σ, β)→ S1
w, Fluxβ(ψ) =

b ◦ ψ−1

b
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