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e Geometric structures on a Lie groupoid that are compatible with the
groupoid multiplication are called multiplicative structures.

o Related notions: Poisson groupoids, multisymplectic groupoids, Dirac
groupoids, Glanon groupoids, Pfaffian groupoids, quasi-Hamiltonian
groupoids, etc.



e Geometric structures on a Lie groupoid that are compatible with the
groupoid multiplication are called multiplicative structures.

o Related notions: Poisson groupoids, multisymplectic groupoids, Dirac
groupoids, Glanon groupoids, Pfaffian groupoids, quasi-Hamiltonian
groupoids, etc.

e Universal lifting theorems or Lie theory:

multiplicative structures on Lie groupoids
infinitesimal multiplicative structures on Lie algebroids.
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@ Multiplicative multivector fields and characteristic pairs

© Multiplicative forms and characteristic pairs

© Multiplicative forms on Poisson groupoids

@ Multiplicative forms on quasi-Poisson groupoids
B On the reduced space of multiplicative multivectors, arXiv: 2003. 13384.
@ Multiplicative forms on Poisson groupoids, arXiv: 2201.06242.

@ Multiplicative forms on quasi-Poisson groupoids, in progress.



Multiplicative k-vector fieds

A k-vector field TT € X2*(G) on a Lie group G is multiplicative, if
gr = Lg«Il: + Rrsllg, Vg,r € G, (or my (IT x IT) = II).
| = 0.

Example

For T € Abg, 7 — %7 € X%(Q) is multiplicative.




Multiplicative k-vector fieds

A k-vector field TT € X2*(G) on a Lie group G is multiplicative, if
gr = Lg«Il: + Rrsllg, Vg,r € G, (or my (IT x IT) = II).
| = 0.

Example

For T € Abg, 7 — %7 € X%(Q) is multiplicative.

)

A Poisson Lie group is a Lie group with a multiplicative bivector field IT such that
[IL,II] = 0.



Three equivalent definitions

Definition

A k-vector field TI € X*(G) is multiplicative, if the graph of groupoid
multiplication is a coisotropic submanifold in G X G X G with respect to
T x IT x (—1)F—111.
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A k-vector field TI € X*(G) is multiplicative, if the graph of groupoid
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Definition 2
Q gr = Ly Il + Ry WIIg — L« Ry o1z, where by and b, are bisections
passing g and r. (iff [IT, 7] is right-invariant, denoted by (m7 thus
o : T(A) = T(AFA).)
© for any £ € Q' (M), 14 (¢)I1 is right-invariant (m = [IL, t* f].)
@ M is a coisotropic submanifold of G. (II|p/ (&1, -+, &) = 0,VE; € A*)



Three equivalent definitions

Definition

A k-vector field TI € X*(G) is multiplicative, if the graph of groupoid
multiplication is a coisotropic submanifold in G X G X G with respect to
T x IT x (—1)F—111.

Definition 2
Q gr = Ly Il + Ry WIIg — L« Ry o1z, where by and b, are bisections
passing g and r. (iff [IT, 7] is right-invariant, denoted by (m7 thus
o : T(A) = T(AFA).)
© for any £ € Q' (M), 14 (¢)I1 is right-invariant (m = [IL, t* f].)
@ M is a coisotropic submanifold of G. (II|p/ (&1, -+, &) = 0,VE; € A*)

Definition 3
II* is a groupoid morphism:

#
OFIT*G ——= TG

o

k14 = S TM .



For a Lie group G and any I1 € x’;mlt (@), there exists ¢ € Z' (G, AFg) such that

IIy = Rgxc(g), g€eq.

I, = 0.



For a Lie group G and any I1 € x’;mlt (@), there exists ¢ € Z' (G, AFg) such that

IIy = Rgxc(g), g€eq.

I, = 0.

Proposition (Chen-Stienon-Xu)

IfII e xﬁmlt(g), denote by ™ = er(TM@(/\k_lA))r”M’ then
_ = e Do

II = Br:
a1 w D,

()

el
= 71— L4Dpm+ D%+ + BT Dl e ARTM @ A)/ A A,

where Dy(X + u) = p(u).




Characteristic pairs

1->H—>3G—>G—1, 0=T"M®®A—JA—A—0.

A characteristic pair of (k,0)-type is a pair
(¢,7) € Z (3G, NFA) x T(TM @ (ANF~LA)),
such that, for all &,n € QY (M), [hy] € Ha,x € M,

Lp*glnT™ = —lpryleT, ( p-compaiible)
c([ha]) (Bm)a = Lip,)(Bm)e (= Mr(lhal]), Mx € Z'(H, " A)).




Characteristic pairs

1->H—>3G—>G—1, 0=T"M®®A—JA—A—0.

A characteristic pair of (k,0)-type is a pair
(¢,7) € ZYFG, AFA) x T(TM ® (A\*~1A)),
such that, for all &,n € QY (M), [hy] € Ha,x € M,

Lp*glnT™ = —lpryleT, ( p-compaiible)

olha]) = (Bm)z—Lypg(Bre (= Ma(lhal), Mx € Z'(H, A*A)).

Theorem (Chen-L-Liu)

| \

There is a 1-1 correspondence between multiplicative k-vector fields I1, and
characteristic pairs (c, ) of (k,0)-type on G such that

Iy = Rgc(lbg]) + Ly, « (Br)a

holds for all g € G and bisection by passing g and x = s(g).

N




For T € T(ARA), 7 —F e Xk (G) corresponds to (¢ = —dggT, ™ = poT), where

mult

dyg : \FA = CL(3G, AR A).




For T € T(ARA), 7 —F e Xk (G) corresponds to (¢ = —dggT, ™ = poT), where

mult

dyg : \FA = CL(3G, AR A).

Define two quotient space
xfnult(g)/ ~ RI; = {[n]},

where Il ~ I+ % — 7 and © ~ 7 + po 7, where 7 € D(TM ® AF~1A) is
p-compatible for any 7 € AFA.



Classification theorem of k-vector fields

Theorem (Chen-L-Liu)

The quotient space of multiplicative k-vectors XF  (G)/ ~ is the pullback of maps

mult

I* and U. ILe., the diagram

!

Xk (G)) ~———=R

k
o

Kf [
H! (3G, AFA) — > HI(#, AF4)

is commutative and the map

©: x5, (6)/~ = H'(3G,A*A) 1 xuRE

mult

[M=(e,m] = (e[

is an isomorphism.




Transitive case

For a transitive groupoid G over M, define

Q% .= Z1(G, A¥ ker p) x T(A*A).

Two pairs (F,A) ~ (F',A’), if there exists some v € I'(A¥kerp) s.t.

F' = F +dgv, AN =A+v.



Transitive case

For a transitive groupoid G over M, define

Q% .= Z1(G, A¥ ker p) x T(A*A).
Two pairs (F,A) ~ (F',A’), if there exists some v € I'(A¥kerp) s.t.

F' = F +dgv, AN =A+v.

Theorem

We have a 1-1 correspondence

1%

Qk/’\’ xl’rcnult (g)7
(F,A)] —» FO+K-%.

Moreover,

xﬁ)ult, (g)/'\‘ = Ill (g /\kkel"p).




A graded Lie 2-algebra structure

For 7 € T(ALA), T-%e xfmult(g)'

Proposition (Bonechi-Ciccoli-Laurent-Gengoux-Xu)

There is a natural strict graded Lie 2-algebra on the complex

D(A®A) = X% 0:.(G), 77 -%.

mult

[Hv?f?]:ﬁfgnj'.
[,7] = ém(r) € T(APH14),  Te xk,(9), T € T(ALA).

mult

See also Berwick-Evans-Lerman, Ortiz-Waldron’s work.



Lie 2-algebras

A Lie 2-algebra (Baez-Crans) is a 2-term Loo-algebra (Schlessinger-Stasheff). It
has the data

e d:g—1— go;
e the 2-bracket [, ]2 : go A gi — gi,% =0, —1;
o [ ]3: A%g0 = g1
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If [, -,-]3 = 0, then it is called a strict Lie 2-algebra.



Lie 2-algebras

A Lie 2-algebra (Baez-Crans) is a 2-term Loo-algebra (Schlessinger-Stasheff). It
has the data

e d:g—1— go;
e the 2-bracket [, ]2 : go A gi — gi,% =0, —1;
o []3:A%00 = g1
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If [, -,-]3 = 0, then it is called a strict Lie 2-algebra.
We always denote by > :=[,-]2 : go Ag—1 — g—1.



Definition

Let g and g’ be Lie 2-algebras. A Lie 2-algebra homomorphism consists of

@ a chain map Fp : go — g, F1:9-1 — g, such that Fpod =d’ o Fy,
@ a skew-symmetric bilinear map Fy : A2gg — g 4,
such that, for z,y,z € go and u € g_1.
(1) Folz,yl2 — [Fo(z), Fo(y)ly = d' Fa(x, y),
(2) Fifz,ulz — [Fo(e), Fi(w)]y = Fa(, d(w)),
(3) Filz,y,2]3 — [Fo(z), Fo(y), Fo(2)]5 = [Fo(@), Fa(y, 2)l; — Fa([x, yl2, 2) + c.p..




Multiplicative forms and characteristic pairs

A k-form © € QF(G) on a Lie groupoid G is multiplicative if

m*© = pr;© + pr; O,

where m, pr; : G®2) — G,i = 1,2 are the multiplication and the projections.
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where m, pr; : G®2) — G,i = 1,2 are the multiplication and the projections.

Equivalently,
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(2) ©f:@k~1TG — T*G is a groupoid morphism.



Multiplicative forms and characteristic pairs

A k-form © € QF(G) on a Lie groupoid G is multiplicative if

m*© = pr;© + pr; O,

where m, pr; : G®2) — G,i = 1,2 are the multiplication and the projections.

Equivalently,

(1) The graph of multiplication {(g,, gr);s(g) = t(r)} is an isotropic
submanifold of G X G X G w.r.t © ® O @ O;

(2) ©f:@k~1TG — T*G is a groupoid morphism.

For a Lie group G, we have Qﬁmlt(G) =0,k > 2.

e(Xgh Ygr) = @(RT*XQ’ LQ*Y~T‘) = G(X:g - Or, Og - ?T) = G(Xm 0) + @(07 ?r) =0.




If V is a vector space,

Xk (V) = Hom(V,AFV), 0}

mult

(V)=v*.




If V is a vector space,

x* (V) = Hom(V, A*V), QL (V)=V*
ult

mult

Example

| 8
A

A vector bundle E — M is a Lie groupoid. Multiplicative multivector fields and
forms are indeed linear multivector fields and forms. So Il € x’:ﬂult(E) if it is
locally of the form

_ L i, j
= EH]' (Q)p]

0 1
+

1o} Aeon 0 0
Op opie  (k—1)!

Opi1 A .Aapik71 /\@

Hil"‘ik—laj(q)

Similarly, a k-form © € QF | (E) if

mult

1 o _
6 = 11Oi1-wip, s (P dg™ A Adg* +

(k — 1)' 6i1~"ik_17j(q)dqi1 ASEE dqik_l /\dpj7

where {q*} are the coordinates on M, and {p’} are coordinates of the fiber.




For © € QF (G), let 0 = PIr(axg(ak—17xar))Oln - Then

D«
_ @ =1 . 1 1 5 1 _p 1 .
@|MfTP*(O)70+5DP*0+§DP*6+~-+EDP* 0, (=: BO)

where Dy« (& + x) = p*&€.




Lemma

For © € QF (G), let 0 = PIr(a*g(ak—17+ 0y ©lna. Then

D«
_ @ =1 . 1 1 5 1 _p 1 .
9|MfTP*(O)70+5DP*0+§D[)*9+~-+EDP* 0, (=: BO)

where Dy« (& + x) = p*&€.

A T*M, TM « A*.

Definition

A characteristic pair of (0, k)-type is a pair (e, ) with
e € ZY (3G, NFT* M), 6 € T(A* @ (N*—1T* M),
satisfying

Lulp(v)0 = —totpw)b, p — compatible,
e([h]) = Ry (BO) — BO,  [h] € H,
p* oe= —d(]g@.




There is a 1-1 correspondence between multiplicative k-forms © € QF .. (G) and
characteristic pairs (e, 0) of (0, k)—type, s.t.

O4 = RZg—l (e([bg]) + Be'y)a

where by is a local bisection through passing g and y = t(g).

This result is a reformulation of Proposition 4.1 in

@ M. Crainic, M. A. Salazar and I. Struchiner, Multiplicative forms and
Spencer operators, Math. Z. 279 (2015), no. 3-4, 939-979.



Theorem

There is a 1-1 correspondence between multiplicative k-forms © € QF .. (G) and
characteristic pairs (e, 0) of (0, k)—type, s.t.

O = Ry_ (e([bg]) + Bby),

—1
by

where by is a local bisection through passing g and y = t(g).

This result is a reformulation of Proposition 4.1 in

@ M. Crainic, M. A. Salazar and I. Struchiner, Multiplicative forms and
Spencer operators, Math. Z. 279 (2015), no. 3-4, 939-979.

Example

In the group case, the characteristic pair of © € QL . (G) is (0,6), where 6 € G @
and Oy = R;,le.

Example

| \

Let v € QF(M). Then s*y —t*y € QF . (G) and its characteristic pair is
(d3g7, =p™7)-

N




Transitive case

Let G be a transitive Lie groupoid over M.

(1) If k = 2, then all multiplicative k-forms are of the form s*vy — t*~ for
v € QF(M);

(2) All multiplicative 1-forms © on G are determined by some 0 € T'(A*) such
that vq(dzg0) = 0 for a € ker p in the way

Og(Rpp,)(u+ X)) = by(g) (u+v) = O5(g) (Adpp 1-1v),  p(v) = X.




Multiplicative forms on Poisson groupoids

Definition

A Poisson groupoid is a groupoid G with a P € ¥2

m

w1t (9) such that [P, P] = 0.

On Q1(G), we have a Lie bracket:

[amB}P = LPﬁaB - LPﬁﬁa - dP(O{, 6)



Multiplicative forms on Poisson groupoids

Definition

A Poisson groupoid is a groupoid G with a P € ¥2

m

w1t (9) such that [P, P] = 0.

On Q1(G), we have a Lie bracket:
[, Blp = Lpto B — Lpiga — dP(a, B).
Extending to all forms, one obtain the Koszul bracket on Q°(G):
[0 Blp = (1) 1 (Lp(@nB) = Lr() AB) —anLpB,  a€QF(G),f e

Here Lp : Q"(G) — Q*~1(G) is defined by Lp = tpod —dop.



Multiplicative forms on Poisson groupoids

Definition

A Poisson groupoid is a groupoid G with a P € ¥2 +(G) such that [P, P] = 0.

mul

On Q1(G), we have a Lie bracket:
[, B]p = Lpzo8 — Lpsga — dP(c, B).
Extending to all forms, one obtain the Koszul bracket on Q°(G):
[0 Blp = (1) 1 (Lp(@nB) = Lr() AB) —anLpB,  a€QF(G),f e

Here Lp : Q"(G) — Q*~1(G) is defined by Lp = tpod —dop.
@ Are multiplicative 1-forms closed w.r.t |-, ]|p?

@ Are all multiplicative forms closed w.r.t the Koszul bracket?



Multiplicative forms on Poisson groupoids

Definition

A Poisson groupoid is a groupoid G with a P € ¥2

m

w1t (9) such that [P, P] = 0.

On Q1(G), we have a Lie bracket:
[, B]p = Lpzo8 — Lpsga — dP(c, B).
Extending to all forms, one obtain the Koszul bracket on Q°(G):
[0 Blp = (1) 1 (Lp(@nB) = Lr() AB) —anLpB,  a€QF(G),f e

Here Lp : Q"(G) — Q*~1(G) is defined by Lp = tpod —dop.
@ Are multiplicative 1-forms closed w.r.t |-, ]|p?
@ Are all multiplicative forms closed w.r.t the Koszul bracket?

Obstacle: Multiplicative forms are not closed under the wedge product.



Define Q2 .. (G) == {s*y — t*y;7 € Q°(M)}.

Proposition

For a Poisson groupoid (G, P), w.r.t. the Koszul bracket [-,-|p, we have that
(1) Q¢ .. (G) C Q%) is a graded Lie subalgebra;

mult
(2) Q2. .1:(G) C Q2 .(G) is an ideal;
(3) The map

P': (Q4ue(9), [ 1P) = (e (9), [ D)

is a graded Lie algebra homomorphism.




Theorem (Chen-L-Liu)

For a Poisson groupoid (G, P), we have a natural strict graded Lie 2-algebra
Q.(M) i> (Q:nult(g)?['z']lj)’ 7H5*7_t*77
where the action is determined by

s*(O>vy) =[0,s"]p, VO € QF 1+(9),y € Q*(M).

mult




Theorem (Chen-L-Liu)

For a Poisson groupoid (G, P), we have a natural strict graded Lie 2-algebra
Q.(M) i> (Q:nult(g)?['z']lj)’ 7H5*7_t*77
where the action is determined by
5T (@) =1[0,5"]p, VO € Q(9),7 € Q*(M).

Moreover, (Pu,pﬁ) is a graded Lie 2-algebra homomorphism:

o
Q* (M) —2 > T(r%A) .

le

08, 10(G) —— X8, ()




Theorem (Chen-L-Liu)

For a Poisson groupoid (G, P), we have a natural strict graded Lie 2-algebra
Q.(M) i) (Q:nult(g)?['z']lj)’ 7H5*7_t*77
where the action is determined by
5T (@) =1[0,5"]p, VO € Q(9),7 € Q*(M).

Moreover, (Pu,pﬁ) is a graded Lie 2-algebra homomorphism:

o
Q* (M) —2 > T(r%A) .

le

08, 10(G) —— X8, ()

v

Question: What about quasi-Poisson groupoids? Can we get weak Lie 2-algebras?



Quasi-Poisson case

A quasi-Poisson groupoid is a Lie groupoid G with P € X2 | (G) and ® € T'(A3A)

s.t.

1
5P P) -3-%, [p¥]=0



Quasi-Poisson case

A quasi-Poisson groupoid is a Lie groupoid G with P € X2 | (G) and ® € T'(A3A)

s.t.

ult
1 - = -
sIPPI=%-%, [P¥]=0.

Important formulas:

1
[©1,[02,03]p]p +cp. = _5L[P,P](®1,®2)®3 + c.p. + d([P, P](©1, ©2,03));

1
Pi[01,02]p — [PPO1, P*Os] = _[P, P](01,63),  ©; € 2'(Q).



Theorem (Chen-L-Liu)
Let (G, P, ®) be a quasi-Poisson groupoid. Then the triple

J * *
QN (M) = Q1 (9), J(y) = sy = t",

is a weak Lie 2-algebra, where the bracket on QL | (G) is [-,-]p, the action and
3-bracket

PR Qiﬂult(g) A Ql(M) - Ql(M)’ and ['7 ) ']3 5 /\3Qll;1ult(g) - Ql(M)
are determined by

s*(©r>7)
s¥[01,02,03]3

[©,s™]p,

L O3 + cp. — 24P (01, O2, O3).

5(01,02,")




For ©; € Q!  (G),

mult

5 (01> [02,03,04]3 + c.p. — ([[01,02]p, O3,O4]3 + c.p.))

P 1 ().00.00,9801 + €. + dIP, B)(O1,03,05,04).




Theorem (Chen-L-Liu)

Let (G, P, ®) be a quasi-Poisson groupoid. Then the following statements are true:

(a) Theﬂiiriple Q°* (M) Z Q2 1:(9) is a graded Lie 2-algebra, where the bracket
on

e a(G) is [, ]p, the action > : QF (G) x QI(M) — QPFTI=1(M) and

mult
the 3-bracket [-,-,-]3 : QF (G) AQL 1 (G) A QS 1.(G) — QPFTITS=2(M) are

mult m

s*(©>7)
$*[©1,02,03]3

[67 S*’Y]Pz
dLbLgel 0,03 + (

LLLg@M 0,dO3 + c.p.).




Theorem (Chen-L-Liu)

Let (G, P, ®) be a quasi-Poisson groupoid. Then the following statements are true

(a) The triple Q® (M) Z Q2 1:(9) is a graded Lie 2-algebra, where the bracket
on Q8 1.(G) is [-,-]p, the action > : QF . (G) x Q4(M) — QPTI=1(M) and
the 3-bracket [-,-,-]3 : QF (G) AQL 1 (G) A QS 1.(G) — QPFTITS=2(M) are

[6,5™]p,
dLLLg@:LGZ @3 =+ (LLL$91®2d®3 —+ C.p.).

s*(©>7)
$*[©1,02,03]3

(b) There is a weak morphism of graded Lie 2-algebras

/\‘p’1

Q* (M) —— I['(A®A)
J T

(@) 2 ke (@)

where v : QP (G)AQL | (G) = T(APTI=LA) is defined by

v(01,02) = (id @ APTI=2p) (15 (61 A 02)).




For a tensor field T € T*!(G) on G and © € QP(G), define 170 € TF-Li+tr=1(G):

1O = tx, A nx, @80 1= D _(=1)F T A X A Xy ® (BAx,©). (1)

Lemma

(G), we have 17O € Tkil‘“rpil(g);

mult

(a) For all T € T (G) and © € QF

mult mult
(b) Foru € T(A*A),v € Q(M) and © € QP 1£(G), we have

Uy @s*y© = T ® s*pu,

for some v € T(A*=1A) and p € QP=1(M).




Corollary

If (G, P, ®) with ® € N3g is a quasi-Poisson Lie group, then
@ (L .(G),[-,]p) is a Lie algebra, although Q(G) is not;

@ (P%0,v) is a weak homomorphism between two strict Lie 2-algebras:

— =3 ,

0
OL l/T
QL (6) —Z> 1, (G)

1
where v : N\ Qmult

(G) — g 1is given by

v(01,02) = —P(01,02), 0; = Pry O,.




If (G, P, ®) with ® € N3g is a quasi-Poisson Lie group, then
@ (L .(G),[-,]p) is a Lie algebra, although Q(G) is not;

@ (P%0,v) is a weak homomorphism between two strict Lie 2-algebras:

— =3 ,

0
OL l/T
QL (6) —Z> 1, (G)

1
where v : N\ Qmult

(G) — g 1is given by

v(01,02) = —P(01,02), 0; = Pry O,.

More examples: Action Lie groupoids



Thanks for your attention!



