Normal forms for Logarithmic connections

Francis Bischoff

Exeter College, University of Oxford

Poisson 2022

▲ロト ▲理 ト ▲目 ト ▲目 ト ○○ のへで

Exeter College, University of Oxford

Francis Bischoff Normal forms for Logarithmic connections

Fuchsian singularities

Linear ODE on \mathbb{A}^1 with Fuchsian singularity at the origin:

$$z\frac{ds}{dz}=A(z)s,$$

where A(z) is a holomorphic $n \times n$ matrix.

Gauge transformations: $s = g^{-1}t$, for $g(z) \in GL(n)$. Then t satisfies

$$z\frac{dt}{dz}=B(z)t,$$

where $B(z) = gAg^{-1} + zg'(z)g^{-1}$.

Important names: Hukuhara, Turrittin, Levelt, Gantmacher, Babbitt and Varadarajan, ...

Exeter College, University of Oxford

イロト 不得 とうき とうとう ほう

Fuchsian singularities

Fundamental Theorem

After a holomorphic gauge transformation

$$A(z)=S+\sum_{i\geq 0}N_iz^i,$$

where

- S is diagonal,
- N_i is nilpotent and satisfies $[S, N_i] = iN_i$,
- $S + N_0$ is the linear approximation to A(z),
- The other N_i are the resonant correction terms.

Levelt: This defines a Jordan decomposition.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

Implications for geometry

Fix
$$r = x + iy + n \in End(\mathbb{C}^n)$$
. This determines

1 a parabolic $P_x \subseteq GL_n(\mathbb{C})$,

2 a Levi
$$L_x = C(x) \subset P_x$$

- **3** The conjugacy class of $exp(2\pi ir)$: $C \subset L_x$.
- Boalch (also Deligne and Simpson): The moduli space of Fuchsian equations with A(0) in the adjoint orbit of r isomorphic to

$$(X_r := \{(M, P) \mid P \sim P_x, M \in P, \pi(M) \in \mathcal{C}\})/GL_n(\mathbb{C})$$

- Boalch: X_r is a quasi-Hamiltonian *G*-space.
- Safronov: $X_r/G \rightarrow G/G$ is a 1-shifted Lagrangian.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Normal forms for Logarithmic connections

Cusp Singularity
$$x^2 = y^3$$

Consider the singular curve $D \subseteq \mathbb{C}^2$ defined by $x^2 = y^3$:

Goal: study flat connections on \mathbb{C}^2 with logarithmic singularities along D.

Exeter College, University of Oxford

イロト イ部ト イヨト イヨト 三日

Normal forms for Logarithmic connections

Cusp Singularity $f = x^2 - y^3$

1 Logarithmic flat connection:

$$\nabla = d + \frac{A}{6f}df + \frac{B}{6f}(3xdy - 2ydx),$$

where $A(x, y), B(x, y) \in End(\mathbb{C}^n)$ holomorphic and satisfy

$$V(A) - E(B) + B + [A, B] = 0,$$

where

$$E = 3x\partial_x + 2y\partial_y, \qquad V = 3y^2\partial_x + 2x\partial_y.$$

Exeter College, University of Oxford

Francis Bischoff

Normal forms for Logarithmic connections

Cusp Singularity $f = x^2 - y^3$

1 Logarithmic flat connection:

$$\nabla = d + \frac{A}{6f}df + \frac{B}{6f}(3xdy - 2ydx),$$

where $A(x, y), B(x, y) \in End(\mathbb{C}^n)$ holomorphic and satisfy

$$V(A) - E(B) + B + [A, B] = 0,$$

where

$$E = 3x\partial_x + 2y\partial_y, \qquad V = 3y^2\partial_x + 2x\partial_y.$$

2 These are representations of the logarithmic tangent bundle

 $T_{\mathbb{C}^2}(-\log D) =$ Vector fields on \mathbb{C}^2 tangent to D

Lie algebroid with basis E and V, and where [E, V] = V.

Exeter College, University of Oxford

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Saito Free divisors

- We know that $T_X(-\log D)$ is locally free when $D \subset X$ is a smooth hypersurface.
- This may fail when D is singular. This general situation was studied by K. Saito.

Theorem (Saito's Criterion)

A hypersurface $D \subset \mathbb{C}^n$ is a free divisor at a point x if and only if there exist n vector fields $X_1, ..., X_n \in T_{\mathbb{C}^n}(-\log D)$ such that

$$X_1 \wedge \ldots \wedge X_n = f \cdot vol,$$

with f a reduced equation for D near x.

Saito: Plane curves are always free $\implies x^2 = y^3$ is free.

Francis Bischoff

Normal forms for Logarithmic connections

Exeter College, University of Oxford

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Cusp Singularity $f = x^2 - y^3$

Theorem (B.)

After a holomorphic gauge transformation, the connection has the form

$$\nabla = d + \frac{(S+N)}{6f}df + \frac{B}{6f}(3xdy - 2ydx),$$

where S is constant diagonal, N(x, y) is a holomorphic nilpotent matrix, B(x, y) holomorphic, and

$$E(B) = B + [S, B]$$

 $E(N) = [S, N]$
 $V(N) = [B, N].$

Exeter College, University of Oxford

< ロト < 同ト < ヨト < ヨト = ヨ

Normal forms for Logarithmic connections

E(B) = B + [S, B]

- The vector field $E = 3x\partial_x + 2y\partial_y$ defines a grading of coordinates: |x| = 3, |y| = 2.
- **B**_k, the weight k component of B, is an eigenvector for ad_S :

$$[S,B_k]=(k-1)B_k.$$

Therefore, E(B) = B + [S, B] defines a finite dimensional vector space.

Exeter College, University of Oxford

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

Normal forms for Logarithmic connections

Implications for geometry

Fix S. Then flat connections are parametrized by (B, N). The first two equations define a finite dimensional affine space

$$W_S = \{(B, N) \mid E(B) = B + [S, B], E(N) = [S, N]\}.$$

The last equation defines an algebraic subvariety

$$X_S = \{(B, N) \in W_S \mid V(N) = [B, N], N \text{ is nilpotent}\} \subset W_S.$$

Corollary (B.)

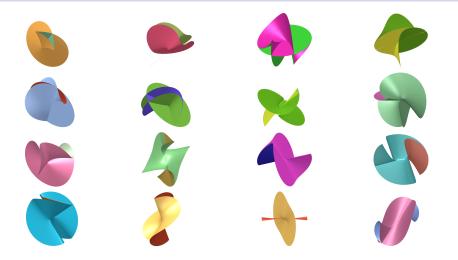
The moduli space of logarithmic flat connections with poles along the cusp and 'semisimple residue' conjugate to S has the structure of an algebraic quotient stack

 $[X_S/Aut(S)].$

Francis Bischoff Normal forms for Logarithmic connections Exeter College, University of Oxford

< ロ > < 同 > < 回 > < 回 > < 回 >

Sekiguchi's 17 free divisors



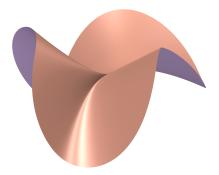
Francis Bischoff Normal forms for Logarithmic connections Exeter College, University of Oxford

3

・ロト ・部ト ・ヨト ・ヨト

Sekiguchi's 17 free divisors

- Sekiguchi gave a classification of weighted homogeneous free divisors in C³. There are 17 examples.
- One of the examples is the vanishing of $F = xy^4 + y^3z + z^3$:



Exeter College, University of Oxford

< ロ > < 同 > < 回 > < 回 > < 回 > <

Francis Bischoff Normal forms for Logarithmic connections

 $T_{\mathbb{C}^3}(-\log D)$ has the following basis

$$E = x\partial_x + 2y\partial_y + 3z\partial_z$$

$$V = 2y\partial_x + (-24xy + 2z)\partial_y + (-2y^2 - 32xz)\partial_z$$

$$W = 3z\partial_x - 9y^2\partial_y - 12yz\partial_z,$$

with brackets

 $[E, V] = V, \ [E, W] = 2W, \ [V, W] = 24zE + 6yV - 40xW.$

Exeter College, University of Oxford

Francis Bischoff

Normal forms for Logarithmic connections

 $T_{\mathbb{C}^3}(-\log D)$ has a basis E, V, W. Dual basis α, β, γ of log 1-forms.

A flat logarithmic connection is given by

$$\nabla = d + A\alpha + B\beta + C\gamma,$$

where $A, B, C \in End(\mathbb{C}^n)$ are holomorphic functions on \mathbb{C}^3 that satisfy

$$E(B) - V(A) - B + [B, A] = 0$$

$$E(C) - W(A) - 2C + [C, A] = 0$$

$$V(C) - W(B) - 24zA - 6yB + 40xC + [C, B] = 0.$$

Exeter College, University of Oxford

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Normal forms for Logarithmic connections

Theorem (B.)

After a holomorphic gauge transformation, the connection has the form

$$\nabla = d + (S + N)\alpha + (B - \frac{32}{3}xN)\beta + (C - 4yN)\gamma,$$

where S is constant diagonal, N is holomorphic and nilpotent, B and C are holomorphic, and

$$E(B) = B + [S, B]$$

$$E(C) = 2C + [S, C]$$

$$E(N) = [S, N]$$

$$V(N) = [B, N]$$

$$W(N) = [C, N]$$

$$V(C) - W(B) = 24zS + 6yB - 40xC - [C, B].$$

Exeter College, University of Oxford

Normal forms for Logarithmic connections

Corollary (B.)

The moduli space of logarithmic flat connections with poles along Sekiguchi's hypersurface and 'semisimple residue' conjugate to S has the structure of an algebraic quotient stack

 $[X_S/Aut(S)].$

Corollary (B.)

 $T_{\mathbb{C}^3}(-\log D)$ is not an action algebroid

$$T_{\mathbb{C}^3}(-\log D) \ncong \mathfrak{g} \ltimes \mathbb{C}^3.$$

Francis Bischoff

Normal forms for Logarithmic connections

Exeter College, University of Oxford

3

イロト 不得 トイヨト イヨト

- Discuss the proof of the normal form theorem in the case of the cusp curve.
- Strategy: integrate T_{C²}(− log D) to a Lie groupoid Π(X, D) and study it's representation theory.
- Relies on the theory of 'homogeneous Lie groupoids'.
- Two main results: Linearization and Jordan decomposition.

イロト 不得 とうき とうとう ほう

Cusp Singularity $f = x^2 - y^3$

1 Logarithmic tangent bundle $T_{\mathbb{C}^2}(-\log D)$ has basis of sections

$$E = 3x\partial_x + 2y\partial_y, \qquad V = 3y^2\partial_x + 2x\partial_y,$$

which satisfy [E, V] = V. Therefore,

$$T_{\mathbb{C}^2}(-\log D) \cong \mathfrak{g}_A \ltimes \mathbb{C}^2,$$

where \mathfrak{g}_A is the non-abelian Lie algebra of dimension 2.

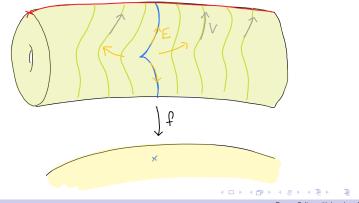
- 2 Source-simply connected integration is the twisted fundamental groupoid Π(C², D): 'homotopy classes of paths in C² tangent to D'.
- 3 Lie's second theorem:

$$\left\{\begin{array}{c} \text{Flat connections } \nabla \text{ with} \\ \text{logarithmic poles along } D\end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{Groupoid representations} \\ \phi: \Pi(\mathbb{C}^2, D) \to GL_n(\mathbb{C})\end{array}\right\}$$

< ロト < 同ト < ヨト < ヨト = ヨ

Twisted fundamental groupoid

- $T_{\mathbb{C}^2}(-\log D) \cong \mathfrak{g}_A \ltimes \mathbb{C}^2$, but $\Pi(\mathbb{C}^2, D) \ncong G_A \ltimes \mathbb{C}^2$, for $G_A = \mathbb{C} \ltimes \mathbb{C}$, since the vector field V is not complete.
- *f* = x² − y³ : C² → C fibration of C² by once punctured elliptic curves.



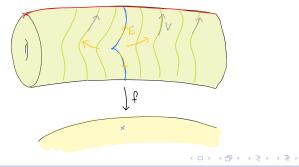
Francis Bischoff Normal forms for Logarithmic connections Exeter College, University of Oxford

Twisted fundamental groupoid

- Fibrewise compactification $X = \overline{\mathbb{C}^2}$, $\overline{D} \subset X$.
- Then $\Pi(X,\overline{D}) \cong G_A \ltimes X$.
- But $\Pi(X,\overline{D})|_{\mathbb{C}^2} \ncong \Pi(\mathbb{C}^2,D)$ since

$$\pi_1(X \setminus \overline{D}) \cong \mathbb{Z} \ltimes \mathbb{Z}^2, \qquad \pi_1(\mathbb{C}^2 \setminus D) \cong \mathbb{Z} \ltimes F_2$$

So take the Weinstein groupoid of $\Pi(X, \overline{D})|_{\mathbb{C}^2}$.



Francis Bischoff Normal forms for Logarithmic connections

Exeter College, University of Oxford

3

Subgroupoids

There is a sub-action groupoid

$$r: \mathbb{C} \ltimes \mathbb{C}^2 \to \Pi(\mathbb{C}^2, D)$$

$$(\lambda, x, y)$$

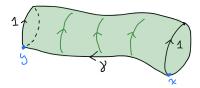
$$(e^{3\lambda}x, e^{2\lambda}y)$$

$$(x, y)$$

Subgroupoid of isotropy elements

$$i: \mathbb{Z} \times \mathbb{C}^2 \to \mathbb{C} \ltimes \mathbb{C}^2 \to \Pi(\mathbb{C}^2, D).$$

This subgroupoid is central.



Exeter College, University of Oxford

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Normal forms for Logarithmic connections

We can restrict representations along groupoid homomorphisms

$$r^*: Rep(\Pi(\mathbb{C}^2, D)) \to Rep(\mathbb{C} \ltimes \mathbb{C}^2),$$

$$\phi: \Pi(\mathbb{C}^2, D) \to GL_n(\mathbb{C}) \ \mapsto \ \phi \circ r: \mathbb{C} \ltimes \mathbb{C}^2 \to GL_n(\mathbb{C})$$

Exeter College, University of Oxford

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

Normal forms for Logarithmic connections

Monodromy automorphism

Given a representation

$$\phi: \Pi(\mathbb{C}^2, D) \to GL_n(\mathbb{C})$$

Restrict ϕ along the isotropy subgroupoid $i : \mathbb{Z} \times \mathbb{C}^2 \to \Pi(\mathbb{C}^2, D)$:

$$M(x,y) := \iota^* \phi(1,x,y)$$

Lemma: Because $\mathbb{Z} \times \mathbb{C}^2$ is central, *M* is an automorphism of ϕ .

Exeter College, University of Oxford

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Francis Bischoff

Normal forms for Logarithmic connections

First main result: Linearization

Goal: Given

$$\phi \in \operatorname{Rep}(\Pi(\mathbb{C}^2, D)),$$

we want to linearize

$$r^*\phi \in Rep(\mathbb{C}\ltimes \mathbb{C}^2).$$

Exeter College, University of Oxford

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Francis Bischoff Normal forms for Logarithmic connections

Linearization: Definition

Morphisms of groupoids

$$\mathbb{C} \stackrel{\iota}{\longleftrightarrow} \mathbb{C} \ltimes \mathbb{C}^2$$

induce functors

$$Rep(\mathbb{C}) \stackrel{\iota^*}{\underset{p^*}{\longleftrightarrow}} Rep(\mathbb{C} \ltimes \mathbb{C}^2)$$

Linear approximation functor

$$L := p^*\iota^* : \operatorname{Rep}(\mathbb{C} \ltimes \mathbb{C}^2) \to \operatorname{Rep}(\mathbb{C} \ltimes \mathbb{C}^2).$$

Given a representation ψ , a linearization is an isomorphism $g: \psi \to L(\psi)$.

Francis Bischoff Normal forms for Logarithmic connections Exeter College, University of Oxford

イロト イポト イヨト イヨト 三日

Linearization: Obstruction

• The linear approximation of ψ has the form

$$L(\psi)(\lambda, x, y) = \exp(\lambda A),$$

for $A \in End(\mathbb{C}^n)$.

- The monodromy of $L(\psi)$ is constant $L(M)(x, y) = \exp(2\pi i A)$.
- Hence, if $g: \psi \to L(\psi)$ is a linearization, the monodromy of ψ :

$$M(x,y) = g(x,y) \exp(2\pi i A)g(x,y)^{-1}$$

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー ショマ

Exeter College, University of Oxford

lies in a **unique** conjugacy class of $GL_n(\mathbb{C})$.

Francis Bischoff

Normal forms for Logarithmic connections

Linearization

Theorem (B.)

A representation $\psi : \mathbb{C} \ltimes \mathbb{C}^2 \to GL_n(\mathbb{C})$ can be linearized if and only if the monodromy M lies in a unique conjugacy class.

Corollary

A representation can be linearized if it has semisimple monodromy.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Francis Bischoff Normal forms for Logarithmic connections Exeter College, University of Oxford

- Given representation $\psi : \mathbb{C} \ltimes \mathbb{C}^2 \to GL_n(\mathbb{C}).$
- Let $L(\psi)$ be the linear approximation.

The goal is to find an isomorphism between ψ and $L(\psi)$:

$$g:\mathbb{C}^2
ightarrow GL_n(\mathbb{C})$$

such that

$$g(e^{3\lambda}x,e^{2\lambda}y)L(\psi)(\lambda,x,y)=\psi(\lambda,x,y)g(x,y).$$

Francis Bischoff

Normal forms for Logarithmic connections

Exeter College, University of Oxford

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

Define an action of \mathbb{C} on $(\mathbb{C}^2 \times GL_n(\mathbb{C})) \to \mathbb{C}^2$:

$$\lambda * (x, y, g) = (e^{3\lambda}x, e^{2\lambda}y, \psi(\lambda, x, y)gL(\psi)(\lambda, x, y)^{-1}).$$

Reformulation: we are looking for an invariant section.

- 1 Conjugate ψ so that $M = L(\psi)(2\pi i)$ is constant.
- 2 C = C(M) centraliser. Then \mathbb{C} acts on $\mathbb{C}^2 \times C$.
- 3 Action descends to \mathbb{C}^* .

Exeter College, University of Oxford

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー ショマ

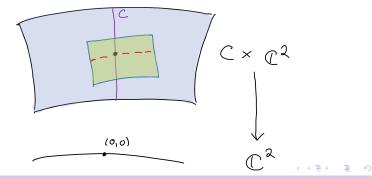
Normal forms for Logarithmic connections

proof

4 Linearize at the fixed point $(0,0,1) \in \mathbb{C}^2 \times C$. The result is a linear action of \mathbb{C}^* on $\mathcal{T}_{(0,0,1)}(\mathbb{C}^2 \times C)$, and a short exact sequence of representations:

$$0 \to T_I(C) \to T_{(0,0,I)}(\mathbb{C}^2 \times C) \to \mathbb{C}^2 \to 0.$$

5 A splitting of this sequence gives an invariant section.



Francis Bischoff

Exeter College, University of Oxford

Normal forms for Logarithmic connections

Goal: Given

$$\phi \in Rep(\Pi(\mathbb{C}^2, D)),$$

we want to linearize

$$r^*\phi \in Rep(\mathbb{C} \ltimes \mathbb{C}^2).$$

This is obstructed by the unipotent part of the monodromy.

Goal: Deform ϕ in order to make its monodromy semisimple.

Exeter College, University of Oxford

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

Francis Bischoff Normal forms for Logarithmic connections

Cocycle construction

Given a representation $\phi: \mathcal{G} \to GL_n(\mathbb{C})$, a 1-cocycle is a map

 $\sigma:\mathcal{G}\to GL_n(\mathbb{C})$

such that $\sigma(g)\phi(g)$ defines a new representation.

Proposition

Let K be a Lie group, and let $\pi : \mathcal{G} \to K$ be a homomorphism. Given a representation $\phi : \mathcal{G} \to GL_n(\mathbb{C})$, suppose that we have a homomorphism

 $c: K \to Aut(\phi).$

Then there is a 1-cocycle σ defined by

 $\sigma(g) := c(\pi(g))|_{t(g)}.$

Francis Bischoff

Normal forms for Logarithmic connections

Exeter College, University of Oxford

イロト 不得 とうき とうとう ほう

More about the twisted fundamental groupoid

• Recall that D is cut out by $f = x^2 - y^3 : \mathbb{C}^2 \to \mathbb{C}$.

Lemma:

$$\pi := rac{1}{6}\delta(\log f) = rac{1}{6}(t^*\log(f) - s^*\log(f)): \Pi(\mathbb{C}^2, D) o \mathbb{C}$$

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー ショマ

Exeter College, University of Oxford

is a well-defined groupoid morphism.

• $\pi \circ r = p : \mathbb{C} \ltimes \mathbb{C}^2 \to \mathbb{C}$ is the projection map.

Francis Bischoff

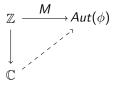
Normal forms for Logarithmic connections

What do we have so far:

- Homomorphism $\pi : \Pi(X, D) \to \mathbb{C}$.
- Given a representation ϕ , a monodromy homomorphism

$$M: \mathbb{Z} \to Aut(\phi).$$

This is almost the setting for constructing a cocycle: We need an extension



イロト イポト イヨト イヨト 三日

Normal forms for Logarithmic connections

An invertible matrix $M \in GL_n(\mathbb{C})$ has a unique factorization

$$M = SU$$
,

where S is diagonalizable, U is unipotent ($(U - I)^k = 0$ for large k) and SU = US.

The logarithm is well-defined and algebraic on unipotent matrices

$$\log(U) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} (U-I)^k.$$

Exeter College, University of Oxford

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー ショマ

Normal forms for Logarithmic connections

Jordan-Chevalley decomposition

Lemma

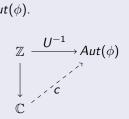
The unipotent part U of the monodromy M defines an automorphism of φ:

 $U \in Aut(\phi).$

The map

$$c: \mathbb{C} \to Aut(\phi), \qquad z \mapsto \exp(-z \log U)$$

extends $U^{-1}: \mathbb{Z} \to Aut(\phi)$.



Exeter College, University of Oxford

イロト イポト イヨト イヨト

Normal forms for Logarithmic connections

Jordan-Chevalley decomposition

Corollary

There is an equivalence of categories

$$Rep(\Pi(\mathbb{C}^2, D)) \cong \mathcal{JC} := \begin{cases} \text{Representations with} \\ \text{semisimple monodromy} + \\ \text{Unipotent automorphism} \end{cases}$$

$$\phi \mapsto (\phi_s := \sigma \phi, U).$$

This generalizes the Jordan decomposition of Hukuhara, Turrittin and Levelt

Francis Bischoff Normal forms for Logarithmic connections Exeter College, University of Oxford

Start with flat connection $\nabla = d + \omega$ with logarithmic singularities.

1 Integrate to representation $\phi \in Rep(\Pi(\mathbb{C}^2, D))$

2 Factorise
$$\phi \mapsto (\phi_s, U)$$
.

3 Restrict
$$\psi = r^* \phi_s \in Rep(\mathbb{C} \ltimes \mathbb{C}^2).$$

4 Linearize
$$g: \psi \to L(\psi)$$
.

Then $g * \nabla = d + g \omega g^{-1} + dg g^{-1}$ is in normal form.

Exeter College, University of Oxford

Francis Bischoff

Normal forms for Logarithmic connections

Thank You

Francis Bischoff Normal forms for Logarithmic connections Exeter College, University of Oxford