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Fuchsian singularities

Linear ODE on A1 with Fuchsian singularity at the origin:

z
ds

dz
= A(z)s,

where A(z) is a holomorphic n × n matrix.

Gauge transformations: s = g−1t, for g(z) ∈ GL(n). Then t satisfies

z
dt

dz
= B(z)t,

where B(z) = gAg−1 + zg ′(z)g−1.

Important names: Hukuhara, Turrittin, Levelt, Gantmacher, Babbitt and
Varadarajan, ...
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Fuchsian singularities

Fundamental Theorem

After a holomorphic gauge transformation

A(z) = S +
∑
i≥0

Niz
i ,

where

S is diagonal,

Ni is nilpotent and satisfies [S ,Ni ] = iNi ,

S + N0 is the linear approximation to A(z),

The other Ni are the resonant correction terms.

Levelt: This defines a Jordan decomposition.
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Implications for geometry

Fix r = x + iy + n ∈ End(Cn). This determines

1 a parabolic Px ⊆ GLn(C),

2 a Levi Lx = C (x) ⊂ Px

3 The conjugacy class of exp(2πir): C ⊂ Lx .

Boalch (also Deligne and Simpson): The moduli space of Fuchsian
equations with A(0) in the adjoint orbit of r isomorphic to

(Xr := {(M,P) | P ∼ Px , M ∈ P, π(M) ∈ C})/GLn(C)

Boalch: Xr is a quasi-Hamiltonian G -space.

Safronov: Xr/G → G/G is a 1-shifted Lagrangian.
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Cusp Singularity x2 = y 3

Consider the singular curve D ⊆ C2 defined by x2 = y3:

Goal: study flat connections on C2 with logarithmic singularities along D.
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Cusp Singularity f = x2 − y 3

1 Logarithmic flat connection:

∇ = d +
A

6f
df +

B

6f
(3xdy − 2ydx),

where A(x , y),B(x , y) ∈ End(Cn) holomorphic and satisfy

V (A)− E (B) + B + [A,B] = 0,

where
E = 3x∂x + 2y∂y , V = 3y2∂x + 2x∂y .

2 These are representations of the logarithmic tangent bundle

TC2 (− logD) = Vector fields on C2 tangent to D

Lie algebroid with basis E and V , and where [E ,V ] = V .
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Saito Free divisors

We know that TX (− logD) is locally free when D ⊂ X is a smooth
hypersurface.

This may fail when D is singular. This general situation was studied
by K. Saito.

Theorem (Saito’s Criterion)

A hypersurface D ⊂ Cn is a free divisor at a point x if and only if there
exist n vector fields X1, ...,Xn ∈ TCn(− logD) such that

X1 ∧ ... ∧ Xn = f · vol ,

with f a reduced equation for D near x .

Saito: Plane curves are always free =⇒ x2 = y3 is free.
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Cusp Singularity f = x2 − y 3

Theorem (B.)

After a holomorphic gauge transformation, the connection has the form

∇ = d +
(S + N)

6f
df +

B

6f
(3xdy − 2ydx),

where S is constant diagonal, N(x , y) is a holomorphic nilpotent matrix,
B(x , y) holomorphic, and

E (B) = B + [S ,B]

E (N) = [S ,N]

V (N) = [B,N].
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E (B) = B + [S ,B]

The vector field E = 3x∂x + 2y∂y defines a grading of coordinates:
|x | = 3, |y | = 2.

Bk , the weight k component of B, is an eigenvector for adS :

[S ,Bk ] = (k − 1)Bk .

Therefore, E (B) = B + [S ,B] defines a finite dimensional vector
space.
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Implications for geometry

Fix S . Then flat connections are parametrized by (B,N). The first two
equations define a finite dimensional affine space

WS = {(B,N) | E (B) = B + [S ,B], E (N) = [S ,N]}.

The last equation defines an algebraic subvariety

XS = {(B,N) ∈WS | V (N) = [B,N], N is nilpotent} ⊂WS .

Corollary (B.)

The moduli space of logarithmic flat connections with poles along the
cusp and ‘semisimple residue’ conjugate to S has the structure of an
algebraic quotient stack

[XS/Aut(S)].
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Sekiguchi’s 17 free divisors
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Sekiguchi’s 17 free divisors

Sekiguchi gave a classification of weighted homogeneous free
divisors in C3. There are 17 examples.

One of the examples is the vanishing of F = xy4 + y3z + z3:
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Sekiguchi’s free divisor F = xy 4 + y 3z + z3

TC3 (− logD) has the following basis

E = x∂x + 2y∂y + 3z∂z

V = 2y∂x + (−24xy + 2z)∂y + (−2y2 − 32xz)∂z

W = 3z∂x − 9y2∂y − 12yz∂z ,

with brackets

[E ,V ] = V , [E ,W ] = 2W , [V ,W ] = 24zE + 6yV − 40xW .
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Sekiguchi’s free divisor F = xy 4 + y 3z + z3

TC3 (− logD) has a basis E ,V ,W . Dual basis α, β, γ of log 1-forms.

A flat logarithmic connection is given by

∇ = d + Aα + Bβ + Cγ,

where A,B,C ∈ End(Cn) are holomorphic functions on C3 that satisfy

E (B)− V (A)− B + [B,A] = 0

E (C )−W (A)− 2C + [C ,A] = 0

V (C )−W (B)− 24zA− 6yB + 40xC + [C ,B] = 0.
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Sekiguchi’s free divisor F = xy 4 + y 3z + z3

Theorem (B.)

After a holomorphic gauge transformation, the connection has the form

∇ = d + (S + N)α + (B − 32

3
xN)β + (C − 4yN)γ,

where S is constant diagonal, N is holomorphic and nilpotent, B and C
are holomorphic, and

E (B) = B + [S ,B]

E (C ) = 2C + [S ,C ]

E (N) = [S ,N]

V (N) = [B,N]

W (N) = [C ,N]

V (C )−W (B) = 24zS + 6yB − 40xC − [C ,B].
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Sekiguchi’s free divisor F = xy 4 + y 3z + z3

Corollary (B.)

The moduli space of logarithmic flat connections with poles along
Sekiguchi’s hypersurface and ‘semisimple residue’ conjugate to S has the
structure of an algebraic quotient stack

[XS/Aut(S)].

Corollary (B.)

TC3 (− logD) is not an action algebroid

TC3 (− logD) 6∼= gnC3.
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Plan for the talk

Discuss the proof of the normal form theorem in the case of the cusp
curve.

Strategy: integrate TC2 (− logD) to a Lie groupoid Π(X ,D) and
study it’s representation theory.

Relies on the theory of ‘homogeneous Lie groupoids’.

Two main results: Linearization and Jordan decomposition.
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Cusp Singularity f = x2 − y 3

1 Logarithmic tangent bundle TC2 (− logD) has basis of sections

E = 3x∂x + 2y∂y , V = 3y2∂x + 2x∂y ,

which satisfy [E ,V ] = V . Therefore,

TC2 (− logD) ∼= gA nC2,

where gA is the non-abelian Lie algebra of dimension 2.

2 Source-simply connected integration is the twisted fundamental
groupoid Π(C2,D): ‘homotopy classes of paths in C2 tangent to D’.

3 Lie’s second theorem:{
Flat connections ∇ with
logarithmic poles along D

}
←→

{
Groupoid representations
φ : Π(C2,D)→ GLn(C)

}
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Twisted fundamental groupoid

TC2 (− logD) ∼= gA nC2, but Π(C2,D) 6∼= GA nC2, for GA = CnC,
since the vector field V is not complete.
f = x2 − y3 : C2 → C fibration of C2 by once punctured elliptic
curves.
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Twisted fundamental groupoid

Fibrewise compactification X = C2, D ⊂ X .
Then Π(X ,D) ∼= GA n X .
But Π(X ,D)|C2 6∼= Π(C2,D) since

π1(X \ D) ∼= Z n Z2, π1(C2 \ D) ∼= Z n F2

So take the Weinstein groupoid of Π(X ,D)|C2 .
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Subgroupoids

There is a sub-action groupoid

r : Cn C2 → Π(C2,D)

(e3λx , e2λy) (x , y)

(λ, x , y)

Subgroupoid of isotropy elements

i : Z× C2 → Cn C2 → Π(C2,D).

This subgroupoid is central.
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Restricting representations

We can restrict representations along groupoid homomorphisms

r∗ : Rep(Π(C2,D))→ Rep(Cn C2),

φ : Π(C2,D)→ GLn(C) 7→ φ ◦ r : Cn C2 → GLn(C)
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Monodromy automorphism

Given a representation

φ : Π(C2,D)→ GLn(C)

Restrict φ along the isotropy subgroupoid i : Z× C2 → Π(C2,D):

M(x , y) := ι∗φ(1, x , y)

Lemma: Because Z× C2 is central, M is an automorphism of φ.
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First main result: Linearization

Goal: Given
φ ∈ Rep(Π(C2,D)),

we want to linearize
r∗φ ∈ Rep(Cn C2).
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Linearization: Definition

Morphisms of groupoids

C Cn C2
ι

p

induce functors

Rep(C) Rep(Cn C2)
p∗

ι∗

Linear approximation functor

L := p∗ι∗ : Rep(Cn C2)→ Rep(Cn C2).

Given a representation ψ, a linearization is an isomorphism g : ψ → L(ψ).
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Linearization: Obstruction

The linear approximation of ψ has the form

L(ψ)(λ, x , y) = exp(λA),

for A ∈ End(Cn).

The monodromy of L(ψ) is constant L(M)(x , y) = exp(2πiA).

Hence, if g : ψ → L(ψ) is a linearization, the monodromy of ψ:

M(x , y) = g(x , y) exp(2πiA)g(x , y)−1

lies in a unique conjugacy class of GLn(C).
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Linearization

Theorem (B.)

A representation ψ : Cn C2 → GLn(C) can be linearized if and only if
the monodromy M lies in a unique conjugacy class.

Corollary

A representation can be linearized if it has semisimple monodromy.
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proof

Given representation ψ : Cn C2 → GLn(C).

Let L(ψ) be the linear approximation.

The goal is to find an isomorphism between ψ and L(ψ):

g : C2 → GLn(C)

such that

g(e3λx , e2λy)L(ψ)(λ, x , y) = ψ(λ, x , y)g(x , y).
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proof

Define an action of C on (C2 × GLn(C))→ C2:

λ ∗ (x , y , g) = (e3λx , e2λy , ψ(λ, x , y)gL(ψ)(λ, x , y)−1).

Reformulation: we are looking for an invariant section.

1 Conjugate ψ so that M = L(ψ)(2πi) is constant.

2 C = C (M) centraliser. Then C acts on C2 × C .

3 Action descends to C∗.
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proof

4 Linearize at the fixed point (0, 0, I ) ∈ C2 × C . The result is a linear
action of C∗ on T(0,0,I )(C2 × C ), and a short exact sequence of
representations:

0→ TI (C )→ T(0,0,I )(C2 × C )→ C2 → 0.

5 A splitting of this sequence gives an invariant section.
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Recap

Goal: Given
φ ∈ Rep(Π(C2,D)),

we want to linearize
r∗φ ∈ Rep(Cn C2).

This is obstructed by the unipotent part of the monodromy.

Goal: Deform φ in order to make its monodromy semisimple.
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Cocycle construction

Given a representation φ : G → GLn(C), a 1-cocycle is a map

σ : G → GLn(C)

such that σ(g)φ(g) defines a new representation.

Proposition

Let K be a Lie group, and let π : G → K be a homomorphism. Given a
representation φ : G → GLn(C), suppose that we have a homomorphism

c : K → Aut(φ).

Then there is a 1-cocycle σ defined by

σ(g) := c(π(g))|t(g).
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More about the twisted fundamental groupoid

Recall that D is cut out by f = x2 − y3 : C2 → C.

Lemma:

π :=
1

6
δ(log f ) =

1

6
(t∗ log(f )− s∗ log(f )) : Π(C2,D)→ C

is a well-defined groupoid morphism.

π ◦ r = p : Cn C2 → C is the projection map.
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What do we have so far:

Homomorphism π : Π(X ,D)→ C.

Given a representation φ, a monodromy homomorphism

M : Z→ Aut(φ).

This is almost the setting for constructing a cocycle: We need an
extension

Z Aut(φ)

C

M
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Jordan-Chevalley decomposition

An invertible matrix M ∈ GLn(C) has a unique factorization

M = SU,

where S is diagonalizable, U is unipotent ( (U − I )k = 0 for large k)
and SU = US .

The logarithm is well-defined and algebraic on unipotent matrices

log(U) =
∞∑
k=1

(−1)k

k
(U − I )k .
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Jordan-Chevalley decomposition

Lemma

The unipotent part U of the monodromy M defines an
automorphism of φ:

U ∈ Aut(φ).

The map
c : C→ Aut(φ), z 7→ exp(−z logU)

extends U−1 : Z→ Aut(φ).

Z Aut(φ)

C

U−1

c
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Jordan-Chevalley decomposition

Corollary

There is an equivalence of categories

Rep(Π(C2,D)) ∼= J C :=

 Representations with
semisimple monodromy +
Unipotent automorphism


φ 7→ (φs := σφ,U).

This generalizes the Jordan decomposition of Hukuhara, Turrittin and
Levelt
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proof of normal form

Start with flat connection ∇ = d + ω with logarithmic singularities.

1 Integrate to representation φ ∈ Rep(Π(C2,D))

2 Factorise φ 7→ (φs ,U).

3 Restrict ψ = r∗φs ∈ Rep(Cn C2).

4 Linearize g : ψ → L(ψ).

Then g ∗ ∇ = d + gωg−1 + dgg−1 is in normal form.
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