On 2-shifted lagrangian groupoids and Poisson geometry

(joint work with H. Bursztyn and M. Cueca)

D. Álvarez University of Toronto

July 28, 2022

Today's goal

We will use shifted symplectic geometry to explain several constructions of symplectic groupoids such as:

• The integration of quasi-Poisson spaces

Today's goal

We will use shifted symplectic geometry to explain several constructions of symplectic groupoids such as:

- The integration of quasi-Poisson spaces
- The integration of Poisson homogeneous spaces.

Today's goal

We will use shifted symplectic geometry to explain several constructions of symplectic groupoids such as:

- The integration of quasi-Poisson spaces
- The integration of Poisson homogeneous spaces.
- Finally, we will mention how to construct more general 2-shifted lagrangian groupoids

The standard construction of new symplectic manifolds out of old ones is Marsden-Weinstein reduction:

• (M, ω) hamiltonian G-space

The standard construction of new symplectic manifolds out of old ones is Marsden-Weinstein reduction:

- (M, ω) hamiltonian G-space
- $(\mathcal{O}, \omega_{KKS}) \hookrightarrow \mathfrak{g}^*$ coadjoint orbit

The standard construction of new symplectic manifolds out of old ones is Marsden-Weinstein reduction:

- (M, ω) hamiltonian G-space
- $(\mathcal{O}, \omega_{KKS}) \hookrightarrow \mathfrak{g}^*$ coadjoint orbit
- if the moment maps are transverse

$$(M,\omega) \xrightarrow{\mu} \mathfrak{g}^* \longleftarrow (\mathcal{O},\omega_{KKS})$$

Then the fibred product $M \times_{\mathfrak{g}^*} \overline{\mathcal{O}}$ is symplectic mod the *G*-action

■ The input is a couple of "moment maps" (strong Dirac morphisms)

$$(M,\omega) \xrightarrow{\mu} (P,L) \xleftarrow{\mu'} (M',\omega')$$

■ The input is a couple of "moment maps" (strong Dirac morphisms)

$$(M,\omega) \xrightarrow{\mu} (P,L) \xleftarrow{\mu'} (M',\omega')$$

where (P, L) is a Dirac manifold (the 2-forms need not be closed or nondegenerate)

■ The input is a couple of "moment maps" (strong Dirac morphisms)

$$(M,\omega) \xrightarrow{\mu} (P,L) \xleftarrow{\mu'} (M',\omega')$$

where (P, L) is a Dirac manifold (the 2-forms need not be closed or nondegenerate)

The output is

 $M \times_P \overline{M'}$

which is symplectic mod the action of L

■ The input is a couple of "moment maps" (strong Dirac morphisms)

$$(M,\omega) \xrightarrow{\mu} (P,L) \xleftarrow{\mu'} (M',\omega')$$

where (P, L) is a Dirac manifold (the 2-forms need not be closed or nondegenerate)

The output is

$$M \times_P \overline{M'}$$

which is symplectic mod the action of L

■ The input is a couple of "moment maps" (strong Dirac morphisms)

$$(M,\omega) \xrightarrow{\mu} (P,L) \xleftarrow{\mu'} (M',\omega')$$

where (P, L) is a Dirac manifold (the 2-forms need not be closed or nondegenerate)

The output is

$$M \times_P \overline{M'}$$

which is symplectic mod the action of L

Depending on the choice of Dirac manifold (P, L) we get:

• reduction by a hamiltonian Poisson action (Lu-Weinstein)

The input is a couple of "moment maps" (strong Dirac morphisms)

$$(M,\omega) \xrightarrow{\mu} (P,L) \xleftarrow{\mu'} (M',\omega')$$

where (P, L) is a Dirac manifold (the 2-forms need not be closed or nondegenerate)

The output is

$$M \times_P \overline{M'}$$

which is symplectic mod the action of L

- reduction by a hamiltonian Poisson action (Lu-Weinstein)
- reduction by a symplectic groupoid action (Mikami-Weinstein)

The input is a couple of "moment maps" (strong Dirac morphisms)

$$(M,\omega) \xrightarrow{\mu} (P,L) \xleftarrow{\mu'} (M',\omega')$$

where (P, L) is a Dirac manifold (the 2-forms need not be closed or nondegenerate)

The output is

$$M \times_P \overline{M'}$$

which is symplectic mod the action of L

- reduction by a hamiltonian Poisson action (Lu-Weinstein)
- reduction by a symplectic groupoid action (Mikami-Weinstein)
- quasi-hamiltonian reduction (Alekseev-Malkin-Meinrenken)

The input is a couple of "moment maps" (strong Dirac morphisms)

$$(M,\omega) \xrightarrow{\mu} (P,L) \xleftarrow{\mu'} (M',\omega')$$

where (P, L) is a Dirac manifold (the 2-forms need not be closed or nondegenerate)

The output is

$$M \times_P \overline{M'}$$

which is symplectic mod the action of L

- reduction by a hamiltonian Poisson action (Lu-Weinstein)
- reduction by a symplectic groupoid action (Mikami-Weinstein)
- quasi-hamiltonian reduction (Alekseev-Malkin-Meinrenken)
- reduction by quasi(/pre)-symplectic groupoid actions (Bursztyn-Crainic, Xu)

This was all about producing symplectic *manifolds* by reduction but what about symplectic *groupoids*?

"Multiplicative moment map reduction": the moment maps are groupoid morphisms

• Multiplicative Marsden-Weinstein (Mikami-Weinstein, Fernandes-Ortega-Ratiu):

$$(\Sigma
ightarrow M, \omega) \xrightarrow{\mu} \mathfrak{g}^* \prec \{0\}$$

"Multiplicative moment map reduction": the moment maps are groupoid morphisms

• Multiplicative Marsden-Weinstein (Mikami-Weinstein, Fernandes-Ortega-Ratiu):

$$(\Sigma
ightarrow M, \omega) \xrightarrow{\mu} \mathfrak{g}^* \prec \{0\}$$

• Multiplicative Lu-Weinstein reduction (Xu, Fernandes-Iglesias)

"Multiplicative moment map reduction": the moment maps are groupoid morphisms

• Multiplicative Marsden-Weinstein (Mikami-Weinstein, Fernandes-Ortega-Ratiu):

$$(\Sigma
ightarrow M, \omega) \xrightarrow{\mu} \mathfrak{g}^* \prec \{0\}$$

- Multiplicative Lu-Weinstein reduction (Xu, Fernandes-Iglesias)
- Multiplicative quasi-hamiltonian reduction (Li-Bland-Severa, A.)

"Multiplicative moment map reduction": the moment maps are groupoid morphisms

• Multiplicative Marsden-Weinstein (Mikami-Weinstein, Fernandes-Ortega-Ratiu):

$$(\Sigma
ightarrow M, \omega) \xrightarrow{\mu} \mathfrak{g}^* \prec \{0\}$$

- Multiplicative Lu-Weinstein reduction (Xu, Fernandes-Iglesias)
- Multiplicative quasi-hamiltonian reduction (Li-Bland-Severa, A.)

There are more things: double symplectic groupoid actions on symplectic groupoids (Stefanini)...

There are also some constructions of symplectic groupoids apparently unrelated to the previous methods:

There are also some constructions of symplectic groupoids apparently unrelated to the previous methods:

• Symplectic groupoids of Poisson homogeneous spaces (Bursztyn-Iglesias-Lu)

There are also some constructions of symplectic groupoids apparently unrelated to the previous methods:

- Symplectic groupoids of Poisson homogeneous spaces (Bursztyn-Iglesias-Lu)
- Configuration symplectic groupoids of flags (Lu-Mouquin-Yu)

All the previous constructions are examples of a single principle from shifted symplectic geometry

All the previous constructions are examples of a single principle from shifted symplectic geometry

 $\circ~$ We have to extend our concept of moment map to accomodate the "ad hoc" examples that we mentioned

All the previous constructions are examples of a single principle from shifted symplectic geometry

- $\circ~$ We have to extend our concept of moment map to accomodate the "ad hoc" examples that we mentioned
- $\circ~$ The required concept is that of (2-shifted) lagrangian structures on Lie groupoid morphisms

(Following Getzler's slides)

 \circ $K_1
ightarrow K_0$ Lie groupoid, K_{ullet} its nerve

(Following Getzler's slides)

- \circ $K_1
 ightarrow K_0$ Lie groupoid, K_{ullet} its nerve
- $(\Omega^{\bullet}(K_{\bullet}), \delta, d, D = \delta \pm d)$ Bott-Shulman double complex (normalised)

(Following Getzler's slides)

- \circ $K_1
 ightarrow K_0$ Lie groupoid, K_{ullet} its nerve
- $(\Omega^{\bullet}(K_{\bullet}), \delta, d, D = \delta \pm d)$ Bott-Shulman double complex (normalised)
- *m*-shifted *n*-form ω_{\bullet} on $K_1 \rightrightarrows K_0$ is $(\omega_i \in \Omega^{m+n-i}(K_i))_{i=0...m}$, $\omega_m \in \Omega^n(X_m)$ the leading term

(Following Getzler's slides)

- \circ $K_1
 ightarrow K_0$ Lie groupoid, K_{ullet} its nerve
- $(\Omega^{\bullet}(K_{\bullet}), \delta, d, D = \delta \pm d)$ Bott-Shulman double complex (normalised)
- *m*-shifted *n*-form ω_{\bullet} on $K_1 \rightrightarrows K_0$ is $(\omega_i \in \Omega^{m+n-i}(K_i))_{i=0...m}$, $\omega_m \in \Omega^n(X_m)$ the leading term

so an *m*-shifted *n*-form is an element of total degree m + n in the total complex whose components are forms of degrees $\geq n$

(Following Getzler's slides)

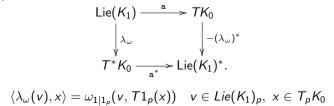
- \circ $K_1
 ightarrow K_0$ Lie groupoid, K_{ullet} its nerve
- $(\Omega^{\bullet}(K_{\bullet}), \delta, d, D = \delta \pm d)$ Bott-Shulman double complex (normalised)
- *m*-shifted *n*-form ω_{\bullet} on $K_1 \rightrightarrows K_0$ is $(\omega_i \in \Omega^{m+n-i}(K_i))_{i=0...m}$, $\omega_m \in \Omega^n(X_m)$ the leading term

so an *m*-shifted *n*-form is an element of total degree m + n in the total complex whose components are forms of degrees $\ge n$

 ω_{\bullet} is closed if $D\omega_{\bullet} = 0$

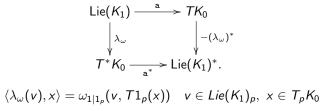
Infinitesimal form of a closed *n*-shifted 2-form ω_{\bullet}

Shift 1:



Infinitesimal form of a closed *n*-shifted 2-form ω_{\bullet}

Shift 1:



Shift 2:

$$\begin{split} & \langle \lambda_{\omega}(v), w \rangle = -\omega_{2|(1_{\rho}, 1_{\rho})}\big((v, 0_{1_{\rho}}), (0_{1_{\rho}}, w)\big) + \omega_{2|(1_{\rho}, 1_{\rho})}\big((0_{1_{\rho}}, v), (w, 0_{1_{\rho}})\big) \\ & v, w \in \mathsf{Lie}(\mathcal{K}_{1})_{\rho} \end{split}$$

A closed *n*-shifted 2-form ω is *symplectic* if the infinitesimal 2-form λ_{ω} induces an isomorphism in homology:

A closed *n*-shifted 2-form ω is *symplectic* if the infinitesimal 2-form λ_{ω} induces an isomorphism in homology:

$$\mathcal{T}_{\mathcal{K}_{ullet}} = (a: \operatorname{Lie}(\mathcal{K}_1) o \mathcal{T}\mathcal{K}_0), \quad \lambda_{\omega}: \mathcal{T}_{\mathcal{K}_{ullet}} o \mathcal{T}^*_{\mathcal{K}_{ullet}}[n]$$

A closed *n*-shifted 2-form ω is *symplectic* if the infinitesimal 2-form λ_{ω} induces an isomorphism in homology:

$$\mathcal{T}_{\mathcal{K}_{ullet}} = (a: \operatorname{Lie}(\mathcal{K}_1) \to \mathcal{T}\mathcal{K}_0), \quad \lambda_{\omega}: \mathcal{T}_{\mathcal{K}_{ullet}} \to \mathcal{T}^*_{\mathcal{K}_{ullet}}[n]$$

 0-shifted symplectic groupoids are foliation groupoids that are transversely symplectic (Hoffman-Sjamaar-Zhu) A closed *n*-shifted 2-form ω is *symplectic* if the infinitesimal 2-form λ_{ω} induces an isomorphism in homology:

$$\mathcal{T}_{\mathcal{K}_{ullet}} = (a: \operatorname{Lie}(\mathcal{K}_1) o \mathcal{T}\mathcal{K}_0), \quad \lambda_{\omega}: \mathcal{T}_{\mathcal{K}_{ullet}} o \mathcal{T}^*_{\mathcal{K}_{ullet}}[n]$$

- 0-shifted symplectic groupoids are foliation groupoids that are transversely symplectic (Hoffman-Sjamaar-Zhu)
- 1-shifted symplectic groupoids are quasi(/pre)-symplectic groupoids (Xu, Bursztyn-Crainic-Weinstein-Zhu)

A closed *n*-shifted 2-form ω is *symplectic* if the infinitesimal 2-form λ_{ω} induces an isomorphism in homology:

$$\mathcal{T}_{\mathcal{K}_{\bullet}} = (\texttt{a}: \mathsf{Lie}(\mathcal{K}_{1}) \to \mathcal{T}\mathcal{K}_{0}), \quad \lambda_{\omega}: \mathcal{T}_{\mathcal{K}_{\bullet}} \to \mathcal{T}^{*}_{\mathcal{K}_{\bullet}}[n]$$

- 0-shifted symplectic groupoids are foliation groupoids that are transversely symplectic (Hoffman-Sjamaar-Zhu)
- 1-shifted symplectic groupoids are quasi(/pre)-symplectic groupoids (Xu, Bursztyn-Crainic-Weinstein-Zhu) (meaning of non-degeneracy equation also explained by del Hoyo-Ortiz)
- $\circ~$ 2-shifted symplectic groupoids have surjective anchor

2-shifted symplectic groupoids given by Lie groups

 $\circ~{\it K}$ Lie group, ${\it t\!\!\!\! t}$ quadratic Lie algebra

- $\circ~{\it K}$ Lie group, ${\it t\!\!\!\! t}$ quadratic Lie algebra
- \circ K_{\bullet} is 2-shifted symplectic groupoid with ω_{\bullet} (Weinstein)

$$\omega_1 = rac{1}{12} \langle [heta' \wedge heta'] \wedge heta'
angle \in \Omega^3(\mathcal{K}), \quad \omega_2 = -rac{1}{2} \langle \mathsf{pr}_1^* heta' \wedge \mathsf{pr}_2^* heta'
angle \in \Omega^2(\mathcal{K}_2 = \mathcal{K}^2)$$

- $\circ~{\it K}$ Lie group, ${\it t\!\!\!\! t}$ quadratic Lie algebra
- \circ K_{\bullet} is 2-shifted symplectic groupoid with ω_{\bullet} (Weinstein)

$$\omega_1 = rac{1}{12} \langle [heta' \wedge heta'] \wedge heta'
angle \in \Omega^3(\mathcal{K}), \quad \omega_2 = -rac{1}{2} \langle \mathsf{pr}_1^* heta' \wedge \mathsf{pr}_2^* heta'
angle \in \Omega^2(\mathcal{K}_2 = \mathcal{K}^2)$$

 $\circ~\lambda_\omega$ is contraction with the pairing $\langle\,,\,\rangle$

Moment maps are lagrangian morphisms

 $\circ~$ An $\mathit{n}\mbox{-shifted}$ isotropic structure η_{\bullet} on a Lie groupoid morphism

 $\phi_{\bullet}: X_{\bullet} \to K_{\bullet}$

for $(K_{\bullet}, \omega_{\bullet})$ *n*-shifted symplectic is a (normalised) n-1-shifted 2-form which is a primitive for $\phi_{\bullet}^*\omega_{\bullet}$:

$$D\eta_{\bullet} = \phi_{\bullet}^* \omega_{\bullet}$$

Moment maps are lagrangian morphisms

 $\circ~$ An $\mathit{n}\mbox{-shifted}$ isotropic structure η_{\bullet} on a Lie groupoid morphism

 $\phi_{\bullet}: X_{\bullet} \to K_{\bullet}$

for $(K_{\bullet}, \omega_{\bullet})$ *n*-shifted symplectic is a (normalised) n-1-shifted 2-form which is a primitive for $\phi_{\bullet}^*\omega_{\bullet}$:

$$D\eta_{\bullet} = \phi_{\bullet}^* \omega_{\bullet}$$

$$(\phi_2^*\omega_2=\delta\eta_1, \quad -d\omega_1+\delta\eta_0=\phi^*\omega_1, \quad d\eta_0=0)$$

Moment maps are lagrangian morphisms

 $\circ~$ An $\mathit{n}\mbox{-shifted}$ isotropic structure η_{\bullet} on a Lie groupoid morphism

 $\phi_{\bullet}: X_{\bullet} \to K_{\bullet}$

for $(K_{\bullet}, \omega_{\bullet})$ *n*-shifted symplectic is a (normalised) n-1-shifted 2-form which is a primitive for $\phi_{\bullet}^*\omega_{\bullet}$:

$$D\eta_{\bullet} = \phi_{\bullet}^* \omega_{\bullet}$$

$$(\phi_2^*\omega_2 = \delta\eta_1, \quad -d\omega_1 + \delta\eta_0 = \phi^*\omega_1, \quad d\eta_0 = 0)$$

• η_{\bullet} is *n-shifted lagrangian* if it induces a quasi-isomorphism

$$(\lambda_{\eta} \oplus \phi^* \lambda_{\omega}) :$$
 $\overbrace{\mathcal{T}_X \oplus \phi^* \mathcal{T}_K[-1]}^{\mathsf{mapping cone of Lie}(\phi)} \to \mathcal{T}_X^*[n-1]$
 $\partial = \begin{bmatrix} \mathsf{a}_X & \mathsf{0} \\ \mathcal{T}_{\phi} & -\mathsf{a}_K \end{bmatrix}$

2-shifted lagrangian groupoids in a Lie group K_{\bullet}

Concretely:

2-shifted lagrangian groupoids in K_{\bullet} : $(\phi : X_1 \to K, \eta_{\bullet} = \eta_0 + \eta_1)$ such that: $\circ D\eta_{\bullet} = \phi_{\bullet}^* \omega_{\bullet}$ $\circ (\text{Lie}(\phi), \mathbf{a}, \eta_1^{\flat})$ embeds $\text{Lie}(X_1)$ as a Dirac structure in $\mathfrak{k} \oplus \mathbb{T}_{\eta_0} X_0$

2-shifted lagrangian groupoids in a Lie group K_{\bullet}

Concretely:

2-shifted lagrangian groupoids in K_{\bullet} : $(\phi : X_1 \to K, \eta_{\bullet} = \eta_0 + \eta_1)$ such that: $\circ D\eta_{\bullet} = \phi_{\bullet}^* \omega_{\bullet}$ $\circ (\text{Lie}(\phi), \mathbf{a}, \eta_1^{\flat})$ embeds $\text{Lie}(X_1)$ as a Dirac structure in $\mathfrak{k} \oplus \mathbb{T}_{\eta_0} X_0$

First examples:

■ quasi-symplectic groupoids for trivial *K*

2-shifted lagrangian groupoids in a Lie group K_{\bullet}

Concretely:

2-shifted lagrangian groupoids in K_{\bullet} : $(\phi : X_1 \to K, \eta_{\bullet} = \eta_0 + \eta_1)$ such that: $\circ D\eta_{\bullet} = \phi_{\bullet}^* \omega_{\bullet}$ $\circ (\text{Lie}(\phi), \mathbf{a}, \eta_1^{\flat})$ embeds $\text{Lie}(X_1)$ as a Dirac structure in $\mathfrak{k} \oplus \mathbb{T}_{\eta_0} X_0$

First examples:

- \blacksquare quasi-symplectic groupoids for trivial K
 - lagrangian subgroups of K

Why do we care about these objects?

Why do we care about these objects?

Symplectic reduction is given by intersection (fibred products) of lagrangians

 $\circ\,$ Calaque: hamiltonian G-spaces correspond to 1-shifted lagrangian groupoids of the form

$$(G \times M \rightrightarrows M, \omega) \rightarrow (G \times \mathfrak{g}^* \rightrightarrows \mathfrak{g}^*, \Omega_{\mathsf{can}} + 0)$$

 Safronov: q-hamiltonian G-spaces correspond to 1-shifted lagrangian groupoids

$$(G \times M \rightrightarrows M, \omega) \rightarrow (G \times G \rightrightarrows G, \Omega_{\mathsf{AMM}} + \omega_1)$$

- $\circ\,$ the intersection of two 1-shifted lagrangian morphisms is their fibred product which is 0-symplectic
- This principle generalises Marsden-Weinstein reduction and quasi-hamiltonian reduction

 $\circ\,$ Calaque: hamiltonian G-spaces correspond to 1-shifted lagrangian groupoids of the form

$$(G \times M \rightrightarrows M, \omega) \rightarrow (G \times \mathfrak{g}^* \rightrightarrows \mathfrak{g}^*, \Omega_{\mathsf{can}} + 0)$$

 Safronov: q-hamiltonian G-spaces correspond to 1-shifted lagrangian groupoids

$$(G \times M \rightrightarrows M, \omega) \rightarrow (G \times G \rightrightarrows G, \Omega_{\mathsf{AMM}} + \omega_1)$$

- $\circ\,$ the intersection of two 1-shifted lagrangian morphisms is their fibred product which is 0-symplectic
- This principle generalises Marsden-Weinstein reduction and quasi-hamiltonian reduction
- (and also the more general reduction by quasi-symplectic groupoid actions)

Another instance of this principle

 $(\phi,\eta): X_1 \to K$, $(\psi,\theta): Y_1 \to K$ be two 2-shifted transverse lagrangian morphisms

$$(X_1,\eta) \xrightarrow{\phi} (K_{\bullet},\omega_{\bullet}) \xleftarrow{\psi} (Y_1,\zeta)$$

then the fibred product

$$X_1 imes_{\mathcal{K}} \overline{Y_1} := (X_1 imes_{\mathcal{K}} Y_1
ightrightarrow X_0 imes Y_0)$$

equipped with $\zeta = \mathrm{pr}_1^* \eta - \mathrm{pr}_2^* \theta$ is a quasi-symplectic groupoid.

Another instance of this principle

 $(\phi,\eta): X_1 \to K$, $(\psi,\theta): Y_1 \to K$ be two 2-shifted transverse lagrangian morphisms

$$(X_1,\eta) \xrightarrow{\phi} (K_{\bullet},\omega_{\bullet}) \xleftarrow{\psi} (Y_1,\zeta)$$

then the fibred product

$$X_1 \times_{\kappa} \overline{Y_1} := (X_1 \times_{\kappa} Y_1 \rightrightarrows X_0 \times Y_0)$$

equipped with $\zeta = pr_1^*\eta - pr_2^*\theta$ is a quasi-symplectic groupoid.

More generally, $(\phi, \eta) : X_1 \to K$, $(\psi, \theta) : Y_1 \to K$ be two 2-shifted lagrangian groupoids, then the homotopy fibred product

$$X_1 \stackrel{\sim}{\times}_{\kappa} Y_1 \cong (X_1 \times Y_1 \times K \rightrightarrows X_0 \times Y_0 \times K)$$

is quasi-symplectic

How to view multiplicative moment map reduction in this framework?

How to view multiplicative moment map reduction in this framework?

It turns out that all the constructions of symplectic and quasi-symplectic groupoids by reduction described before are special cases of the previous result

Relation with classical moment maps

• G complete 1-connected Poisson group acting on (M, π) integrable Poisson manifold, then

$$\Sigma(M) \rightrightarrows M, \quad \mu: \Sigma(M) \rightarrow G^*, \quad G \times M \rightrightarrows M$$

are a matched pair of Lie groupoids that give us a 2-shifted lagrangian groupoid (Lu) $% \left(Lu\right) =0$

 $\Sigma(M) \Join G
ightarrow M, \quad (x,a) \mapsto (\mu(x),a) \in G^* imes G$

Relation with classical moment maps

• G complete 1-connected Poisson group acting on (M, π) integrable Poisson manifold, then

$$\Sigma(M) \rightrightarrows M, \quad \mu: \Sigma(M) \rightarrow G^*, \quad G \times M \rightrightarrows M$$

are a matched pair of Lie groupoids that give us a 2-shifted lagrangian groupoid (Lu) $% \left(Lu\right) =0$

$$\Sigma(M) \Join G \rightrightarrows M, \quad (x,a) \mapsto (\mu(x),a) \in G^* \times G$$

• (M, π) a q-Poisson *G*-manifold and $\mathcal{G} \rightrightarrows M$ source-simply-connected integration of $T^*_{\mathfrak{g}}M$, then \mathcal{G} with $\alpha \in \Omega^2$ and $\mu : \mathcal{G} \to \mathcal{G}$ is a *q*-hamiltonian groupoid (Li-Bland-Severa)

$$\mathcal{G} \rtimes \mathcal{G} \rightrightarrows \mathcal{M}, \quad (x, a) \mapsto (\mu(x)a, a) \in \mathcal{G} \times \overline{\mathcal{G}}, \quad \operatorname{pr}_1^* \alpha + (\mu \circ \operatorname{pr}_1, \operatorname{pr}_2)^* \omega_2$$

make it into a 2-shifted lagrangian groupoid (assuming that \mathcal{G} -acts on \mathcal{G})

Other examples of 2-shifted lagrangian groupoids can be constructed by looking at the infinitesimal level

 $\mathfrak k$ quadratic Lie algebra, $\eta_0\in\Omega^3(X_0)$ closed

 \mathfrak{k} quadratic Lie algebra, $\eta_0 \in \Omega^3(X_0)$ closed An integrable Dirac structure

 $L \subset \mathbb{T}_{\eta_0} X_0 \times \mathfrak{k}$

integrates to a source-simply-connected 2-shifted lagrangian groupoid

$$(X_1 \rightrightarrows X_0, \eta) \rightarrow (K, \omega)$$

 \mathfrak{k} quadratic Lie algebra, $\eta_0 \in \Omega^3(X_0)$ closed An integrable Dirac structure

 $L \subset \mathbb{T}_{\eta_0} X_0 \times \mathfrak{k}$

integrates to a source-simply-connected 2-shifted lagrangian groupoid

$$(X_1 \rightrightarrows X_0, \eta) \rightarrow (K, \omega)$$

This follows from Van Est Theorem (Arias Abad-Crainic)

 $(\mathfrak{d},\mathfrak{g})$ Manin pair of Lie algebras,

```
a q-Poisson (\mathfrak{d}, \mathfrak{g})-manifold is an infinitesimal 2-shifted lagrangian (Bursztyn-Crainic-Severa):
```

a manifold M equipped with a Dirac structure

 $L \subset \mathbb{T}M \times \overline{\mathfrak{d}}, \quad L \cap (TM \oplus 0) \times \{0\} = \{0\}, \quad L \circ (TM \oplus 0) = \mathfrak{g}$

 $(\mathfrak{d},\mathfrak{g})$ Manin pair of Lie algebras,

a q-Poisson $(\mathfrak{d}, \mathfrak{g})$ -manifold is an infinitesimal 2-shifted lagrangian (Bursztyn-Crainic-Severa):

a manifold M equipped with a Dirac structure

 $L \subset \mathbb{T}M \times \overline{\mathfrak{d}}, \quad L \cap (TM \oplus 0) \times \{0\} = \{0\}, \quad L \circ (TM \oplus 0) = \mathfrak{g}$

If we choose a lagrangian complement $\mathfrak{h} \hookrightarrow \mathfrak{d}$, the conditions above are equivalent to having (1) ρ a g-action on M and (2) π bivector field on M such that

$$L = \{\rho(u) + \pi \alpha \oplus \alpha, u \oplus -\rho^*(\alpha) : \alpha \in T^*M, u \in \mathfrak{g}\}$$

 $(\mathfrak{d},\mathfrak{g})$ Manin pair of Lie algebras,

a q-Poisson $(\mathfrak{d}, \mathfrak{g})$ -manifold is an infinitesimal 2-shifted lagrangian (Bursztyn-Crainic-Severa):

a manifold M equipped with a Dirac structure

 $L \subset \mathbb{T}M \times \overline{\mathfrak{d}}, \quad L \cap (TM \oplus 0) \times \{0\} = \{0\}, \quad L \circ (TM \oplus 0) = \mathfrak{g}$

If we choose a lagrangian complement $\mathfrak{h} \hookrightarrow \mathfrak{d}$, the conditions above are equivalent to having (1) ρ a g-action on M and (2) π bivector field on M such that

$$L = \{\rho(u) + \pi \alpha \oplus \alpha, u \oplus -\rho^*(\alpha) : \alpha \in T^*M, u \in \mathfrak{g}\}$$

(and several equations for $ho,\pi...$)

 $(\mathfrak{d},\mathfrak{g})$ Manin pair of Lie algebras,

a q-Poisson $(\mathfrak{d}, \mathfrak{g})$ -manifold is an infinitesimal 2-shifted lagrangian (Bursztyn-Crainic-Severa):

a manifold M equipped with a Dirac structure

 $L \subset \mathbb{T}M \times \overline{\mathfrak{d}}, \quad L \cap (TM \oplus 0) \times \{0\} = \{0\}, \quad L \circ (TM \oplus 0) = \mathfrak{g}$

If we choose a lagrangian complement $\mathfrak{h} \hookrightarrow \mathfrak{d}$, the conditions above are equivalent to having (1) ρ a g-action on M and (2) π bivector field on M such that

$$L = \{\rho(u) + \pi \alpha \oplus \alpha, u \oplus -\rho^*(\alpha) : \alpha \in T^*M, u \in \mathfrak{g}\}$$

(and several equations for $ho,\pi...$)

Example:

• if $(\mathfrak{d},\mathfrak{g}) = (\mathfrak{g} \bowtie \mathfrak{g}^*,\mathfrak{g})$ (double of a Manin triple), then *L* is isomorphic to a canonical Lie algebroid $T^*_{\pi}M \bowtie \mathfrak{g}$ associated to a Poisson \mathfrak{g} -action on (M,π) (Lu)

Corollary: integration of quasi-Poisson $(\mathfrak{d}, \mathfrak{g})$ -manifolds

What are q-Poisson $(\mathfrak{d}, \mathfrak{g})$ -manifolds globally?

L integrable integrates to 2-shifted lagrangian groupoid $(\Phi,\eta):\mathcal{G}\to D$ such that

 $\eta_0=0, \quad {
m Lie}(\Phi)|: {
m ker}\, \eta_1^{lat}: o {rak g} imes M$ isomorphism

(it follows that ker $\eta_1 \cap \text{ker } T\Phi = 0$)

Corollary: integration of quasi-Poisson $(\mathfrak{d}, \mathfrak{g})$ -manifolds

What are q-Poisson $(\mathfrak{d}, \mathfrak{g})$ -manifolds globally?

L integrable integrates to 2-shifted lagrangian groupoid $(\Phi,\eta):\mathcal{G}\to D$ such that

$$\eta_0=0, \quad {
m Lie}(\Phi)|: \ker \eta_1^{lat}: o {rak g} imes M$$
 isomorphism

(it follows that ker $\eta_1 \cap \text{ker } T\Phi = 0$) This extends Li-Bland-Severa integration which corresponds to invariant bivector fields in the q-Poisson description

Corollary: integration of quasi-Poisson $(\mathfrak{d}, \mathfrak{g})$ -manifolds

What are q-Poisson $(\mathfrak{d}, \mathfrak{g})$ -manifolds globally?

L integrable integrates to 2-shifted lagrangian groupoid $(\Phi,\eta):\mathcal{G}\to D$ such that

$$\eta_0=0, \quad {
m Lie}(\Phi)|: {
m ker}\, \eta_1^{lat}: o {rak g} imes M$$
 isomorphism

(it follows that ker $\eta_1 \cap \text{ker } T\Phi = 0$) This extends Li-Bland-Severa integration which corresponds to invariant bivector fields in the q-Poisson description

Example (Bursztyn-Iglesias-Lu): *G* Poisson group with Manin triple $(\mathfrak{d}, \mathfrak{g}, \mathfrak{g}^*)$. The Dirac structure $T^*_{\pi}G \rtimes \mathfrak{g} \hookrightarrow \mathbb{T}G \times \mathfrak{d}$ corresponding to the Poisson action of \mathfrak{g} on *G* integrates to

$$\phi: (\mathcal{G}(D) = G \times G \times G^* \rightrightarrows G) \rightarrow D, \quad \phi(a, b, u) = a^{-1}ub$$

$$\eta_1 = \frac{1}{2} \langle \theta_{G,1}' \wedge \theta_D' \rangle + \frac{1}{2} \langle \theta_{G^*}' \wedge \theta_{G,2}' \rangle, \quad \eta_0 = 0$$

If we intersect

$$\phi: (\mathcal{G}(D) = G \times G \times G^* \rightrightarrows G) \rightarrow D, \quad \phi(a, b, u) = a^{-1}ub$$

with a lagrangian subgroup $L \hookrightarrow D$ we get an integration of the affine Dirac structure $l \times G$:

 $\mathcal{G}(L) = \mathcal{G}(D) \times_D L$

If we intersect

$$\phi: (\mathcal{G}(D) = G \times G \times G^* \rightrightarrows G) \rightarrow D, \quad \phi(a, b, u) = a^{-1}ub$$

with a lagrangian subgroup $L \hookrightarrow D$ we get an integration of the affine Dirac structure $l \times G$:

$$\mathcal{G}(L) = \mathcal{G}(D) \times_D L$$

If $\mathfrak{g} \cap \mathfrak{l}$ is integrable by a closed subgroup $H \hookrightarrow G$, then $\mathcal{G}(L)$ is Morita equivalent to an integration of the Poisson homogeneous space G/H

Examples: spaces of representations

 ${\mathfrak g}$ quadratic Lie algebra

 $\circ\,$ quasi- Poisson g-manifolds have a fusion product:

 $L_i \subset \mathbb{T}M_i \times \overline{\mathfrak{g}} \oplus \mathfrak{g}, \quad i = 1, 2 \quad \Rightarrow L_1 * L_2 \subset \mathbb{T}(M_1 \times M_2) \times \overline{\mathfrak{g}} \oplus \mathfrak{g}$

Examples: spaces of representations

 ${\mathfrak g}$ quadratic Lie algebra

 $\circ\,$ quasi- Poisson g-manifolds have a fusion product:

 $L_i \subset \mathbb{T}M_i \times \overline{\mathfrak{g}} \oplus \mathfrak{g}, \quad i = 1, 2 \quad \Rightarrow L_1 * L_2 \subset \mathbb{T}(M_1 \times M_2) \times \overline{\mathfrak{g}} \oplus \mathfrak{g}$

 $\circ~$ There is fusion for the corresponding 2-shifted lagrangians $\mathcal{G}(L_i)\to \overline{G}\times G$

 $\mathcal{G}(L_i) \rightrightarrows M_i, \quad \mathcal{G}(L_1) * \mathcal{G}(L_2) \quad \text{integrates } L_1 * L_2$

Examples: spaces of representations

 ${\mathfrak g}$ quadratic Lie algebra

 $\circ\,$ quasi- Poisson g-manifolds have a fusion product:

 $L_i \subset \mathbb{T}M_i \times \overline{\mathfrak{g}} \oplus \mathfrak{g}, \quad i = 1, 2 \quad \Rightarrow L_1 * L_2 \subset \mathbb{T}(M_1 \times M_2) \times \overline{\mathfrak{g}} \oplus \mathfrak{g}$

 $\circ~$ There is fusion for the corresponding 2-shifted lagrangians $\mathcal{G}(L_i)\to \overline{G}\times G$

 $\mathcal{G}(L_i) \rightrightarrows M_i, \quad \mathcal{G}(L_1) * \mathcal{G}(L_2) \quad \text{integrates } L_1 * L_2$

 $\circ~\Sigma$ compact connected orientable surface $\partial\Sigma\neq \emptyset$

Examples: spaces of representations

 ${\mathfrak g}$ quadratic Lie algebra

 $\circ\,$ quasi- Poisson g-manifolds have a fusion product:

 $L_i \subset \mathbb{T}M_i \times \overline{\mathfrak{g}} \oplus \mathfrak{g}, \quad i = 1, 2 \quad \Rightarrow L_1 * L_2 \subset \mathbb{T}(M_1 \times M_2) \times \overline{\mathfrak{g}} \oplus \mathfrak{g}$

• There is fusion for the corresponding 2-shifted lagrangians $\mathcal{G}(L_i) \to \overline{G} \times G$

 $\mathcal{G}(L_i) \rightrightarrows M_i, \quad \mathcal{G}(L_1) * \mathcal{G}(L_2) \quad \text{integrates } L_1 * L_2$

 $\circ~\Sigma$ compact connected orientable surface $\partial\Sigma\neq \emptyset$

 $M_{\Sigma,G} = hom(\pi_1(\Sigma), G)$ is a q-Poisson G-manifold

(Alekseev-Kosmann-Schwarzbach-Meinrenken) $\circ~$ Is ${\it M}_{\Sigma,G}$ integrable?

Doubles of surfaces give integrations

• $D\Sigma$ double of Σ

 $M_{D\Sigma,G} = \hom(\pi_1(D\Sigma, \{x_0, x_1\}), G) \rightrightarrows \hom(\pi_1(\Sigma), G)$

is a 2-shifted lagrangian groupoid in $\overline{G} \times G$ that integrates $M_{\Sigma,G}$ (with the Li-Bland-Severa 2-form)

Doubles of surfaces give integrations

• $D\Sigma$ double of Σ

 $M_{D\Sigma,G} = \hom(\pi_1(D\Sigma, \{x_0, x_1\}), G) \rightrightarrows \hom(\pi_1(\Sigma), G)$

is a 2-shifted lagrangian groupoid in $\overline{G} \times G$ that integrates $M_{\Sigma,G}$ (with the Li-Bland-Severa 2-form)

 $\bullet\,$ Fusion of surfaces corresponds to fusion of q-Poisson g-manifolds

$$M_{\Sigma_1*\Sigma_2,G}=M_{\Sigma_1,G}*M_{\Sigma_2,G},$$

Doubles of surfaces give integrations

DΣ double of Σ

$$M_{D\Sigma,G} = \hom(\pi_1(D\Sigma, \{x_0, x_1\}), G) \rightrightarrows \hom(\pi_1(\Sigma), G)$$

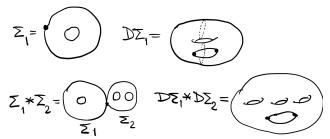
is a 2-shifted lagrangian groupoid in $\overline{G} \times G$ that integrates $M_{\Sigma,G}$ (with the Li-Bland-Severa 2-form)

• Fusion of surfaces corresponds to fusion of q-Poisson g-manifolds

$$M_{\Sigma_1*\Sigma_2,G}=M_{\Sigma_1,G}*M_{\Sigma_2,G},$$

• The double operation is compatible with fusion

$$M_{D(\Sigma_1*\Sigma_2),G} = M_{D\Sigma_1,G}*M_{D\Sigma_2,G}$$



We saw that doubling a surface with a single marked point produces an integration of a q-Poisson manifold and hence a 2-shifted lagrangian groupoid

We saw that doubling a surface with a single marked point produces an integration of a q-Poisson manifold and hence a 2-shifted lagrangian groupoid

More generally, we can double a surface with multiple marked points and also produce a 2-shifted lagrangian groupoid

 (Σ, V) marked surface, $V \subset \partial \Sigma$ finite, $\omega_{\Sigma, V}$ Li-Bland-Severa 2-form, $S \subset \partial \Sigma$ a union of unmarked arcs

$$h_{0m}\left(\pi_{1} \underbrace{\begin{array}{c} \Sigma \\ \Sigma \\ \end{array}} \underbrace{\Sigma} \\ \mu_{0m}\left(\pi_{1} \underbrace{\begin{array}{c} \Sigma \\ \end{array}} \underbrace{\Sigma} \\ \mu_{0m} \underbrace{\Sigma$$

 (Σ, V) marked surface, $V \subset \partial \Sigma$ finite, $\omega_{\Sigma, V}$ Li-Bland-Severa 2-form, $S \subset \partial \Sigma$ a union of unmarked arcs

$$h_{om}\left(\pi_{1} \underbrace{\Sigma}_{1} \underbrace{\Sigma}_{1} \underbrace{\Sigma}_{1} \underbrace{\Sigma}_{1} \underbrace{Q}_{1}\right) = h_{out}\left(\pi_{1}\left(\Sigma \underbrace{Q}_{2}, Y \amalg V\right), \widehat{Q}\right) \underbrace{\Phi}_{1} \underbrace{$$

 $(\Phi, \eta_1 + \eta_0)$ is a 2-shifted lagrangian structure

 (Σ, V) marked surface, $V \subset \partial \Sigma$ finite, $\omega_{\Sigma, V}$ Li-Bland-Severa 2-form, $S \subset \partial \Sigma$ a union of unmarked arcs

$$h_{0m}\left(\pi_{1} \underbrace{\nabla}_{1} \underbrace{\nabla}_{1} \underbrace{\nabla}_{1} \underbrace{\nabla}_{1} \underbrace{Q}\right) = h_{0m}\left(\pi_{1} (\Sigma \underbrace{\nabla}_{2}, Y \amalg Y), \widehat{Q}\right) \underbrace{\Phi}_{1} \underbrace{\Phi}_{1}$$

 $(\Phi, \eta_1 + \eta_0)$ is a 2-shifted lagrangian structure

(this is not an integration of a q-Poisson structure in general since the 3-form component is nonzero)

Take (Σ , V) the disk with two marked points, $S \subset \partial \Sigma$ an interval

 $\blacksquare \ \hom(\pi_1(\Sigma \cup_S \Sigma, V \coprod V), G) \cong (G^3 \rightrightarrows G) \ (x, y, z) \in G^3, \ w = xyz$

$$\eta_0 = \omega_1, \quad \eta_1|_{(x,y,z)} = \frac{1}{2} \langle x^* \theta^r \wedge w^* \theta^r \rangle + \frac{1}{2} \langle y^* \theta^l \wedge z^* \theta^r \rangle$$

Take (Σ , V) the disk with two marked points, $S \subset \partial \Sigma$ an interval

 $\blacksquare \ \hom(\pi_1(\Sigma \cup_S \Sigma, V \coprod V), G) \cong (G^3 \rightrightarrows G) \ (x, y, z) \in G^3, \ w = xyz$

$$\eta_0 = \omega_1, \quad \eta_1|_{(x,y,z)} = \frac{1}{2} \langle x^* \theta^r \wedge w^* \theta^r \rangle + \frac{1}{2} \langle y^* \theta^l \wedge z^* \theta^r \rangle$$

$$\Phi: G^3 \to (G \times \overline{G}, \mathrm{pr}_1^* \omega - \mathrm{pr}_2^* \omega), \quad \Phi(x, y, z) = (x, z)$$

Take (Σ, V) the disk with two marked points, $S \subset \partial \Sigma$ an interval

 $\blacksquare \operatorname{hom}(\pi_1(\Sigma \cup_S \Sigma, V \coprod V), G) \cong (G^3 \rightrightarrows G) \ (x, y, z) \in G^3, \ w = xyz$

$$\eta_0 = \omega_1, \quad \eta_1|_{(x,y,z)} = rac{1}{2} \langle x^* heta^r \wedge w^* heta^r
angle + rac{1}{2} \langle y^* heta^l \wedge z^* heta^r
angle$$

$$\Phi: G^3 \rightarrow (G \times \overline{G}, \mathrm{pr}_1^* \omega - \mathrm{pr}_2^* \omega), \quad \Phi(x, y, z) = (x, z)$$

Extend the moment map Φ by using s,t and we get still a 2-shifted lagrangian structure

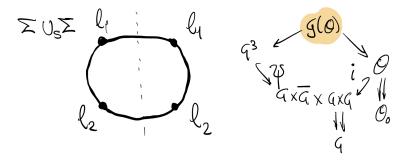
$$\Psi = (\Phi, \mathbf{s}, \mathbf{t}) : (G^3 \rightrightarrows G, \eta_1 + 0) \rightarrow (G \times G \times G^2 \rightrightarrows G, \mathsf{pr}_1^* \omega - \mathsf{pr}_2^* \omega, -\delta \eta_0)$$

 $\blacksquare \ \mathfrak{l}_i \subset \mathfrak{g} \oplus \overline{\mathfrak{g}} \text{ lagrangian Lie subalgebra for } i = 1,2$

I_i ⊂ 𝔅 ⊕ 𝔅 lagrangian Lie subalgebra for i = 1, 2
 there is a multiplicative action of 𝔅 = (I₁ ⊕ I₂)² ⇒ I₁ ⊕ I₂ on G × G × G² ⇒ G

- $\blacksquare \ \mathfrak{l}_i \subset \mathfrak{g} \oplus \overline{\mathfrak{g}} \ \text{lagrangian Lie subalgebra for} \ i=1,2$
- there is a multiplicative action of $\mathfrak{L} = (\mathfrak{l}_1 \oplus \mathfrak{l}_2)^2 \rightrightarrows \mathfrak{l}_1 \oplus \mathfrak{l}_2$ on $G \times G \times G^2 \rightrightarrows G$
- an \mathfrak{L} -orbit $\mathcal{O} \rightrightarrows \mathcal{O}_0$ through the unit manifold is a Lie subgroupoid which is also 2-shifted lagrangian w.r.t. some $\alpha \in \Omega^2(\mathcal{O})$ and $i : \mathcal{O} \hookrightarrow \mathcal{G} \times \mathcal{G} \times \mathcal{G}^2 \rightrightarrows \mathcal{G}$

- $\blacksquare \ \mathfrak{l}_i \subset \mathfrak{g} \oplus \overline{\mathfrak{g}} \text{ lagrangian Lie subalgebra for } i = 1,2$
 - there is a multiplicative action of $\mathfrak{L} = (\mathfrak{l}_1 \oplus \mathfrak{l}_2)^2 \rightrightarrows \mathfrak{l}_1 \oplus \mathfrak{l}_2$ on $G \times G \times G^2 \rightrightarrows G$
- an \mathfrak{L} -orbit $\mathcal{O} \rightrightarrows \mathcal{O}_0$ through the unit manifold is a Lie subgroupoid which is also 2-shifted lagrangian w.r.t. some $\alpha \in \Omega^2(\mathcal{O})$ and $i : \mathcal{O} \hookrightarrow \mathcal{G} \times \mathcal{G} \times \mathcal{G}^2 \rightrightarrows \mathcal{G}$
- So $\mathcal{G}(\mathcal{O}) = G^3_{\Psi} \times_i \overline{\mathcal{O}}$ is 1-shifted symplectic



$\circ~\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{a}$ double of a Manin triple, $\mathfrak{l}\subset\mathfrak{g}$ lagrangian

$$\mathfrak{l}_1=(\mathfrak{a}\oplus 0)\oplus (0\oplus \mathfrak{b}), \quad \mathfrak{l}_2=(\mathfrak{a}\oplus 0)\oplus \mathfrak{l}$$

 $\circ~\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{a}$ double of a Manin triple, $\mathfrak{l}\subset\mathfrak{g}$ lagrangian

$$\mathfrak{l}_1=(\mathfrak{a}\oplus 0)\oplus (0\oplus \mathfrak{b}), \quad \mathfrak{l}_2=(\mathfrak{a}\oplus 0)\oplus \mathfrak{l}$$

 $\circ \mathcal{O}$ the \mathfrak{L} -orbit of (1, 1, 1, 1)

 $\circ~\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{a}$ double of a Manin triple, $\mathfrak{l}\subset\mathfrak{g}$ lagrangian

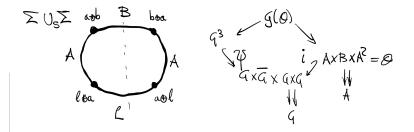
$$\mathfrak{l}_1=(\mathfrak{a}\oplus 0)\oplus (0\oplus \mathfrak{b}), \quad \mathfrak{l}_2=(\mathfrak{a}\oplus 0)\oplus \mathfrak{l}$$

- $\circ~\mathcal{O}$ the $\mathfrak{L}\text{-orbit}$ of (1,1,1,1)
- Then $\mathcal{G}(\mathcal{O})$ integrates the "affine Dirac structure" $\mathfrak{l} \times A$, where $A \hookrightarrow G$ integrates \mathfrak{a}

 $\circ~\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{a}$ double of a Manin triple, $\mathfrak{l}\subset\mathfrak{g}$ lagrangian

$$\mathfrak{l}_1=(\mathfrak{a}\oplus 0)\oplus (0\oplus \mathfrak{b}), \quad \mathfrak{l}_2=(\mathfrak{a}\oplus 0)\oplus \mathfrak{l}$$

- $\circ \mathcal{O}$ the \mathfrak{L} -orbit of (1, 1, 1, 1)
- Then $\mathcal{G}(\mathcal{O})$ integrates the "affine Dirac structure" $\mathfrak{l} \times A$, where $A \hookrightarrow G$ integrates \mathfrak{a}



 Normal form theorem (Pym-Safronov): 2-shifted lagrangians in 2-shifted symplectic L_∞-algebroids roughly correspond to Manin pairs (E, L) (E could be twisted...)

- Normal form theorem (Pym-Safronov): 2-shifted lagrangians in 2-shifted symplectic L_∞-algebroids roughly correspond to Manin pairs (E, L) (E could be twisted...)
- How to integrate a Manin pair (E, L)?

- Normal form theorem (Pym-Safronov): 2-shifted lagrangians in 2-shifted symplectic L_∞-algebroids roughly correspond to Manin pairs (E, L) (E could be twisted...)
- How to integrate a Manin pair (E, L)?
- $E \text{ exact} \Rightarrow L \text{ integrates to a quasi-symplectic groupoid}$
- Next case: *E* transitive, we saw examples when $E = T + T^* + \mathfrak{g}$

- Normal form theorem (Pym-Safronov): 2-shifted lagrangians in 2-shifted symplectic L_∞-algebroids roughly correspond to Manin pairs (E, L) (E could be twisted...)
- How to integrate a Manin pair (E, L)?
- $E \text{ exact} \Rightarrow L \text{ integrates to a quasi-symplectic groupoid}$
- Next case: *E* transitive, we saw examples when $E = T + T^* + \mathfrak{g}$
- If E is transitive, then $A = E/T^*$ is a transitive Lie algebroid, so if L and A are integrable we have a Lie groupoid morphism

$$\Psi: \mathcal{G}(L)
ightarrow \mathcal{G}(A), \quad \mathsf{Lie}(\Psi): L \hookrightarrow E
ightarrow A$$

- Normal form theorem (Pym-Safronov): 2-shifted lagrangians in 2-shifted symplectic L_∞-algebroids roughly correspond to Manin pairs (E, L) (E could be twisted...)
- How to integrate a Manin pair (E, L)?
- $E \text{ exact} \Rightarrow L \text{ integrates to a quasi-symplectic groupoid}$
- Next case: *E* transitive, we saw examples when $E = T + T^* + \mathfrak{g}$
- If E is transitive, then $A = E/T^*$ is a transitive Lie algebroid, so if L and A are integrable we have a Lie groupoid morphism

$$\Psi : \mathcal{G}(L) \to \mathcal{G}(A), \quad \mathsf{Lie}(\Psi) : L \hookrightarrow E \to A$$

and there is a 2-shifted symplectic groupoid structure on $\mathcal{G}(A)$ and a 2-shifted lagrangian structure on Ψ encoded in an exact multiplicative Courant morphism over Ψ

$$\mathbb{T}\mathcal{G}(L)
ightarrow \mathtt{t}^*E \oplus \mathtt{s}^*\overline{E}$$

Thanks!