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Today’s goal

We will use shifted symplectic geometry to explain several constructions
of symplectic groupoids such as:

• The integration of quasi-Poisson spaces

• The integration of Poisson homogeneous spaces.

• Finally, we will mention how to construct more general 2-shifted la-
grangian groupoids



Today’s goal

We will use shifted symplectic geometry to explain several constructions
of symplectic groupoids such as:

• The integration of quasi-Poisson spaces

• The integration of Poisson homogeneous spaces.

• Finally, we will mention how to construct more general 2-shifted la-
grangian groupoids



Today’s goal

We will use shifted symplectic geometry to explain several constructions
of symplectic groupoids such as:

• The integration of quasi-Poisson spaces

• The integration of Poisson homogeneous spaces.

• Finally, we will mention how to construct more general 2-shifted la-
grangian groupoids



Motivation: symplectic reduction

The standard construction of new symplectic manifolds out of old ones is
Marsden-Weinstein reduction:

• (M, ω) hamiltonian G -space

• (O, ωKKS) ↪→ g∗ coadjoint orbit

• if the moment maps are transverse

(M, ω)
µ // g∗ (O, ωKKS)oo

Then the fibred product M ×g∗ O is symplectic mod the G -action
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Variants of interest:

� The input is a couple of “moment maps” (strong Dirac morphisms)

(M, ω)
µ // (P, L) (M ′, ω′)

µ′oo

where (P, L) is a Dirac manifold (the 2-forms need not be closed or
nondegenerate)

� The output is
M ×P M ′

which is symplectic mod the action of L

Depending on the choice of Dirac manifold (P, L) we get:

• reduction by a hamiltonian Poisson action (Lu-Weinstein)

• reduction by a symplectic groupoid action (Mikami-Weinstein)

• quasi-hamiltonian reduction (Alekseev-Malkin-Meinrenken)

• reduction by quasi(/pre)-symplectic groupoid actions
(Bursztyn-Crainic, Xu)
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How to produce symplectic groupoids using reduction?

This was all about producing symplectic manifolds by
reduction but what about symplectic groupoids?



Reduction techniques for symplectic groupoids

“Multiplicative moment map reduction”: the moment maps are groupoid
morphisms

• Multiplicative Marsden-Weinstein (Mikami-Weinstein,
Fernandes-Ortega-Ratiu):

(Σ ⇒ M, ω)
µ // g∗ {0}oo

• Multiplicative Lu-Weinstein reduction (Xu, Fernandes-Iglesias)

• Multiplicative quasi-hamiltonian reduction (Li-Bland-Severa, A.)

There are more things: double symplectic groupoid actions on symplectic
groupoids (Stefanini)...
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Ad hoc constructions?

There are also some constructions of symplectic groupoids apparently
unrelated to the previous methods:

• Symplectic groupoids of Poisson homogeneous spaces
(Bursztyn-Iglesias-Lu)

• Configuration symplectic groupoids of flags (Lu-Mouquin-Yu)
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A unifying framework

All the previous constructions are examples of a single principle
from shifted symplectic geometry

◦ We have to extend our concept of moment map to accomodate the
“ad hoc” examples that we mentioned

◦ The required concept is that of (2-shifted) lagrangian structures on
Lie groupoid morphisms
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Shifted symplectic geometry (PTVV) in differential
geometry...

(Following Getzler’s slides)

◦ K1 ⇒ K0 Lie groupoid, K• its nerve

◦ (Ω•(K•), δ, d ,D = δ ± d) Bott-Shulman double complex
(normalised)

◦ m-shifted n-form ω• on K1 ⇒ K0 is (ωi ∈ Ωm+n−i (Ki ))i=0...m,
ωm ∈ Ωn(Xm) the leading term

so an m-shifted n-form is an element of total degree m + n in the total
complex whose components are forms of degrees ≥ n

ω• is closed if Dω• = 0
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Infinitesimal form of a closed n-shifted 2-form ω•

Shift 1:
Lie(K1)

a //

λω

��

TK0

−(λω)∗

��
T ∗K0

a∗
// Lie(K1)∗.

〈λω(v), x〉 = ω1|1p
(v ,T1p(x)) v ∈ Lie(K1)p, x ∈ TpK0

Shift 2:
0

��

// Lie(K1)
a //

λω

��

TK0

��
T ∗K0

a∗
// Lie(K1)∗ // 0;

〈λω(v),w〉 = −ω2|(1p,1p)

(
(v , 01p ), (01p ,w)

)
+ ω2|(1p,1p)

(
(01p , v), (w , 01p )

)
v ,w ∈ Lie(K1)p
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A closed n-shifted 2-form ω is symplectic if the infinitesimal 2-form λω
induces an isomorphism in homology:

TK• = (a : Lie(K1)→ TK0), λω : TK• → T ∗K• [n]

◦ 0-shifted symplectic groupoids are foliation groupoids that are
transversely symplectic (Hoffman-Sjamaar-Zhu)

◦ 1-shifted symplectic groupoids are quasi(/pre)-symplectic groupoids
(Xu, Bursztyn-Crainic-Weinstein-Zhu) (meaning of non-degeneracy
equation also explained by del Hoyo-Ortiz)

◦ 2-shifted symplectic groupoids have surjective anchor
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2-shifted symplectic groupoids given by Lie groups

◦ K Lie group, k quadratic Lie algebra

◦ K• is 2-shifted symplectic groupoid with ω• (Weinstein)

ω1 =
1

12
〈[θl∧θl ]∧θl〉 ∈ Ω3(K ), ω2 = −1

2
〈pr∗1θ

l∧pr∗2θ
r 〉 ∈ Ω2(K2 = K 2)

◦ λω is contraction with the pairing 〈 , 〉
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Moment maps are lagrangian morphisms

◦ An n-shifted isotropic structure η• on a Lie groupoid morphism

φ• : X• → K•

for (K•, ω•) n-shifted symplectic is a (normalised) n − 1-shifted
2-form which is a primitive for φ∗•ω•:

Dη• = φ∗•ω•

(φ∗2ω2 = δη1, −dω1 + δη0 = φ∗ω1, dη0 = 0)

◦ η• is n-shifted lagrangian if it induces a quasi-isomorphism

(λη ⊕ φ∗λω) :

mapping cone of Lie(φ)︷ ︸︸ ︷
TX ⊕ φ∗TK [−1] → T ∗X [n − 1]

∂ =

[
aX 0
Tφ −aK

]
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2-shifted lagrangian groupoids in a Lie group K•

Concretely:

2-shifted lagrangian groupoids in K•:

(φ : X1 → K , η• = η0 + η1) such that:

◦ Dη• = φ∗•ω•

◦ (Lie(φ), a, η[1) embeds Lie(X1) as a Dirac structure in k⊕ Tη0X0

First examples:

� quasi-symplectic groupoids for trivial K

� lagrangian subgroups of K
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Lagrangian “intersections” are symplectic (PTVV): shift 1

◦ Calaque: hamiltonian G -spaces correspond to 1-shifted lagrangian
groupoids of the form

(G ×M ⇒ M, ω)→ (G × g∗ ⇒ g∗,Ωcan + 0)

◦ Safronov: q-hamiltonian G -spaces correspond to 1-shifted lagrangian
groupoids

(G ×M ⇒ M, ω)→ (G × G ⇒ G ,ΩAMM + ω1)

◦ the intersection of two 1-shifted lagrangian morphisms is their fibred
product which is 0-symplectic

◦ This principle generalises Marsden-Weinstein reduction and
quasi-hamiltonian reduction

◦ (and also the more general reduction by quasi-symplectic groupoid
actions)
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Lagrangian “intersections” are symplectic (PTVV): shift 2

Another instance of this principle

(φ, η) : X1 → K , (ψ, θ) : Y1 → K be two 2-shifted transverse lagrangian
morphisms

(X1, η)
φ // (K•, ω•) (Y1, ζ)

ψoo

then the fibred product

X1 ×K Y1 := (X1 ×K Y1 ⇒ X0 × Y0)

equipped with ζ = pr∗1η − pr∗2θ is a quasi-symplectic groupoid.

More generally, (φ, η) : X1 → K , (ψ, θ) : Y1 → K be two 2-shifted
lagrangian groupoids, then the homotopy fibred product

X1×̃KY1
∼= (X1 × Y1 × K ⇒ X0 × Y0 × K )

is quasi-symplectic
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How to view multiplicative moment map reduction in this
framework?

It turns out that all the constructions of symplectic and
quasi-symplectic groupoids by reduction described before are

special cases of the previous result
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Relation with classical moment maps

◦ G complete 1-connected Poisson group acting on (M, π) integrable
Poisson manifold, then

Σ(M) ⇒ M, µ : Σ(M)→ G∗, G ×M ⇒ M

are a matched pair of Lie groupoids that give us a 2-shifted
lagrangian groupoid (Lu)

Σ(M) ./ G ⇒ M, (x , a) 7→ (µ(x), a) ∈ G∗ × G

◦ (M, π) a q-Poisson G -manifold and G ⇒ M source-simply-connected
integration of T ∗gM, then G with α ∈ Ω2 and µ : G → G is a
q-hamiltonian groupoid (Li-Bland-Severa)

GoG ⇒ M, (x , a) 7→ (µ(x)a, a) ∈ G×G , pr∗1α+(µ◦pr1, pr2)∗ω2

make it into a 2-shifted lagrangian groupoid (assuming that G -acts
on G)
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Other examples of 2-shifted lagrangian groupoids can be constructed by
looking at the infinitesimal level



Integrations of 2-shifted infinitesimal lagrangians

k quadratic Lie algebra, η0 ∈ Ω3(X0) closed

An integrable Dirac structure

L ⊂ Tη0X0 × k

integrates to a source-simply-connected 2-shifted lagrangian groupoid

(X1 ⇒ X0, η)→ (K , ω)

This follows from Van Est Theorem (Arias Abad-Crainic)
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Quasi-Poisson (d, g)-manifolds

(d, g) Manin pair of Lie algebras,

a q-Poisson (d, g)-manifold is an infinitesimal 2-shifted
lagrangian (Bursztyn-Crainic-Severa):

a manifold M equipped with a Dirac structure

L ⊂ TM × d, L ∩ (TM ⊕ 0)× {0} = {0}, L ◦ (TM ⊕ 0) = g

If we choose a lagrangian complement h ↪→ d, the conditions above are
equivalent to having (1) ρ a g-action on M and (2) π bivector field on M
such that

L = {ρ(u) + πα⊕ α, u ⊕−ρ∗(α) : α ∈ T ∗M, u ∈ g}

(and several equations for ρ, π... )

Example:

◦ if (d, g) = (g ./ g∗, g) (double of a Manin triple), then L is
isomorphic to a canonical Lie algebroid T ∗πM ./ g associated to a
Poisson g-action on (M, π) (Lu)
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Corollary: integration of quasi-Poisson (d, g)-manifolds

What are q-Poisson (d, g)-manifolds globally?

L integrable integrates to 2-shifted lagrangian groupoid (Φ, η) : G → D
such that

η0 = 0, Lie(Φ)| : ker η[1 :→ g×M isomorphism

(it follows that ker η1 ∩ kerTΦ = 0)

This extends Li-Bland-Severa
integration which corresponds to invariant bivector fields in the q-Poisson
description

Example (Bursztyn-Iglesias-Lu): G Poisson group with Manin triple
(d, g, g∗). The Dirac structure T ∗πG o g ↪→ TG × d corresponding to the
Poisson action of g on G integrates to

φ : (G(D) = G × G × G∗ ⇒ G )→ D, φ(a, b, u) = a−1ub

η1 =
1

2
〈θlG ,1 ∧ θrD〉+

1

2
〈θrG∗ ∧ θrG ,2〉, η0 = 0
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Application: integration of affine Dirac structures

If we intersect

φ : (G(D) = G × G × G∗ ⇒ G )→ D, φ(a, b, u) = a−1ub

with a lagrangian subgroup L ↪→ D we get an integration of the affine
Dirac structure l× G :

G(L) = G(D)×D L

If g ∩ l is integrable by a closed subgroup H ↪→ G , then G(L) is Morita
equivalent to an integration of the Poisson homogeneous space G/H
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Examples: spaces of representations

g quadratic Lie algebra

◦ quasi- Poisson g-manifolds have a fusion product:

Li ⊂ TMi × g⊕ g, i = 1, 2 ⇒ L1 ∗ L2 ⊂ T(M1 ×M2)× g⊕ g

◦ There is fusion for the corresponding 2-shifted lagrangians
G(Li )→ G × G

G(Li ) ⇒ Mi , G(L1) ∗ G(L2) integrates L1 ∗ L2

◦ Σ compact connected orientable surface ∂Σ 6= ∅

MΣ,G = hom(π1(Σ),G ) is a q-Poisson G -manifold

(Alekseev-Kosmann-Schwarzbach-Meinrenken)

◦ Is MΣ,G integrable?
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Doubles of surfaces give integrations

• DΣ double of Σ

MDΣ,G = hom(π1(DΣ, {x0, x1}),G ) ⇒ hom(π1(Σ),G )

is a 2-shifted lagrangian groupoid in G × G that integrates MΣ,G

(with the Li-Bland-Severa 2-form)

• Fusion of surfaces corresponds to fusion of q-Poisson g-manifolds

MΣ1∗Σ2,G = MΣ1,G ∗MΣ2,G ,

• The double operation is compatible with fusion

MD(Σ1∗Σ2),G = MDΣ1,G ∗MDΣ2,G
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We saw that doubling a surface with a single marked point produces an
integration of a q-Poisson manifold and hence a 2-shifted lagrangian

groupoid

More generally, we can double a surface with multiple marked points and
also produce a 2-shifted lagrangian groupoid
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(Σ,V ) marked surface, V ⊂ ∂Σ finite, ωΣ,V Li-Bland-Severa 2-form,
S ⊂ ∂Σ a union of unmarked arcs

(Φ, η1 + η0) is a 2-shifted lagrangian structure

(this is not an integration of a q-Poisson structure in general since the
3-form component is nonzero)
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Example

Take (Σ,V ) the disk with two marked points, S ⊂ ∂Σ an
interval

� hom(π1(Σ ∪S Σ,V
∐

V ),G ) ∼= (G 3 ⇒ G ) (x , y , z) ∈ G 3, w = xyz

η0 = ω1, η1|(x,y ,z) =
1

2
〈x∗θr ∧ w∗θr 〉+

1

2
〈y∗θl ∧ z∗θr 〉

Φ : G 3 → (G × G , pr∗1ω − pr∗2ω), Φ(x , y , z) = (x , z)

� Extend the moment map Φ by using s, t and we get still a 2-shifted
lagrangian structure

Ψ = (Φ, s, t) : (G 3 ⇒ G , η1+0)→ (G×G×G 2 ⇒ G , pr∗1ω−pr∗2ω,−δη0)
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Decorations give us fibred products of 2-shifted lagrangians

� li ⊂ g⊕ g lagrangian Lie subalgebra for i = 1, 2

� there is a multiplicative action of L = (l1 ⊕ l2)2 ⇒ l1 ⊕ l2 on
G × G × G 2 ⇒ G

� an L-orbit O ⇒ O0 through the unit manifold is a Lie subgroupoid
which is also 2-shifted lagrangian w.r.t. some α ∈ Ω2(O) and
i : O ↪→ G × G × G 2 ⇒ G

� So G(O) = G 3
Ψ ×i O is 1-shifted symplectic
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Example:

◦ g = a⊕ a double of a Manin triple, l ⊂ g lagrangian

l1 = (a⊕ 0)⊕ (0⊕ b), l2 = (a⊕ 0)⊕ l

◦ O the L-orbit of (1, 1, 1, 1)

◦ Then G(O) integrates the “affine Dirac structure” l× A, where
A ↪→ G integrates a
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More general 2-shifted lagrangian groupoids

• Normal form theorem (Pym-Safronov): 2-shifted lagrangians in
2-shifted symplectic L∞-algebroids roughly correspond to Manin
pairs (E , L) (E could be twisted...)

• How to integrate a Manin pair (E , L)?

• E exact ⇒ L integrates to a quasi-symplectic groupoid

• Next case: E transitive, we saw examples when E = T + T ∗ + g

• If E is transitive, then A = E/T ∗ is a transitive Lie algebroid, so if L
and A are integrable we have a Lie groupoid morphism

Ψ : G(L)→ G(A), Lie(Ψ) : L ↪→ E → A

and there is a 2-shifted symplectic groupoid structure on G(A) and a
2-shifted lagrangian structure on Ψ encoded in an exact
multiplicative Courant morphism over Ψ

TG(L)→ t∗E ⊕ s∗E
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2-shifted lagrangian structure on Ψ encoded in an exact
multiplicative Courant morphism over Ψ

TG(L)→ t∗E ⊕ s∗E



More general 2-shifted lagrangian groupoids

• Normal form theorem (Pym-Safronov): 2-shifted lagrangians in
2-shifted symplectic L∞-algebroids roughly correspond to Manin
pairs (E , L) (E could be twisted...)

• How to integrate a Manin pair (E , L)?

• E exact ⇒ L integrates to a quasi-symplectic groupoid

• Next case: E transitive, we saw examples when E = T + T ∗ + g

• If E is transitive, then A = E/T ∗ is a transitive Lie algebroid, so if L
and A are integrable we have a Lie groupoid morphism

Ψ : G(L)→ G(A), Lie(Ψ) : L ↪→ E → A

and there is a 2-shifted symplectic groupoid structure on G(A) and a
2-shifted lagrangian structure on Ψ encoded in an exact
multiplicative Courant morphism over Ψ

TG(L)→ t∗E ⊕ s∗E



Thanks!


