KULEUVEN

Aldo Witte (Joint with Álvaro del Pino Gómez) 28 July, 2022

Remarks on *b^k*-geometry

Goal: Classify Lie algebroids with a specified local model, e.g.: Definition

A Lie algebroid \mathcal{A} is of b^k -**type** if locally $\mathcal{A} = \langle \mathbf{x}_1^k \partial_{\mathbf{x}_1}, \partial_{\mathbf{x}_2}, \dots, \partial_{\mathbf{x}_n} \rangle.$

[1] builds these using defining functions, but there are more. Let $\xi \subset TM$ be a distribution, and $W \subset M$ a submanifold.

Jets of vector fields

Definition

Haefliger

We can play this game for many local models, e.g. $\left\langle x_1^{k_1}\partial_{x_1}, x_1^{k_2}\partial_{x_2}, \ldots, x_1^{k_n}\partial_{x_n} \right\rangle$ will involve Lie filtrations. Let's consider **elliptic**^k: $\langle r_1^k \partial_{r_1}, \partial_{\theta_1}, \partial_{x_3}, \dots, \partial_{x_n} \rangle$.

We say that $X \in \mathfrak{X}^1(M)$ is **r-tangent to** ξ along W if $j^r X|_W$ is in the kernel $J^r(TM)|_W \to J^r(TM/\xi)|_W$.

E.g., $M = \mathbb{R}^n$, $W = \{x_1 = 0\}, \xi = \ker dx_1$, then X if (k - 1)tangent to ξ along W if and only if $X \in \langle x_1^k \partial_{x_1}, \partial_{x_2}, \ldots, \partial_{x_n} \rangle$.

Lemma

The vector fields tangent to ξ along W are given by

 $\operatorname{Tan}^{r}(M, W, \xi) = I_{W}^{r} \mathfrak{X}^{1}(M) + \Gamma(\xi).$

 $\operatorname{Tan}^{r}(M, W, \xi)$ doesn't depend on the full ξ , just on $j^{r}\xi|_{W}$.

Lie algebroids

Question

When is $Tan^{r}(M, W, \xi)$ a Lie algebroid?

- ► Locally free \Leftrightarrow *W* is a hypersurface.
- lnvolutive $\Leftrightarrow \xi$ is involutive "up to order r".

Definition

 $\sigma \in J_p^r(Gr(TM, I))$ is **integrable** if for any ξ with $j_p^r \xi = \sigma$ we have that $[\Gamma(\xi), \Gamma(\xi)]$ is *r*-tangent to ξ at *p*.

The theory culminates to :

Proposition

If \mathcal{A} is of b^k -type, then there exists a distribution ξ such that $\mathcal{A} = \operatorname{Tan}^{k-1}(M, Z, \xi)$ for some hypersurface Z.

Proof.

► Given
$$\mathcal{A}$$
, consider $J^{k-1}\rho(\mathcal{A})$, this will give you $j^{k-1}\xi$.

Figure: Haefliger structure inducing the singular foliation $\{x^2 + y^2 = c\}$

Construction

Let $E \to M$ be a germ of bundle, $W \subset E$ a germ of submanifold, ξ a germ of distribution around W. Consider $\operatorname{Tan}^{k-1}(E, W, \xi) \cap TM.$

E.g., in the picture this will give $\langle r^k \partial_r, \partial_\theta \rangle$.

Lemma

Let $I = \langle f \rangle \subset C^{\infty}(M)$, and suppose that $\mathcal{A} := \{X \in \mathfrak{X}^1(M) : L_X(I) \subset I\}$ is a Lie algebroid. Then $\mathcal{A} = \operatorname{Tan}^{1}(M \times \mathbb{R}, f^{-1}(\{0\}), \ker df) \cap TM$

Now we can repeat the story, and from every elliptic^k Lie algebroid, obtain a triple (E, W, ξ) such that $\mathcal{A} = \operatorname{Tan}^{k-1}(E, W, \xi) \cap TM.$

Poisson geometry

Proposition (Folklore)

Let f_1, f_2 be two defining functions for Z. Then $\operatorname{Tan}^{r}(M, Z, \ker df_1) \simeq \operatorname{Tan}^{r}(M, Z, \ker df_2).$

Not the case in general, however:

Proposition [2]

If π lifts symplectically to Tan^r(M, Z, ξ) for some ξ , then it lifts to any $\operatorname{Tan}^{r}(M, Z, \xi')$.

Holonomy

► Conversely, need local coordinates such that $\xi = \ker dx_1$. Follows from below.

Question

Suppose $j^r \xi$ is integrable, does there exist a foliation \mathcal{F} with $j^r \xi = j^r \mathcal{F}$? Yes, when $W = \mathbb{R}^n$.

References

[1] The geometry of b^k-manifolds, Geoffrey Scott, 2016, JSG [2] Poisson structures of divisor type, Ralph Klaasse, 2018.

The notion of holonomy survives after taking jets:

Definition

For ξ around W, let hol (ξ, W) : $\Pi^1(W) \to \text{Diff}(\nu(W))$ denote the holonomy, and

 i^{r} hol (ξ, W) : $\Pi^{1}(W) \rightarrow J^{k}$ Diff $(\nu(W))$,

the quotient to the jet groupoid.

Proposition

Let ξ, ξ' be distributions of rank *I*, then TFAE: \blacktriangleright j^r hol(ξ, W) = j^r hol(ξ', W) \triangleright ξ is k-tangent to ξ' at W

Consequently, there is a well-defined notion of *r*-holonomy for *r*-jets of distributions.

Hence we have a well-defined notion of holonomy for b^k -algebroids, which is finer than that for singular foliations.