KU LEUVEN

Karandeep Singh (joint w/ Marco Zambon) Department of Mathematics July 28, 2022

Stability results in Poisson geometry and higher Lie theory

The setup

There is a large amount of geometric structures on a manifold M, which induce (singular) foliations on M, partitioning M into submanifolds of various dimensions called leaves.

Examples

- Poisson structures,
- Lie (*n*-)algebroids,
- Courant algebroids,
- Dirac structures.

We restrict our attention to zero-dimensional leaves, or singular points.

Main result

We give a sufficient criterium for a postive answer to the general algebraic version of the stability question in the case that \mathfrak{h} has finite codimension in \mathfrak{g} :

Theorem 1

Let $(\mathfrak{g}, \partial, [-, -])$ be a differential graded Lie algebra, and $\mathfrak{h} \subset \mathfrak{g}$ a differential graded Lie subalgebra of degreewise finite codimension. Let $\sigma : \mathfrak{g}^0/\mathfrak{h}^0 \to \mathfrak{g}^0$ be a splitting of the quotient map such that for any $X \in \mathfrak{g}^0/\mathfrak{h}^0$, the initial value problem

$$\frac{d}{dt}Q_t = \partial(\sigma(X)) - [\sigma(X), Q_t], \qquad Q_0 = Q'$$
(1)

has a unique solution up to t = 1, for all $Q' \in \mathfrak{g}^1$. Let $Q \in \mathfrak{h}^1$ such that

Definition (Stability of singular points)

Let Q be a (Poisson, Lie (n-)algebroid, Courant algebroid, Dirac...) structure on M inducing a partition of M as above, such that some point $p \in M$ is a zero-dimensional leaf of Q. Then $p \in M$ is stable if any structure Q' near Q of the same class as Q has a singular point $q \in M$ near p.

The problem

Question

Given a (Lie (n-)algebroid, Poisson, Courant...) structure Q, with a singular point $p \in M$, when is p stable?

For Poisson structures and Lie algebroid structures, a sufficient cohomological criterium was given in [1] and [3].

The approach

We first observe that the question for Poisson structures, can be phrased in an algebraic way.

Observation

Assume that $M = \mathbb{R}^n$, and $p = 0 \in \mathbb{R}^n$.

- Recall that Poisson structures are precisely $\pi \in \mathfrak{X}^2(\mathbb{R}^n)$ such that $[\pi, \pi]_{SN} = 0$, where $[-, -]_{SN}$ is the Schouten-Nijenhuis bracket.
- $\pi \in \mathfrak{X}^2(\mathbb{R}^n)$ satisfies $\pi_p = 0$ if and only if $\pi \in I_p \mathfrak{X}^2(\mathbb{R}^n)$, where I_p is the ideal of functions vanishing in p.
- For $q \in \mathbb{R}^n$, $\pi_q = 0$ if and only if $(\pi \circ T_q)_p = 0$, where $T_q : \mathbb{R}^n \to \mathbb{R}^n$ is the translation by q. Moreover, $\pi \circ T_q$ is precisely the time-1 solution to the initial value problem

$$\frac{d}{dt}\pi_t = [q, \pi_t]_{SN}, \qquad \pi_0 = \pi$$

where $q \in \mathbb{R}^n \cong T_p \mathbb{R}^n \cong \mathfrak{X}(\mathbb{R}^n) / I_p \mathfrak{X}(\mathbb{R}^n)$ is viewed as constant vector field. Observe that $\mathfrak{h}^{\bullet} := I_p \mathfrak{X}^{\bullet+1}(\mathbb{R}^n)$ is a differential graded Lie subalgebra of $(\mathfrak{g}^{\bullet} := \mathfrak{X}^{\bullet+1}(\mathbb{R}^n), [-, -]_{SN}, [\pi, -]_{SN}).$

This observation allows us to rephrase the question of stability as follows:

Question (Poisson stability of singular points, algebraic version)

Given $\pi' \in \mathfrak{g}^1$ near $\pi \in \mathfrak{h}^1$ with $[\pi', \pi'] = 0$, when does there exist $q \in \mathfrak{g}^0/\mathfrak{h}^0$ such that some lift $\tilde{q} \in \mathfrak{g}^0$ has the property that the solution to the initial value problem

$$\partial(Q) + \frac{1}{2}[Q,Q] = 0$$

and assume that

$$H^1(\mathfrak{g}/\mathfrak{h},\partial+[Q,-])=0.$$

Then for any $Q'\in \mathfrak{g}^1$ near Q with

$$\partial(Q')+rac{1}{2}[Q',Q']=0,$$

there exists $X \in \mathfrak{g}^0/\mathfrak{h}^0$ such that the time-1 solution of (1) lies in \mathfrak{h}^1 .

Applications

Examples

Unless otherwise stated, $\partial = 0$, and all vector bundles are over \mathbb{R}^n . Let $p \in \mathbb{R}^n$ be the origin.

- Singular points of order $k \ge 1$ of a Poisson structure π : Take

 $\mathfrak{g}^{ullet} := \mathfrak{X}^{ullet+1}(\mathbb{R}^n), \, \mathfrak{h}^{ullet} := l_p^{1+ullet(k-1)}\mathfrak{X}^{ullet+1}(\mathbb{R}^n) \, ext{and} \, \, Q = \pi \in \mathfrak{h}^1,$

with the Schouten-Nijenhuis bracket, where I_p is the vanishing ideal of the origin. For k = 1, Theorem 1 is then equivalent to [1, Thm. 1.1] for zero-dimensional leaves, and for general k, it is equivalent to [3, Thm. 1.2].

- Singular points of order (k, l) of a Lie *n*-algebroid structure Q_0 on $E = \bigoplus_{i=1}^{n} E_i[1]$: Take

$$\mathfrak{g}^{ullet}:=\mathsf{Der}_{\mathbb{R}}(S(E^*[-1])) ext{ and } Q=Q_0\in\mathfrak{h}^1,$$

with the commutator bracket, and let \mathfrak{h}^{\bullet} be the subspace of derivations with certain vanishing behaviour in the origin. For n = 1, l is irrelevant, and we deal with singular points of order k of Lie algebroids as in [3], and Theorem 1 is equivalent to [3, Thm. 1.3]. When additionally, k = 1, Theorem 1 is equivalent to [1, Thm. 1.8] for singular points.

- Singular points of a Courant algebroid structure Θ on $(E, \langle -, - \rangle)$: Take

$$\mathfrak{g}^{ullet}:= C^{ullet+2}(E)$$
 and $Q=\Theta$

as in [2]. For \mathfrak{h}^{\bullet} we restrict to subspaces corresponding to vanishing symbol at p. The cohomology is then isomorphic to a subspace of $H^1_{CE}(\mathfrak{g}_p, \mathbb{R}^n)$ where \mathfrak{g}_p is the quadratic Lie algebra obtained by restricting the Courant algebroid to p

$$rac{d}{dt}\pi_t = [ilde{q}, \pi_t], \qquad \pi_0 = \pi'$$

satisfies $\pi_1 \in \mathfrak{h}^1$?

Note that the latter formulation does not refer to the exact object we deal with, and only uses the algebraic structure underlying the deformation theory of Poisson structures.

- Marius Crainic and Rui Loja Fernandes, *Stability of symplectic leaves*, Inventiones mathematicae 180 (February 2010), no. 3, 481–533.
- [2] Miquel Cueca and Rajan Amit Mehta, Courant cohomology, Cartan calculus, connections, curvature, characteristic classes, Commun. Math. Phys. 381 (2021), no. 3, 1091–1113 (English).
- [3] Jean-Paul Dufour and Aïssa Wade, *Stability of higher order singular points of Poisson manifolds and Lie algebroids*, Ann. Inst. Fourier **56** (2006), no. 3, 545–559 (English).

- acting on $T_p \mathbb{R}^n$ by the Bott representation, where the subspace is defined by the pairing.
- Singular points of a Dirac structure L ⊂ L ⊕ L* with L* Dirac: Assume that the origin p ∈ ℝⁿ is a singular point of L. Take

 $\mathfrak{g}^{\bullet} := \Gamma(\wedge^{\bullet+1}L^*),$

with the bracket induced by the Lie algebroid structure of L^* , and $\partial = d_L$. Then take

 $\mathfrak{h}^{\bullet}:=\{X\in \mathsf{\Gamma}(\wedge^{\bullet+1}L^*)\mid X_p\in \wedge^{\bullet+1} \ker((\rho_{L^*})_p)\} \text{ and } Q:=0.$

The cohomological assumption is given by

 $\frac{\operatorname{ker}(d_L:\wedge^2 L_p^*/\wedge^2 \operatorname{ker}((\rho_{L^*})_p) \to \wedge^3 L_p^*/\wedge^3 (\operatorname{ker}(\rho_{L^*})_p))}{\operatorname{im}(d_L:L_p^*/\operatorname{ker}((\rho_{L^*})_p) \cong T_pS \to \wedge^2 L_p^*/\wedge^2 \operatorname{ker}((\rho_{L^*})_p))} = 0.$

This cohomological condition even implies the existence of a singular point on the L^* -leaf through p.

For the future...

Try to get rid of finite codimension assumption, for stability of higher-dimensional leaves, (transitive) Lie subalgebroids, representations (up to homotopy) of Lie algebroids...