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Abstract
We extend the formalism of vector bundles, principal bundles and principal connections to E-manifolds (as introduced in [6]), which can be used to describe singularities
in the configuration space of a classical particle. Manifolds with boundary or corners are configuration spaces naturally described in terms of E-manifolds extending that
of b-manifolds [2]. Following [8], we show the existence of a universal model for the phase space of a particle interacting with a gauge field; in this new setting, Wong’s
equations become hamiltonian. Also following [5], we see that the universal E-symplectic spaces of Weinstein are symplectic leaves of a bigger universal Poisson space.

The geometry of E-manifolds

Definition 1 (E-manifold) An E-manifold is a pair (M,E), whereM is a smooth
manifold and E ⊆ Vec(M) is an involutive and locally free C∞(M)-submodule.
We call any such E ⊆ Vec(M) an E-structure, and write EVec(M) = E. ◀

Lemma 2 (E-tangent bundle characterization) Let (M,E) be an E-manifold.
There exists a vector bundle ETM, called the E-tangent bundle, such that local
sections of ETM are in one-to-one correspondence with local sections in E. ◀

Definition 3 (E-maps) If (M,EM) and (N,EN) are E-manifolds, an E-map is a
Lie algebroid morphism F : ETM −→ ETN. ◀

Example 4 (b-Manifolds) A b-manifold is a pair (M,Z), where M is a smooth
manifold and Z ⊂ M is an embedded hypersurface. The submodule of tangent
vector fields to the submanifold Z is an E-structure. In a coordinate chart (U,ϕ)
with coordinates q1, . . . , qn adapted to Z,
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∂
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are generators of b-fields. ◀

Example 5 (c-Manifolds) A c-manifold is a pair (M,Z), where M is a smooth
manifold M and i : Z −→ M is an immersed hypersurface with self-transverse
instersections. The tangent fields to i(Z) are an E-structure. There exist coordi-
nates q such that i(Z) = ∪i⩽k{qi = 0}. We have generators
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Example 6 (Regular foliations) Consider a smooth manifold M and a regular,
smooth and involutive distribution D of rank k . By Frobenius’ theorem, there
exists a foliation F such that any element of D is tangent to a leaf of F . The
distribution D defines an E-structure by the involutivity condition. A choice of
coordinates q adapted to the foliation F gives a local basis
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Preliminaries on gauge theories

Definition 7 (Prolongation, pullback structure) Let (M,EM) be an E-manifold
and consider a fibre bundle τ : B −→ M. The prolongation of E by B is the
pullback submodule EB = ⟨τ−1∗ (EM)⟩. ◀

Definition 8 (Liouville one-form) Let (M,EM) be an E-manifold and consider
the prolongation (ET∗M, τ−1∗ (EM)). The Liouville form λ ∈ EΩ(ET∗M) is de-
fined by its action on X ∈ EVec(ET∗M) as

⟨λ,X⟩ =
〈
τETET∗M(X), (τET∗M)∗(X)

〉
. ◀

Definition 9 (Canonical symplectic form) In the previous notation, the canonical
symplectic form is defined as ω = dλ. Moreover, in natural coordinates

ω =

p∑
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j ∧ E∗k. ◀

Definition 10 (E-principal connection, E-gauge field) Consider an E-manifold
(M,EM) and a principal G-bundle π : P −→ M with pullback structure ETP .
An E-principal connection is a G-invariant splitting of the short exact sequence

0 P × g ETP π∗ETM 0,
ι π∗

called the E-Atiyah sequence. ◀

The formalisms of Weinstein and Montgomery

Theorem 11 (Weinstein’s symplectic formulation [8]) Consider a principal G-
bundle π : P −→ M over an E-manifoldM and a Hamiltonian G-spaceQ.
1. The product space ET∗P ×Q is Hamiltonian with moment map µP + µQ.
2. The hypotheses of the reduction theorem are satisfied and, consequently, the
space (ET∗P ×Q)0 is an E-symplectic manifold.

3. The horizontal lift h† is well defined in classes of equivalence and defines a map
α : (ET∗P ×Q)0 −→ ET∗M. ◀

Given a function H ∈ C∞(ET∗M), the pullback α∗H ∈ C∞((ET∗M × Q)0) is a
hamiltonian function forWong’s equations of motion.

Theorem 12 (Weinstein’s isomorphism with Sternberg’s space [7, 8]) Let
π : P −→ M be an E-principal G-bundle and consider a G-Hamiltonian
spaceQ. There exists a diffeomorphism

µ−1(0) ≃ P ♯ ×Q.
The map descends to a symplectomorphism (ET∗P ×Q)0 ≃ P ♯ ×G Q. ◀

Theorem 13 (Montgomery’s isomorphism [5]) Consider an E-principal G-
bundle π : P −→ M. Any E-principal connection gives rise to the commutative
diagram (1). Moreover, the map [Ψ ], called the minimal coupling, is a Poisson
isomorphism. The Weinstein space (ET∗P × O(p))0 is a symplectic leaf of the
Poisson space ET∗P/G.

ET∗P ET∗P/G

ET∗M

g∗ × P ♯ g∗ ×G P ♯

πET∗P/G

πg∗×GP♯

[π2]
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