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Shifted Symplectic Structures [1, 3, 2]

Let G⇒M be a Lie groupoid, G• its nerve and [M/G] the differentiable stack presented by G.

Symplicial Cohomology in Differential Forms:
0 −→ Ω•(M)

∂−→ Ω•(G)
∂−→ · · · ∂−→ Ω•(Gk)

∂−→ · · ·
∂ is the alternating sum of the pull-backs along the face maps of G•. Multiplicative forms on G are those in Ω•mult(G) := ker

(
∂ : Ω•(G)→ Ω•(G2)

)
.

Definition (Shifted Symplectic Structure)

A +1-shifted 2-form on [M/G] is the symplicial cohomology class [ω] of a multiplicative 2-form ω ∈ Ω2
mult(G). [ω] is symplectic if it is both:

• non-degenerate, i.e. ω[ : TG→ T ∗G is a Morita map, and

• closed, i.e. dω = 0 mod cohomologically trivial terms wrt the simplicial cohomology.

Contact Structures
A contact structure on a manifold N is a hyperplane distribution K ⊆ TN which is
maximally non-integrable, i.e. the curvature

RK : ∧2K → L := TM/K, (X, Y ) 7→ [X, Y ] modK

is non-degenerate.

A contact structure can be equivalently described as a contact form:

Definition (Contact Form)

A contact form is a non-zero line bundle valued 1-form θ ∈ Ω1(M,L) such that

•Rθ := (d∇θ)|K : ∧2K → L is non-degenerate (K := ker θ),

for one, hence for any, connection ∇ in L (notice that Rθ = RK).

Atiyah Forms [4]

Let L→ N be a line bundle and At(L)⇒ N its gauge algebroid. The anchor σ : At(L)→
TN is the symbol. Atiyah forms on L are L-valued cochains ω : ∧•At(L) → L, that we
denote Ω•At(L). Atiyah forms come with a Lie algebroid differential

dAt : Ω•At(L)→ Ω•+1
At (L).

Components of an Atiyah Form:
There is a short exact sequence of vector spaces

0 −→ Ω•(N,L)
σ∗−→ Ω•At(L) −→ Ω•−1(N,L) −→ 0

splitting via
Ω•−1(N,L)→ Ω•At(L), θ 7→ dAt (σ∗θ) .

Accordingly, there is a vector space decomposition

Ω•At(L) ∼= Ω•−1(N,L)⊕ Ω•(N,L), ω 
 (ω0, ω1).

Symplectic Atiyah Forms

An Atiyah 2-form ω ∈ Ω2
At(L) is symplectic if it is both:

• non-degenerate, i.e. ω[ : At(L)→ At(L)∗ ⊗ L is an isomorphism, and

• closed, i.e. dAtω = 0, equivalently ω1 = 0.

Proposition (Contact Structures Revisited)

The assignment θ 7→ ω 
 (θ, 0) establishes a bijection between

• contact 1-forms and

• symplectic Atiyah forms.

LB Groupoids
Let (L ⇒ LM) → (G ⇒ M) be a line bundle (LB) groupoid (all the structure maps are
isomorphisms on fibers), let L•→ G• be its nerve and [LM/L]→ [M/G] the vector bundle
in differentiable stacks presented by L.

Symplicial Cohomology in L-Valued Forms:

0 −→ Ω•(M,LM)
∂−→ Ω•(G,L)

∂−→ · · · ∂−→ Ω•(Gk, Lk)
∂−→ · · ·

∂ is the alternating sum of the pull-backs along the face maps of L•. Multiplicative L-
valued forms on G are those in Ω•mult(G,L) := ker

(
∂ : Ω•(G,L)→ Ω•(G2, L2)

)
.

Shifted Contact Structures
Let θ ∈ Ω1

mult(G,L). We can always make sense of ker θ as a differentiable stack:

Theorem (Morita Kernel & Morita Curvature)

(1) There is a canonical VB groupoid structure

MKθ TM ⊕ LM

G M

on MKθ := TG⊕ L with target

t̃(v, `) :=
(
dt(v), tL(` + θ(v))

)
.

There is also an adjoint VB groupoid MK†θ := (T ∗G⊗ L)⊕ RM ⇒ A∗ ⊗ LM .

(2) For any connection ∇ in LM , let η∇ := s∗∇− t∗∇ (∈ Ω1
mult(G)). Then, the VB map:

MRθ =

(
d t
∗∇θ η∇
−η∇ 0

)
: MKθ →MK†θ

is a VB groupoid map.

(3)MKθ and MRθ do only depend on [LM/L] and the simplicial cohomology class [θ] up
to Morita equivalences.

Motivating Remark:
When θ is non-zero, the inclusion K := ker θ ↪→MKθ is Morita.

Definition (Shifted Contact Form)

A +1-shifted contact form on [M/G] is the symplicial cohomology class [θ] of a multi-
plicative 1-form θ ∈ Ω1(G,L) such that

•MRθ : MKθ →MK†θ is a Morita map.

Multiplicative Atiyah Forms
Let (L→ G) ⇒ (LM →M) be an LB groupoid.

Symplicial Cohomology in Atiyah Forms:

0 −→ Ω•At(LM)
∂−→ Ω•At(L)

∂−→ · · · ∂−→ Ω•At(L
k)

∂−→ · · ·
Multiplicative Atiyah forms are those in Ω•At,mult(L) := ker

(
∂ : Ω•At(L)→ Ω•At(L

2)
)
.

ω ∈ Ω•At(L) is multiplicative iff ω0, ω1 are so.

Shifted Symplectic Atiyah Forms

Definition (Shifted Symplectic Atiyah Form)

A +1-shifted Atiyah 2-form on [LM/L] is the simplicial cohomology class [ω] of a multi-
plicative Atiyah 2-form ω ∈ Ω2

At,mult(L). [ω] is symplectic if it is both:

• non-degenerate, i.e. ω[ : At(L)→ At(L)∗ ⊗ L is a Morita map, and

• closed, i.e. dAtω = 0 mod cohomologically trivial terms wrt the simplicial cohomology.

Theorem (Shifted Contact & Shifted Symplectic Atiyah Forms)

The assignment θ 7→ ω 
 (θ, 0) establishes a bijection between

•+1-shifted contact forms and

•+1-shifted symplectic Atiyah forms.
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