

SHIFTED CONTACT STRUCTURES ON DIFFERENTIABLE STACKS Antonio Maglio[†], Alfonso Giuseppe Tortorella[‡], and Luca Vitagliano[†]

> [†]DipMat, University of Salerno, Italy [‡]CMUP, University of Porto, Portugal

Shifted Symplectic Structures [1, 3, 2]

Let $G \rightrightarrows M$ be a Lie groupoid, G^{\bullet} its nerve and [M/G] the differentiable stack presented by G.

Symplicial Cohomology in Differential Forms:

 $0 \longrightarrow \Omega^{\bullet}(M) \xrightarrow{\partial} \Omega^{\bullet}(G) \xrightarrow{\partial} \cdots \xrightarrow{\partial} \Omega^{\bullet}(G^k) \xrightarrow{\partial} \cdots$

 ∂ is the alternating sum of the pull-backs along the face maps of G^{\bullet} . Multiplicative forms on G are those in $\Omega^{\bullet}_{mult}(G) := \ker \left(\partial : \Omega^{\bullet}(G) \to \Omega^{\bullet}(G^2)\right)$.

more appropriate

for our purposes

symplectic-like approach to

contact structures

Definition (SHIFTED SYMPLECTIC STRUCTURE)

A +1-shifted 2-form on [M/G] is the symplicial cohomology class $[\omega]$ of a multiplicative 2-form $\omega \in \Omega^2_{mult}(G)$. $[\omega]$ is symplectic if it is both: • non-degenerate, i.e. $\omega_{\flat}: TG \to T^*G$ is a Morita map, and

• *closed*, i.e. $d\omega = 0$ mod cohomologically trivial terms wrt the simplicial cohomology.

Contact Structures

A contact structure on a manifold N is a hyperplane distribution $K \subseteq TN$ which is maximally non-integrable, i.e. the curvature

 $R_K : \wedge^2 K \to L := TM/K, \quad (X, Y) \mapsto [X, Y] \mod K$

is non-degenerate.

A contact structure can be equivalently described as a *contact form*:

Definition (CONTACT FORM)

A contact form is a non-zero line bundle valued 1-form $\theta \in \Omega^1(M, L)$ such that • $R_{\theta} := (d^{\nabla}\theta)|_{K} : \wedge^{2}K \to L$ is non-degenerate $(K := \ker \theta)$,

for one, hence for any, connection ∇ in L (notice that $R_{\theta} = R_K$).

Atiyah Forms [4]

Let $L \to N$ be a line bundle and $At(L) \Rightarrow N$ its gauge algebroid. The anchor $\sigma : At(L) \to N$ TN is the symbol. Atiyah forms on L are L-valued cochains $\omega : \wedge^{\bullet} At(L) \to L$, that we denote $\Omega^{\bullet}_{At}(L)$. Atiyah forms come with a Lie algebroid differential

 $d_{\mathrm{At}}: \Omega^{\bullet}_{\Delta_{\pm}}(L) \to \Omega^{\bullet+1}_{\Delta_{\pm}}(L).$

COMPONENTS OF AN ATIYAH FORM:

Shifted Contact Structures

Let $\theta \in \Omega^1_{mult}(G, L)$. We can always make sense of ker θ as a differentiable stack:

Theorem (MORITA KERNEL & MORITA CURVATURE)

(1) There is a canonical VB groupoid structure

 $MK_{\theta} \Longrightarrow TM \oplus L_M$

G = M

on $MK_{\theta} := TG \oplus L$ with target

 $\tilde{t}(v,\ell) := \left(dt(v), t^L(\ell + \theta(v)) \right).$

There is also an *adjoint VB groupoid* $MK_{\theta}^{\dagger} := (T^*G \otimes L) \oplus \mathbb{R}_M \rightrightarrows A^* \otimes L_M.$ (2) For any connection ∇ in L_M , let $\eta_{\nabla} := s^* \nabla - t^* \nabla$ ($\in \Omega^1_{mult}(G)$). Then, the VB map:

$$MR_{\theta} = \begin{pmatrix} d^{t^*\nabla\theta} & \eta_{\nabla} \\ -\eta_{\nabla} & 0 \end{pmatrix} : MK_{\theta} \to MK_{\theta}^{\dagger}$$

is a VB groupoid map.

(3) MK_{θ} and MR_{θ} do only depend on $[L_M/L]$ and the simplicial cohomology class $[\theta]$ up to Morita equivalences.

MOTIVATING REMARK:

There is a short exact sequence of vector spaces

$$0 \longrightarrow \Omega^{\bullet}(N,L) \xrightarrow{\sigma^*} \Omega^{\bullet}_{\mathrm{At}}(L) \longrightarrow \Omega^{\bullet-1}(N,L) \longrightarrow 0$$

splitting via

 $\Omega^{\bullet -1}(N, L) \to \Omega^{\bullet}_{At}(L), \quad \theta \mapsto d_{At}(\sigma^*\theta).$

Accordingly, there is a vector space decomposition

 $\Omega^{\bullet}_{A^{\dagger}}(L) \cong \Omega^{\bullet-1}(N,L) \oplus \Omega^{\bullet}(N,L), \quad \omega \rightleftharpoons (\omega_0,\omega_1).$

Symplectic Atiyah Forms

An Atiyah 2-form $\omega \in \Omega^2_{At}(L)$ is symplectic if it is both: • non-degenerate, i.e. $\omega_{\flat} : \operatorname{At}(L) \to \operatorname{At}(L)^* \otimes L$ is an isomorphism, and • closed, i.e. $d_{At}\omega = 0$, equivalently $\omega_1 = 0$.

Proposition (CONTACT STRUCTURES REVISITED)

The assignment $\theta \mapsto \omega \rightleftharpoons (\theta, 0)$ establishes a bijection between

• contact 1-forms and

• symplectic Atiyah forms.

Definition (SHIFTED CONTACT FORM)

A +1-shifted contact form on [M/G] is the symplicial cohomology class $[\theta]$ of a multiplicative 1-form $\theta \in \Omega^1(G, L)$ such that • $MR_{\theta} : MK_{\theta} \to MK_{\theta}^{\dagger}$ is a Morita map.

Multiplicative Atiyah Forms

Let $(L \to G) \rightrightarrows (L_M \to M)$ be an LB groupoid.

Symplicial Cohomology in Atiyah Forms: $0 \longrightarrow \Omega^{\bullet}_{\Delta_{\pm}}(L_M) \xrightarrow{\partial} \Omega^{\bullet}_{\Delta_{\pm}}(L) \xrightarrow{\partial} \cdots \xrightarrow{\partial} \Omega^{\bullet}_{\Delta_{\pm}}(L^k) \xrightarrow{\partial} \cdots$ Multiplicative Atiyah forms are those in $\Omega^{\bullet}_{\operatorname{At},mult}(L) := \operatorname{ker} \left(\partial : \Omega^{\bullet}_{\operatorname{At}}(L) \to \Omega^{\bullet}_{\operatorname{At}}(L^2)\right).$

$\omega \in \Omega^{\bullet}_{At}(L)$ is multiplicative iff ω_0, ω_1 are so.

Shifted Symplectic Atiyah Forms

Definition (SHIFTED SYMPLECTIC ATIYAH FORM)

A +1-shifted Atiyah 2-form on $[L_M/L]$ is the simplicial cohomology class $[\omega]$ of a multiplicative Atiyah 2-form $\omega \in \Omega^2_{At,mult}(L)$. $[\omega]$ is symplectic if it is both: • non-degenerate, i.e. $\omega_{\flat} : \operatorname{At}(L) \to \operatorname{At}(L)^* \otimes L$ is a Morita map, and • closed, i.e. $d_{At}\omega = 0$ mod cohomologically trivial terms with the simplicial cohomology.

LB Groupoids Let $(L \Rightarrow L_M) \rightarrow (G \Rightarrow M)$ be a line bundle (LB) groupoid (all the structure maps are isomorphisms on fibers), let $L^{\bullet} \to G^{\bullet}$ be its nerve and $[L_M/L] \to [M/G]$ the vector bundle in differentiable stacks presented by L.

SYMPLICIAL COHOMOLOGY IN L-VALUED FORMS:

 $0 \longrightarrow \Omega^{\bullet}(M, L_M) \xrightarrow{\partial} \Omega^{\bullet}(G, L) \xrightarrow{\partial} \cdots \xrightarrow{\partial} \Omega^{\bullet}(G^k, L^k) \xrightarrow{\partial} \cdots$

 ∂ is the alternating sum of the pull-backs along the face maps of L^{\bullet} . Multiplicative Lvalued forms on G are those in $\Omega^{\bullet}_{mult}(G, L) := \ker \left(\partial : \Omega^{\bullet}(G, L) \to \Omega^{\bullet}(G^2, L^2)\right).$

Theorem (SHIFTED CONTACT & SHIFTED SYMPLECTIC ATIYAH FORMS)

The assignment $\theta \mapsto \omega \rightleftharpoons (\theta, 0)$ establishes a bijection between

 \bullet +1-shifted contact forms and

 \bullet +1-shifted symplectic Atiyah forms.

References

[1] Bursztyn Henrique, Crainic Marius, Weinstein Alan, and Zhu Chenchang, Integration of twisted Dirac brackets, Duke Mathematical Journal 123, n° 3 (2004), 549–607; e-print: arXiv:math/0303180.

line bundles in the

category of groupoids

[2] del Hoyo Matias, and Ortiz Cristian, Morita equivalences of vector bundles, International Mathematics Research Notices 2020, nº 14 (2020), 4395–4432; e-print: arXiv:1612.09289.

[3] Xu Ping, Momentum maps and Morita equivalence, Journal of Differential Geometry 67 (2004), 289–333; e-print: arXiv:math/0307319.

[4] Vitagliano Luca, and Wade Aissa, Holomorphic Jacobi manifolds and holomorphic contact groupoids, Mathematische Zeitschrift 294 (2020), 1181–1225; e-print: arXiv:1710.03300.