$Symmetries of Singular Foliations through \\ Universal Lie \infty - algebroids$

Ruben LOUIS ruben.louis@univ-lorraine.fr

Abstract

We associate to any Lie-Rinehart algebra over a unital commutative algebra \mathcal{O} , for instance to any singular foliation $\mathcal{F} \subseteq \mathfrak{X}(M)$ on a manifold M, a "unique" class of negatively graded Lie ∞ -algebroids $\simeq NQ$ -manifolds. [1][2]

We show that a weak symmetry action of a Lie algebra \mathfrak{g} on \mathcal{F} induces a unique (up to homotopy) Lie ∞ -morphism from \mathfrak{g} to the DGLA made of vector fields on a universal NQ-manifold of \mathcal{F} . [3]

Weak symmetry actions

Definition.

- A weak symmetry action of a Lie algebra \mathfrak{g} on a singular foliation \mathcal{F} on M is a \mathbb{K} -linear map $\varrho \colon \mathfrak{g} \longrightarrow \mathfrak{X}(M)$ that satisfies:
 - $\forall x \in \mathfrak{g}, \ [\varrho(x), \mathcal{F}] \subseteq \mathcal{F}, \\ \forall x, y \in \mathfrak{g}, \ \varrho([x, y]_{\mathfrak{g}}) [\varrho(x), \varrho(y)] \in \mathcal{F}.$
- Two weak symmetry actions, $\varrho, \varrho' \colon \mathfrak{g} \longrightarrow \mathfrak{X}(M)$ are said to be <u>equivalent</u> if there exists a linear map $\varphi \colon \mathfrak{g} \longrightarrow \mathcal{F}$ such that $\varrho \varrho' = \varphi$.

Example. Let $W \subseteq \mathbb{C}^d$ be an affine variety and $\mathcal{I}_W \subset \mathbb{C}[x_1, \ldots, x_d]$ its corresponding ideal. Let manifold of \mathcal{F} . [3] $\mathcal{F}_W := \mathcal{I}_W \mathfrak{X}(\mathbb{C}^d)$ be the singular foliation made of vector fields vanishing on W. Any Lie algebra morphism $\varrho: \mathfrak{g} \longrightarrow \mathfrak{X}(W)$ extends to a weak symmetry action of \mathfrak{g} on \mathcal{F}_W over the ambient space \mathbb{C}^d . Any two such extensions are equivalent. Background A first result on Lie-Rinehart algebras, e.g singular foliations Definition. **Theorem 1.** [1][2]A dg-manifold or NQ-manifold is a positively Let \mathcal{F} be a Lie Rinehart algebra over an algebra \mathcal{O} . graded manifold (M, E, \mathcal{E}) endowed with a 1. Any resolution of \mathcal{F} by free \mathcal{O} -modules degree +1 homological vector field^{*a*} Q on E, i.e., $Q \in \mathfrak{X}_1(E)$ is such that $Q^2 = 0$. $\cdots \xrightarrow{d} P_{-3} \xrightarrow{d} P_{-2} \xrightarrow{d} P_{-1} \xrightarrow{\rho} \mathcal{F} \longrightarrow 0$ **Proposition.** (T. Voronov, N. Poncin,...) carries a Lie ∞ -algebroid structure over \mathcal{F} whose unary bracket is $\ell_1 := d$. There is a one-to-one correspondence between NQ-manifolds and negatively graded Lie 2. Any two of such structures are unique up to homotopy equivalence. ∞ -algebroids over M. 3. In particular, when \mathcal{F} is a singular foliation that admits a geometric resolution^{*a*} (E, d, ρ), there ^aA vector field on E is a graded derivation of the exists a NQ-manifold (E, Q) over \mathcal{F} called "<u>universal</u>", whose linear part is (E, d, ρ) . algebra of functions \mathcal{E} . We denote by $\mathfrak{X}_{\bullet}(E) := \operatorname{Der}_{\bullet}(\mathcal{E})$

^{*a*}i.e., $P_{-i} = \Gamma(E_{-i})$, for some vector bundle E_{-i} over M.

Application to symmetries of singular foliations

Theorem 2. [3]

Let \mathcal{F} a be singular foliation over a smooth manifold (or an affine variety) M and $\varrho \colon \mathfrak{g} \longrightarrow \mathfrak{X}(M)$ be a weak symmetry action of \mathfrak{g} on \mathcal{F} .

1. For any universal Lie ∞ -algebroid (E, Q) of \mathcal{F} , ϱ lifts to a Lie ∞ -morphism of DGLAs

 $\Phi_{\bullet} \colon (\mathfrak{g}[1], [\cdot, \cdot]_{\mathfrak{g}}) \stackrel{\infty}{\leadsto} (\mathfrak{X}_{\bullet}(E)[1], [\cdot, \cdot], \mathrm{ad}_Q).$

- 2. Any two such lifts are homotopy equivalent.
- 3. Any two such lifts of any two equivalent weak symmetry actions of \mathfrak{g} on \mathcal{F} are homotopy equivalent.

Remark. The two first terms of the Lie- ∞ -morphism read

- $\Phi_0: \mathfrak{g} \to \mathfrak{X}_0(E)$ is such that $\Phi_0(x)[f] = \varrho(x)[f]$, and $[Q, \Phi_0(x)] = 0$, $\forall x \in \mathfrak{g}, f \in C^\infty(M)$. This morphism is not a graded Lie algebra morphism,
- but there exists a linear map $\Phi_1: \wedge^2 \mathfrak{g} \to \mathfrak{X}_{-1}(E)$ such that for all $x, y \in \mathfrak{g}: \Phi_0([x, y]_{\mathfrak{g}}) [\Phi_0(x), \Phi_0(y)] = [Q, \Phi_1(x, y)].$

An obstruction theory

the graded Lie algebra of vector fields on E.

Proposition. [3] Let $m \in M$ be a point of M. Assume that the isotropy Lie algebra \mathfrak{g}_m of \mathcal{F} at m is Abelian. Then, for any weak symmetry action ϱ of \mathfrak{g} on \mathcal{F} such that

 $\varrho([x,y]_{\mathfrak{g}}) - [\varrho(x),\varrho(y)] = \rho(\eta(x,y)) \in \mathcal{F}(m), \quad \text{for all } x, y \in \mathfrak{g}$

1. \mathfrak{g}_m is a \mathfrak{g} -module.

- 2. The bilinear map, $\eta_{|_m} \colon \wedge^2 \mathfrak{g} \to \mathfrak{g}_m$, is a Chevalley-Eilenberg 2-cocycle.
- 3. Its class $\underline{cl}(\eta) \in H^2(\mathfrak{g}, \mathfrak{g}_m)$ does not depend on the choices made in the construction.
- 4. Furthermore, $cl(\eta)$ obstructs the existence of having a strict symmetry action equivalent to ρ .

References

[1] Camille Laurent-Gengoux, Sylvain Lavau, and Thomas Strobl. The universal Lie ∞ algebroid of a singular foliation. Doc. Math., 2020.

[2] Camille Laurent-Gengoux and Ruben Louis. Lie-Rinehart algebras \simeq acyclic Lie ∞ -algebroids. Journal of algebra, 2022.

[3]RubenLouis.Onsymme-triesofsingularfoliations.2022.https://arxiv.org/abs/2203.01585