Homotopy momentum sections and sigma models

Noriaki Ikeda (with Yuji Hirota)

Ritsumeikan University, Japan

Introduction

We introduce a notion of a homotopy momentum section on a Lie algebroid over a pre-multisymplectic manifold. A homotopy momentum section is a generalization of a momentum map and a momentum section on a pre-symplectic manifold, and is also a generalization of a homotopy momentum map on a multisymplectic manifold. A gauged nonlinear sigma model with Wess-Zumino term with Lie algebroid gauging has this structure.

'Homotopy momentum sections on multisymplectic manifolds,' Y. Hirota and NI, arXiv: 2110.12305 [math.SG]

Lie algebroids and differentials

for $e_1, \ldots, e_k \in \Gamma(E)$ and $v_{k+1}, \ldots, v_{n+1} \in \mathfrak{X}(M)$. Expanding the equation by form degree, Equation (3) is the following n + 1 equations,

$$\nabla \mu_{n-1} = -\iota_{\rho}^{1} \omega,$$

$$\nabla \mu_{k-1} + {}^{E} \mathrm{d}^{\nabla} \mu_{k} = -\iota_{\rho}^{n+1-k} \omega, \quad (k = 1, \dots, n-1)$$

$${}^{E} \mathrm{d}^{\nabla} \mu_{0} = {}^{E} \mathrm{d} \mu_{0} = -\iota_{\rho}^{n+1} \omega.$$

Example 1.7 (Momentum map on symplectic manifold)

The Lie group action on M induces an action Lie algebroid structure on a trivial bundle $E = M \times \mathfrak{g}$ with a Lie algebra \mathfrak{g} of G. $\nabla = d$ with the de Rham differential d. μ has only one component $\mu = \mu_0 \in C^{\infty}(M, \mathfrak{g}^*)$ which is regarded as $\mu : M \to \mathfrak{g}^*$. Equation (3) reduces to two

Let $n \ge 2$. A Lie group action induces an action Lie algebroid structure on the trivial bundle $E = M \times \mathfrak{g}$. If the homotopy momentum section μ on the action Lie algebroid is equivariant, Equation (5) is ${}^{E}d^{\nabla} = -d_{CE}$. Thus, the homotopy momentum section reduces to

$$(\mathrm{d} - \mathrm{d}_{CE})\mu = -\sum_{k=0}^{n} \iota_{\rho}^{n+1-k}\omega.$$

If we take $\hat{\mu}_k = (-1)^{n-k+1} \mu_k$, Equation (6) coincides with Equation (4). Therefore, we obtain the following theorem.

Theorem 1.12 Let $n \ge 2$ and a Lie algebroid be the action Lie algebroid $E = M \times \mathfrak{g}$ with a Lie algebra \mathfrak{g} . Then, If the homotopy momentum section μ for the action Lie

Definition 1.1*A* Lie algebroid $(E, \rho, [-, -])$ is a vector bundle E over a smooth manifold M with a bundle map $\rho: E \to TM$ called the anchor map, and a Lie bracket $[-,-]: \Gamma(E) \times \Gamma(E) \to \Gamma(E)$ satisfying the Leibniz rule,

 $[e_1, fe_2] = f[e_1, e_2] + \rho(e_1)f \cdot e_2,$

for $e_i \in \Gamma(E)$ and $f \in C^{\infty}(M)$.

Definition 1.2 *A Lie algebroid differential* ^Ed : $\Gamma(\wedge^m E^*) \to \Gamma(\wedge^{m+1} E^*)$ is defined by

 $^{E}\mathrm{d}lpha(e_{1},\ldots,e_{m+1})$ $_{m+1}^{m+1}$ $= \sum_{i=1}^{m+1} (-1)^{i-1} \rho(e_i) \alpha(e_1, \dots, \check{e}_i, \dots, e_{m+1}) \\ + \sum_{i=1}^{m+1} (-1)^{i+j} \alpha([e_i, e_j], e_1, \dots, \check{e}_i, \dots, \check{e}_j, \dots, e_{m+1}),$ $1 \le i < j \le m+1$

where $\alpha \in \Gamma(\wedge^m E^*)$ and $e_i \in \Gamma(E)$.

We introduce an ordinary connection on the vector bundle Take n = 1 and a general Lie algebroid E. M is a $E, \nabla : \Gamma(E) \to \Gamma(T^*M \otimes E)$, which is a \mathbb{R} -linear map pre-symplectic manifold. Similar to the momentum map, satisfying the Leibniz rule, $\nabla(fe) = f\nabla e + (df) \otimes e$ for a homotopy momentum section μ is only one component $e \in \Gamma(E)$ and $f \in C^{\infty}(M)$.

Definition 1.3 *An E*-connection on a vector bundle *E'* with respect to a Lie algebroid E is a \mathbb{R} -linear map $^{E}\nabla$:

$$\mathrm{d}\mu_0 = -\iota_\rho \omega, \qquad {}^E \mathrm{d}\mu_0 = -\iota_\rho^2 \omega.$$

It is equivalent to the condition of the momentum map,

 $d\mu_0 = -\iota_\rho \omega, \qquad \mu_0([e_1, e_2]) = \mathrm{ad}_{e_1}^* \mu_0(e_2).$

for $e_1, e_2 \in \mathfrak{g}$.

equations,

Example 1.8 (Momentum map on multisymp. manifold) Let $n \geq 2$ and (M, ω) be an *n*-plectic manifold with an *n*-plectic form ω .

If we set $\mu_k = 0$ for k = 0, ..., n - 2, μ has only one component, an n-1 form $\mu = \mu_{n-1} \in \Omega^{n-1}(M, \mathfrak{g}^*)$. Equation reduces to two equations,

 $d\mu_{n-1} = -\iota_{\rho}\omega, \qquad \mu_{n-1}([e_1, e_2]) = \mathrm{ad}_{e_1}^*\mu_{n-1}(e_2).$ for $e_1, e_2 \in \mathfrak{g}$.

Example 1.9 (Momentum section on sympl. manifold)

 $\mu = \mu_0 \in \Gamma(E^*)$. Equation (3) reduces to two equations,

 $\nabla \mu_0 = -\iota_\rho \omega,$ $^{E}\mathrm{d}\mu_{0}=-\iota_{\rho}^{2}\omega.$ algebroid E is equivariant, it is a homotopy momentum map for \mathfrak{g} .

Gauged nonlinear sigma model with Wess-Zumino term

 Ξ is an (n + 1)-dimensional smooth manifold Ξ with ndimensional boundary $\Sigma = \partial \Xi$. M is a d-dimensional manifold. Suppose that M is a d-dimensional pre-n-plectic Riemannian manifold with a metric g. E is a Lie algebroid over M. Let $X : \Xi \to M$ be a map from Ξ to M.

We consider a *gauged* nonlinear sigma model by introducing a 'connection' D on Σ . Let $A \in \Omega^1(\Sigma, X^*E)$ be a 1form on Σ taking a value in the pullback of E corresponding to D. Moreover, introduce a connection ∇ on E and its connection 1-form $\omega_{ai}^{b}(x) dx^{i} \otimes e^{a} \otimes e_{b}$. Take local coordinate expressions of the anchor map and the Lie bracket as

$$\rho(e_a) := \rho_a^i(x)\partial_i, \qquad [e_a, e_b] := C_{ab}^c(x)e_c.$$

(Covariant) gauge transformations are

$$\delta X^{i} = \rho_{a}^{i}(X)\epsilon^{a}, \qquad (6)$$

$$\delta A^{a} = d\epsilon^{a} + C_{bc}^{a}(X)A^{b}\epsilon^{c} + \omega_{bi}^{a}(X)\epsilon^{b}DX^{i}. \qquad (7)$$

Here $DX^i = dX^i - \rho_a^i(X)A^a$.

 $\Gamma(E') \rightarrow \Gamma(E^* \otimes E')$ satisfying

 ${}^{E}\nabla_{e}(fe') = f^{E}\nabla_{e}e' + (\rho(e)f)e',$

for $e \in \Gamma(E)$, $e' \in \Gamma(E')$ and $f \in C^{\infty}(M)$.

If a normal connection ∇ on E is given, a (canonical) *E*-connection on a tangent bundle, ${}^{E}\nabla$: $\Gamma(TM) \rightarrow$ $\Gamma(E^* \otimes TM)$ is defined by

 ${}^{E}\nabla_{e}v := \mathcal{L}_{\rho(e)}v + \rho(\nabla_{v}e) = [\rho(e), v] + \rho(\nabla_{v}e),$

where $e \in \Gamma(E)$ and $v \in \mathfrak{X}(M)$. **Definition 1.4** For $\Omega^k(M, \wedge^m E^*) = \Gamma(\wedge^k T^*M \otimes \wedge^m E^*)$, the *E*-exterior covariant derivative ${}^{E}d^{\nabla}: \Omega^{k}(M, \wedge^{m}E^{*}) \rightarrow$ $\Omega^k(M, \wedge^{m+1}E^*)$ is defined by

$$E d^{\nabla} \alpha(e_1, \dots, e_{m+1})$$

$$:= \sum_{i=1}^{m+1} (-1)^{i-1E} \nabla_{e_i}(\alpha(e_1, \dots, \check{e}_i, \dots, e_{m+1}))$$

$$+ \sum_{1 \le i < j \le m+1} (-1)^{i+j} \alpha([e_i, e_j], e_1, \dots, \check{e}_i, \dots, \check{e}_j, \dots, e_{m+1}),$$

$$(2)$$

for $\alpha \in \Omega^k(M, \wedge^m E^*)$ and $e_i \in \Gamma(E)$.

Homotopy momentum sections

These equations are that μ_0 is a momentum section on a (1)*Lie algebroid over a pre-symplectic manifold introduced by* Blohmann and Weinstein.

Homotopy momentum map

Let (M, ω) be an *n*-plectic manifold. Suppose an action of a Lie group G on M. The action of G induces the corresponding infinitesimal Lie algebra action on M as vector fields, $\rho : \mathfrak{g} \to TM$. We have two differentials on the space, $\Omega^k(M, \wedge^{n-k}\mathfrak{g}^*) = \Omega^k(M) \otimes \wedge^{n-k}\mathfrak{g}^*, d := d \otimes 1$ and $d_{CE} := 1 \otimes d_{CE}$ where d is the de Rham differential on $\Omega^k(M)$ and d_{CE} is the Chevalley-Eilenberg differential on $\wedge^{n-k}\mathfrak{g}^*,$

2)
$$d_{CE}\alpha(e_1, \dots, e_{m+1}) = \sum_{1 \le i < j \le m+1} (-1)^{i+j} \alpha([e_i, e_j], e_1, \dots, \check{e_i}, \dots, \check{e_j}, \dots, e_{m+1}).$$

Introduce $\widehat{\mu} = \sum_{k=0}^{n-1} \widehat{\mu}_k$, where $\widehat{\mu}_k \in \Omega^k(M, \wedge^{n-k} \mathfrak{g}^*)$ is a k-form taking a value in $\wedge^{n-k}\mathfrak{g}^*$, where $k = 0, \ldots, n-1$. **Definition 1.10** *A homotopy momentum map* $\hat{\mu}$ *is defined by*

$$(d + d_{CE})\widehat{\mu} = \sum_{k=0}^{n} (-1)^{n-k+1} \iota_{\rho}^{n+1-k} \omega.$$
 (4)

The action functional S is a so called Hull-Spence type,

$$S_{LA} = S_g + S_H + S_\mu, \tag{8}$$

where

$$S_{g} = \int_{\Sigma} \frac{1}{2} g_{ij}(X) DX^{i} \wedge *DX^{j}$$

$$S_{H} = \int_{\Xi} X^{*}H,$$

$$S_{\mu} = \sum_{\substack{k=0\\ \wedge A^{a_{k+1}}}}^{n-1} \int_{\Sigma} \frac{1}{k!(n-k)!} X^{*} \tilde{\mu}_{i_{1}\dots i_{k}a_{k+1}\dots a_{n}}^{(k)} dX^{i_{1}} \wedge \dots \wedge dX^{i_{k}}$$

where $X^* \tilde{\mu}^{(k)}$ is the pullback of a k-form on M taking a value in $\wedge^{n-k}E^*$, $\tilde{\mu}^{(k)} \in \Omega^k(M, \wedge^{n-k}E^*)$. Requiring (8) is invariant under gauge transformations (6) and (7), we obtain geometric conditions for a metric g, H and $\tilde{\mu}^{(k)}$. The condition for the metric g is ${}^{E}\nabla g = 0$. For *H* and $\tilde{\mu}^{(k)}$, define

 $\mu_k := (-1)^{(k+1)\dots(n-1)} \tilde{\mu}^{(k)},$ $\omega(\rho(e_1),\ldots,\rho(e_k),v_{k+1},\ldots,v_{n+1})$ $:= (-1)^{n-k} H(\rho(e_k), \dots, \rho(e_1), v_{k+1}, \dots, v_{n+1}),$ where $e_1, \ldots, e_k \in \Gamma(E)$ and $v_{k+1}, \ldots, v_{n+1} \in \mathfrak{X}(M)$.

Definition 1.5 A pre-n-plectic manifold is a pair (M, ω) , where M is a smooth manifold and ω is a closed (n + 1)form on M.

We introduce a series of k-forms taking values in $\wedge^{n-k}E^*$, $\mu_k \in \Omega^k(M, \wedge^{n-k} E^*)$, where k = 0, ..., n - 1.

Definition 1.6 A formal sum $\mu = \sum_{k=0}^{n-1} \mu_k$ is called a homotopy momentum section if μ satisfies

$$(\nabla + {}^{E} \mathrm{d}^{\nabla})\mu = -\sum_{k=0}^{n} \iota_{\rho}^{n+1-k}\omega.$$
(3)

Here, $\iota_{\rho}^{k}\omega \in \Omega^{n-k}(M, \wedge^{k}E^{*})$ is given by

 $\iota_{\rho}^k \omega(v_{k+1},\ldots,v_{n+1})(e_1,\ldots,e_k)$ $:= \omega(\rho(e_k), \dots, \rho(e_1), v_{k+1}, \dots, v_{n+1}).$ **Equivariant differential forms**

Definition 1.11 $\alpha \in \Omega^{l}(M, \wedge^{m}E^{*})$ is called equivariant with respect to a Lie algebroid $(E, \rho, [-, -])$ if it satisfies

$${}^{E}\nabla_{e}\alpha(e_{1},\ldots,e_{m}) = \sum_{i=1}^{m} (-1)^{i-1}\alpha([e,e_{i}],e_{1},\ldots,\check{e}_{i},\ldots,e_{m})$$

for $e, e_i \in \Gamma(E)$.

Note: a momentum map is equivariant. In this case, the *E*-exterior covariant derivative (2) becomes

$${}^{E} \mathrm{d}^{\nabla} \alpha(e_{1}, \dots, e_{m+1})$$

$$= -\sum_{1 \le i < j \le m+1} (-1)^{i+j} \alpha([e_{i}, e_{j}], e_{1}, \dots, \check{e}_{i}, \dots, \check{e}_{j}, \dots, e_{m+1}).$$
(5)

The action functional S_{LA} is gauge invariant iff μ_k satisfy the definition of the homotopy momentum section and the equation,

 $\mu_{k-1} = \iota_{\rho} \mu_k,$

for $k = 1, \ldots, n - 1$. We summarize our result.

Proposition 1.13 We consider the *n*-dimensional nonlinear sigma model with (n + 1)-dimensional WZ term. If we consider gauging by a Lie algebroid, the theory has a homotopy momentum section structure.