

Multisymplectic observables and higher Courant algebroids

Marco Zambon

joint work with Antonio Miti (MPIM Bonn)

15 June 2022

Multisymplectic forms

Let M be a manifold, $n \ge 1$.

Definition

An *n*-plectic form is a closed, non-degenerate $\omega \in \Omega^{n+1}(M)$.

Examples:

- i) Volume forms
- ii) $(\wedge^n T^*B, d\theta_{can})$

Next: ω induces

- A) the observables $L_{\infty}(M,\omega)$
- B) a higher Courant algebroid $E \rightsquigarrow L_{\infty}(E)_{\omega}$

Multisymplectic forms

Let M be a manifold, $n \ge 1$.

Definition

An *n*-plectic form is a closed, non-degenerate $\omega \in \Omega^{n+1}(M)$.

Examples:

- i) Volume forms
- ii) $(\wedge^n T^*B, d\theta_{can})$

Next: ω induces

- A) the observables $L_{\infty}(M,\omega)$
- B) a higher Courant algebroid $E \rightsquigarrow L_{\infty}(E)_{\omega}$

A) Observables

Definition (ROGERS 2012)

The L_{∞} -algebra $L_{\infty}(M,\omega)$ of observables is

$$C^{\infty}(M) \xrightarrow{d} \dots \xrightarrow{d} \Omega^{n-2}(M) \xrightarrow{d} \Omega^{n-1}_{ham}(M,\omega)$$

with higher brackets

$$\{\alpha_1,\ldots,\alpha_k\}_k = \pm \iota_{X_{\alpha_k}}\ldots \iota_{X_{\alpha_1}}\omega$$

B) Higher Courant algebroids

Consider the "higher Courant algebroid" twisted by ω :

 $(E, \langle \cdot, \cdot \rangle, pr_{TM}, \llbracket \cdot, \cdot \rrbracket)$

with

$$E := TM \oplus \wedge^{n} T^{*}M$$

$$\langle \cdot, \cdot \rangle : E \times E \to \wedge^{n-1} T^{*}M$$

$$[[X + \alpha, Y + \beta]] = [X, Y] + \mathcal{L}_{X}\beta - \mathcal{L}_{Y}\alpha - \frac{1}{2}d(\iota_{X}\beta - \iota_{Y}\alpha) + \iota_{Y}\iota_{X}\omega.$$

Definition (Z. 2012 AFTER FIORENZA-MANETTI 2007, GETZLER 2010)

The L_{∞} -algebra $L_{\infty}(E)_{\omega}$ is

$$C^{\infty}(M) \xrightarrow{d} \dots \xrightarrow{d} \Omega^{n-2}(M) \xrightarrow{d} \Gamma(E)$$

with higher brackets:

B) Higher Courant algebroids

Consider the "higher Courant algebroid" twisted by ω :

 $(E, \langle \cdot, \cdot \rangle, pr_{TM}, \llbracket \cdot, \cdot \rrbracket)$

with

$$E \coloneqq TM \oplus \wedge^{n} T^{*}M$$

$$\langle \cdot, \cdot \rangle \colon E \times E \to \wedge^{n-1} T^{*}M$$

$$[[X + \alpha, Y + \beta]] = [X, Y] + \mathcal{L}_{X}\beta - \mathcal{L}_{Y}\alpha - \frac{1}{2}d(\iota_{X}\beta - \iota_{Y}\alpha) + \iota_{Y}\iota_{X}\omega.$$

Definition (Z. 2012 AFTER FIORENZA-MANETTI 2007, GETZLER 2010)

The L_{∞} -algebra $L_{\infty}(E)_{\omega}$ is

$$C^{\infty}(M) \xrightarrow{d} \dots \xrightarrow{d} \Omega^{n-2}(M) \xrightarrow{d} \Gamma(E)$$

with higher brackets:

binary bracket:

for $e_i \in \Gamma(E)$ the twisted Courant bracket

 $[e_1, e_2] = [[e_1, e_2]],$

for $e = (X, \alpha) \in \Gamma(E)$ and $\xi \in \Omega^{\bullet \le n-2}(M)$

$$[e,\xi] = \frac{1}{2}\mathcal{L}_X\xi.$$

trinary bracket:

for $e_i \in \Gamma(E)$

$$[e_0, e_1, e_2] = -\frac{1}{6} \left(\langle [[e_0, e_1]], e_2 \rangle + c.p. \right).$$

for $\xi \in \Omega^{\bullet \le n-2}(M)$ and $e_i = (X_i, \alpha_i) \in \Gamma(E)$
$$[\xi, e_1, e_2] = -\frac{1}{6} \left(\frac{1}{2} (\iota_{X_1} \mathcal{L}_{X_2} - \iota_{X_2} \mathcal{L}_{X_1}) + \iota_{[X_1, X_2]} \right) \xi$$

• *n*-ary bracket for
$$n \ge 3$$
 with n an odd integer:
for $e_i = (X_i, \alpha_i) \in \Gamma(E)$, $[e_0, \dots, e_{n-1}] = \sum_i [X_0, \dots, \alpha_i, \dots, X_{n-1}]$, with
 $[\alpha, X_1, \dots, X_{n-1}] = b_{n-1} \sum_{i < j} (-1)^{i+j+1} \iota_{X_{n-1}} \dots \dots \iota_{X_1} [\alpha, X_i, X_j]$,
for $\xi \in \Omega^{\bullet \le n-2}(M)$ and $e_i = (X_i, \alpha_i) \in \Gamma(E)$,
 $[\xi, e_1, \dots, e_{n-1}] = b_{n-1} \sum_{i < j} (-1)^{i+j+1} \iota_{X_{n-1}} \dots \dots \iota_{X_1} [\xi, X_i, X_j]$.
Above $b_{n-1} \coloneqq \frac{(-1)^{\frac{n+1}{2}} 12B_{n-1}}{(n-1)(n-2)}$, where the B_k are the Bernoulli numbers:

$$\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} B_k \frac{x^k}{k!}.$$

Main theorem: an embedding of L_{∞} -algebras

Theorem (MITI-Z. 2022)

There is an L_{∞} -embedding

 $\Psi: L_{\infty}(M, \omega) \hookrightarrow L_{\infty}(E)_{\omega}$

with components

$$\Psi_1(\xi \oplus \alpha) = \xi \oplus (X_\alpha, \alpha)$$
$$\Psi_k(\xi_1 \oplus \alpha_1, \dots, \xi_k \oplus \alpha_k) = B_{k-1} \sum_{j=1}^k (-1)^{k-j} \iota_{X_{\alpha_1}} \dots \widehat{\iota_{X_{\alpha_j}}} \dots \iota_{X_{\alpha_k}} (\xi_j \oplus \alpha_j)$$

for $k \ge 2$. Here $\xi_i \oplus \alpha_i \in \Omega^{\le n-2}(M) \oplus \Omega_{ham}^{n-1}(M, \omega)$.

Remark: This was proven

• *n* = 2: by ^[Rogers 2013]

• existence for all *n*: unpublished preprint by ^[RITTER-SÄMANN 2015]

Remark: Ψ is compatible with gauge transformations by invariant $B \in \Omega^n(M)$.

Main theorem: an embedding of L_{∞} -algebras

Theorem (MITI-Z. 2022)

There is an L_{∞} -embedding

 $\Psi: L_{\infty}(M, \omega) \hookrightarrow L_{\infty}(E)_{\omega}$

with components

$$\Psi_1(\xi \oplus \alpha) = \xi \oplus (X_\alpha, \alpha)$$
$$\Psi_k(\xi_1 \oplus \alpha_1, \dots, \xi_k \oplus \alpha_k) = B_{k-1} \sum_{j=1}^k (-1)^{k-j} \iota_{X_{\alpha_1}} \dots \widehat{\iota_{X_{\alpha_j}}} \dots \iota_{X_{\alpha_k}} (\xi_j \oplus \alpha_j)$$

for $k \ge 2$. Here $\xi_i \oplus \alpha_i \in \Omega^{\le n-2}(M) \oplus \Omega^{n-1}_{ham}(M, \omega)$.

Remark: This was proven

• *n* = 2: by ^[Rogers 2013]

• existence for all *n*: unpublished preprint by [RITTER-SÄMANN 2015]

Remark: Ψ is compatible with gauge transformations by invariant $B \in \Omega^n(M)$.

Sketch of proof

1) Vector space isomorphism

$$L_{\infty}(M,\omega) \xrightarrow{\cong} \underbrace{\Omega^{\leq n-2}(M) \oplus \{(X_{\alpha},\alpha) : \alpha \in \Omega_{ham}^{n-1}(M,\omega)\}}_{=:\mathcal{A}} \subset L_{\infty}(E)_{\omega}$$

Get two $L_{\infty}[1]$ -algebra structures $(\mathcal{A}[1], m_k)$ and $(\mathcal{A}[1], e_k)$.

2) Strategy:

A degree 0 linear map $p: S^{\geq 1}\mathcal{A}[1] \to \mathcal{A}[1]$

 \sim degree 0 coderivation C_p of the coalgebra $S^{\geq 1}\mathcal{A}[1]$

🗠 automorphism

$$e^{C_p}: S^{\geq 1}\mathcal{A}[1] \to S^{\geq 1}\mathcal{A}[1].$$

Then:

- $D' := e^{C_p} \circ D_m \circ e^{-C_p}$ is also a coderivation on $S^{\geq 1} \mathcal{A}[1]$
- e^{C_p} intertwines D_m and D'

Get

• a new $L_{\infty}[1]$ -algebra structure m' on $\mathcal{A}[1]$ (the "push-forward")

• an $L_{\infty}[1]$ -isomorphism from $(\mathcal{A}[1], m_k)$ to $(\mathcal{A}[1], m'_k)$.

Sketch of proof

1) Vector space isomorphism

$$L_{\infty}(M,\omega) \xrightarrow{\cong} \underbrace{\Omega^{\leq n-2}(M) \oplus \{(X_{\alpha},\alpha) : \alpha \in \Omega_{ham}^{n-1}(M,\omega)\}}_{=:\mathcal{A}} \subset L_{\infty}(E)_{\omega}$$

Get two $L_{\infty}[1]$ -algebra structures $(\mathcal{A}[1], m_k)$ and $(\mathcal{A}[1], e_k)$.

2) Strategy:

- A degree 0 linear map $p: S^{\geq 1}\mathcal{A}[1] \to \mathcal{A}[1]$
- \sim degree 0 coderivation C_p of the coalgebra $S^{\geq 1} \mathcal{A}[1]$ \sim automorphism

$$e^{C_p}: S^{\geq 1}\mathcal{A}[1] \to S^{\geq 1}\mathcal{A}[1].$$

Then:

- $D' := e^{C_p} \circ D_m \circ e^{-C_p}$ is also a coderivation on $S^{\geq 1} \mathcal{A}[1]$
- e^{C_p} intertwines D_m and D'

Get

- a new $L_{\infty}[1]$ -algebra structure m' on $\mathcal{A}[1]$ (the "push-forward")
- an $L_{\infty}[1]$ -isomorphism from $(\mathcal{A}[1], m_k)$ to $(\mathcal{A}[1], m'_k)$.

Sketch of proof

1) Vector space isomorphism

$$L_{\infty}(M,\omega) \xrightarrow{\cong} \underbrace{\Omega^{\leq n-2}(M) \oplus \{(X_{\alpha},\alpha) : \alpha \in \Omega_{ham}^{n-1}(M,\omega)\}}_{=:\mathcal{A}} \subset L_{\infty}(E)_{\omega}$$

Get two $L_{\infty}[1]$ -algebra structures $(\mathcal{A}[1], m_k)$ and $(\mathcal{A}[1], e_k)$.

2) Strategy:

A degree 0 linear map $p: S^{\geq 1}\mathcal{A}[1] \rightarrow \mathcal{A}[1]$

 \rightarrow degree 0 coderivation C_p of the coalgebra $S^{\geq 1} \mathcal{A}[1]$ \rightarrow automorphism

$$e^{C_p}: S^{\geq 1}\mathcal{A}[1] \to S^{\geq 1}\mathcal{A}[1].$$

Then:

- $D' := e^{C_p} \circ D_m \circ e^{-C_p}$ is also a coderivation on $S^{\geq 1} \mathcal{A}[1]$
- e^{C_p} intertwines D_m and D'

Get

- a new L_∞[1]-algebra structure m' on A[1] (the "push-forward")
- an $L_{\infty}[1]$ -isomorphism from $(\mathcal{A}[1], m_k)$ to $(\mathcal{A}[1], m'_k)$.

Sketch of proof (cont.)

3) Ansatz:

As p take the degree 0 linear map

$$\sum_{j=0}^{\infty} c_j \langle , \rangle_{-}^j \colon S^{\geq 1} \mathcal{A}[1] \to \mathcal{A}[1]$$

where \langle , \rangle_{-} corresponds to the skew-symmetric pairing on *E*. We find coefficients c_i so that $m'_k = e_k$.

References

A. Miti and M. Zambon Observables on multsymplectic manifolds and higher Courant algebroids In progress

C.L. Rogers L_{∞} -algebras from multisymplectic geometry Lett. Math. Phys. 100 (2012), 29-50

C.L. Rogers

2-Plectic geometry, Courant algebroids, and categorified preguantization J. Symplectic Geom., 11 (2013), 53–91

Thank you for your attention