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T-duality

Joint work with Gil Cavalcanti.

Definition

Let M, M̃ be principal T k -bundles with base B, and H, H̃
T k -invariant closed three forms. They are T-dual if there exists a
T 2k -invariant form F ∈ Ω2(M ×B M̃) such that

dF = p∗H − p̃∗H̃

and
F : tM × t

M̃
→ R,

with tM the tangent to the fibre of p, is non-degenerate.
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Consequences

Theorem (Bouwknegt–Evslin–Mathai)

If (M,H) and (M̃, H̃) are T-dual via F , then

τ : (Ω•
T k (M), dH) → (Ω•

T k (M̃), d
H̃
), ρ 7→

∫
T k

eF ∧ ρ,

with integral over fibres of p, is an isomorphism of chain complexes.

Theorem (Cavalcanti-Gualteri)

There is an isomorphism of Courant algebroids

(TM ⊕ T ∗M)/T k → (TM̃ ⊕ T ∗M̃)/T k ,

intertwining the Clifford actions on Ω•
T k (M) and Ω•

T k (M̃).
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Consequences 2

Theorem

If (M,H) and (M̃, H̃) are T-dual, then τ sends Dirac structures to
Dirac structures, generalized complex structures to generalized
complex structures.

Example

(S3, 0) is T-dual to (S2 × S1, σ ∧ θ), with σ the curvature of the
Hopf fibration.
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Toric actions

Definition

A toric action is an effective T n-action on M2n with connected
isotropy groups.

Proposition (Cavalcani-Klaasse-W)

µ : M → B := M/T n is a manifold with corners, and if I∂B are the
functions vanishing at ∂B, then I|D| := µ∗I∂B is an elliptic divisor.

Proposition

The infinitesimal generators X1, . . . ,Xn all lift to nowhere
vanishing sections of A|D|.
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Toric T-duality

Definition

Let M2n, M̃2n be toric actions with base B, and H ∈ Ω3
T n(M,A|D|)

closed, and similar for H̃. They are T-dual if there exists a
T 2n-invariant form F ∈ Ω2(M × M̃,A|D| ×A|D̃|) such that

ι∗
(M\D)×B(M̃\D̃)

(dF − q∗H + q̃∗H) = 0

and
F : tM × t

M̃
→ R,

with t the tangent to the fibre of p, is non-degenerate.
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Consequences

Theorem

If (M,H) and (M̃, H̃) are T-dual via F , then

τ : (Ω•
T k (M,A|D|), dH) → (Ω•

T k (M̃,A|D̃|), dH̃),

ρ 7→ ιX1∧···∧Xk
(eF ∧ ρ),

with X1, . . . ,Xk the infinitesimal generators of the action on M, is
an isomorphism of chain complexes.
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Consequences 2

Theorem

There is an isomorphism of Courant algebroids

(A|D| ⊕A∗
|D|)/T

k → (A|D̃| ⊕ A∗
|D̃|)/T

k ,

intertwining the actions on Ω•
T k (M,A|D|) and Ω•

T k (M̃,A|D̃|).

Generalized complex structures on A|D| are send to generalized
complex structures on A|D̃|. But these might not descend to M.
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Weak classification of torus actions

Definition

Two toric actions M, M̃ over the same base B are locally
equivalent, if each b ∈ B has a neighbourhood V such that
p−1(V ) and p̃−1(V ) are equivariantly diffeomorphic.

Note, that one works with a fixed T n acting.

Theorem (Haefliger-Salem)

Given a toric action M with base B, locally equivalent actions M̃
correspond to classes in H2(B;Zn).
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Existence of T-duals

Let θ ∈ Ω1(A|D|; t) be a connection-one form for M. Then

H = ⟨q∗c̃ , θ⟩+ q∗b, c̃ ∈ Ω2(log ∂B; t∗), b ∈ Ω3(log ∂B).

Want to use [c̃] to build a new toric action.

Theorem (Gualteri-Li-Pelayo-Ratiu)

H2(log ∂B) ≃ H2(B)⊕ H1(∂B[1])⊕ H0(∂B[2]),

Therefore:

Theorem

If M is a toric action and [c̃] ∈ H2(B;Zn), then there exists a
T-dual.
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Proof

• H = ⟨q∗c̃ , θ⟩+ q∗b, and let M̃ be the locally equivalent action
corresponding to [c̃] ∈ H2(B;Zn).

• Let θ̃ ∈ Ω1(A|D̃|; t
∗) be a connection one-form with d θ̃ = c̃ .

• Let H̃ = ⟨q̃∗dθ, θ̃⟩+ q∗b.

• Then p∗H − p̃∗H̃ = −d⟨θ, θ̃⟩.
• Therefore F := −

〈
θ, θ̃

〉
will provide the T-dual.
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More T-duals

The previous construction misses a lot of T-duals.

Theorem

Let (M, 0) and (M̃, 0) be toric actions, with the same contractible
base B. Then they are T-dual.

New source of topology change: singularities of the action.
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Proof idea

• Fix a point b ∈ B, and use the normal form of the actions on
a neighbourhood.

• In this local normal form, write down an explicit F . Which
can be taken to have constant coefficients.

• Because this form has constant coefficients, and the base is
contractible it can be extended as a closed form to the entire
manifold.
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Outlook

• More examples.

• Other non-principal torus actions

• Stable under smoothing of divisor?

• Relate with HMS approaches for stable gc manifolds.
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