Roberto Téllez Domínguez

joint work with Luis Álvarez Cónsul and Mario García Fernández

Grant CEX2019-000904-S funded by MCIN/AEI/ 10.13039/501100011033

Generalized Geometry in Interaction, ICMAT

June 14, 2022

Outline

- 1. Motivation
- 2. Gerbes
- 3. Lie 2-Groups
- 4. 2-Principal Bundles
- 5. Conclusions

Motivation

The Hull-Strominger System

The Hull-Strominger System over a (possibly non-Kähler) Calabi-Yau manifold (X, Ω) with a hermitian vector bundle (E, h) is

$$egin{aligned} & F_h \wedge \omega^{n-1} = 0, \qquad F_h^{0,2} = 0, \ & d(||\Omega||_\omega \omega^{n-1}) = 0, \qquad dd^c \omega + \langle F_h \wedge F_h
angle = 0, \end{aligned}$$

for unknowns

- 1. $\omega \in \Lambda^{1,1}(X,\mathbb{R})$ such that $g := \omega(J \cdot, \cdot) > 0$,
- 2. A_h a unitary connection on (E, h).

The Hull-Strominger System

The Hull-Strominger System over a (possibly non-Kähler) Calabi-Yau manifold (X, Ω) with a hermitian vector bundle (E, h) is

$$egin{aligned} & F_h \wedge \omega^{n-1} = 0, \qquad F_h^{0,2} = 0, \ & d(||\Omega||_\omega \omega^{n-1}) = 0, \qquad dd^c \omega + \langle F_h \wedge F_h
angle = 0, \end{aligned}$$

for unknowns

- 1. $\omega \in \Lambda^{1,1}(X,\mathbb{R})$ such that $g := \omega(J\cdot,\cdot) > 0$,
- 2. A_h a unitary connection on (E, h).
- It can be reinterpreted [1, García-Fernández, Rubio, Tipler, 2020] as a system for **integrable horizontal lifts** on a **string Courant algebroid**, revealing more about its symmetries and geometry (moment map interpretation).

Connections on 2-Principal Bundles

 Conjecturally, smooth Courant algebroids are 'Atiyah algebroids' for higher principal bundles [2, Severa, 1998], [3, Collier, 2011], [4, Sheng, Xu, Zhu, 2017], but this is still not a precise statement.

- Conjecturally, smooth Courant algebroids are 'Atiyah algebroids' for higher principal bundles [2, Severa, 1998], [3, Collier, 2011], [4, Sheng, Xu, Zhu, 2017], but this is still not a precise statement.
- We introduce **holomorphic** *String*-principal bundles and connections on them through a simple model based on **gerbes** and relate them to Courant algebroids.

- Conjecturally, smooth Courant algebroids are 'Atiyah algebroids' for higher principal bundles [2, Severa, 1998], [3, Collier, 2011], [4, Sheng, Xu, Zhu, 2017], but this is still not a precise statement.
- We introduce **holomorphic** *String*-principal bundles and connections on them through a simple model based on **gerbes** and relate them to Courant algebroids.
- We reformulate the Hull-Strominger system as a system for connections on a *String*-bundle via a **higher Chern correspondence**.

Definition

For T an abelian Lie group, a T-gerbe with connective structure (con. str.) and curving $(\mathcal{L}, \nabla, B) \to X$ is described in a cover $\{U_i\}_{i \in I}$ of X by

Definition

For T an abelian Lie group, a T-gerbe with connective structure (con. str.) and curving $(\mathcal{L}, \nabla, B) \to X$ is described in a cover $\{U_i\}_{i \in I}$ of X by

• $t_{ijk}: U_{ijk} o T$, $A_{ij} \in \Lambda^1(U_{ij}, \mathfrak{t})$, $B_i \in \Lambda^2(U_i, \mathfrak{t})$ such that

$$t_{ijk}t_{ijl}^{-1}t_{ikl}t_{jkl}^{-1} = 1 \qquad \text{on } U_{ijkl},$$

$$A_{ij} - A_{ik} + A_{jk} = t_{ijk}^* \theta_{MC} \qquad \text{on } U_{ijk},$$

$$B_i - B_j = -dA_{ij} \qquad \text{on } U_{ij}.$$

Definition

For T an abelian Lie group, a T-gerbe with connective structure (con. str.) and curving $(\mathcal{L}, \nabla, B) \to X$ is described in a cover $\{U_i\}_{i \in I}$ of X by

• $t_{ijk}: U_{ijk} o T$, $A_{ij} \in \Lambda^1(U_{ij}, \mathfrak{t})$, $B_i \in \Lambda^2(U_i, \mathfrak{t})$ such that

$$t_{ijk}t_{ijl}^{-1}t_{ikl}t_{jkl}^{-1} = 1$$
 on U_{ijkl}
 $A_{ij} - A_{ik} + A_{jk} = t_{ijk}^* heta_{MC}$ on U_{ijk} ,
 $B_i - B_j = -dA_{ij}$ on U_{ij} .

Its curvature is $H \in \Lambda^3(X, \mathfrak{t})$ defined locally as $H_{|U_i} := dB_i$.

Definition

For T an abelian Lie group, a T-gerbe with connective structure (con. str.) and curving $(\mathcal{L}, \nabla, B) \to X$ is described in a cover $\{U_i\}_{i \in I}$ of X by

• $t_{ijk}: U_{ijk} o T$, $A_{ij} \in \Lambda^1(U_{ij}, \mathfrak{t})$, $B_i \in \Lambda^2(U_i, \mathfrak{t})$ such that

$$t_{ijk} t_{ijl}^{-1} t_{ikl} t_{jkl}^{-1} = 1$$
 on U_{ijkl} ,
 $A_{ij} - A_{ik} + A_{jk} = t_{ijk}^* \theta_{MC}$ on U_{ijk} ,
 $B_i - B_j = -dA_{ij}$ on U_{ij} .

Its curvature is $H \in \Lambda^3(X, \mathfrak{t})$ defined locally as $H_{|U_i} := dB_i$.

It is **holomorphic with compatible curving** if t_{ijk} and A_{ij} are holomorphic and $B_i \in \Lambda^{2,0}(U_i, \mathfrak{t})$.

Isomorphisms of Gerbes

Definition

An isomorphism of *T*-gerbes with con. str. $\varphi : (\mathcal{L}', \nabla') \to (\mathcal{L}, \nabla)$ is described by

•
$$t_{ij}: U_{ij}
ightarrow T$$
, $A_i \in \Lambda^1(U_i, \mathfrak{t})$ such that

$$t'_{ijk}t^{-1}_{ijk} = t_{ij}t^{-1}_{ik}t_{jk} \qquad \text{on } U_{ijk},$$
$$A'_{ij} - A_{ij} = t^*_{ij}\theta_{MC} - A_i + A_j \qquad \text{on } U_{ij}.$$

Isomorphisms of Gerbes

Definition

An isomorphism of *T*-gerbes with con. str. $\varphi : (\mathcal{L}', \nabla') \to (\mathcal{L}, \nabla)$ is described by

•
$$t_{ij}: U_{ij}
ightarrow T$$
, $A_i \in \Lambda^1(U_i, \mathfrak{t})$ such that

$$t'_{ijk}t^{-1}_{ijk} = t_{ij}t^{-1}_{ik}t_{jk}$$
 on U_{ijk} ,
 $A'_{ij} - A_{ij} = t^*_{ij}\theta_{MC} - A_i + A_j$ on U_{ij} .

Its **curvature** with respect to curvings $\{B'_i\}_{i \in I}$, $\{B_i\}_{i \in I}$ is $F_{\varphi} \in \Lambda^2(X, \mathfrak{t})$ defined locally as $F_{\varphi|U_i} := dA_i - B'_i + B_i$. (Note $dF_{\varphi} = H - H'$).

2-Isomorphisms of Gerbes

Definition

A 2-isomorphism of gerbes with con. str. $(\mathcal{L}', \nabla') \downarrow_{\varphi_2}^{\varphi_1} (\mathcal{L}, \nabla)$ is described by • $t_i : U_i \to T$ such that

$$t_{ij,1}^{1}t_{ij,2}^{-1} = t_i t_j^{-1}$$
 on U_{ij} ,
 $A_{i,1} - A_{i,2} = t_i^* \theta_{MC}$ on U_i .

Constructions with Gerbes

• Pull-back and tensor product of gerbes.

- Pull-back and tensor product of gerbes.
- Group homomorphisms T¹ → T² induce functors
 ⟨T¹-gerbes with con. str. and curving⟩ → ⟨T²-gerbes with con. str. and curving⟩.

- Pull-back and tensor product of gerbes.
- Group homomorphisms $T^1 \rightarrow T^2$ induce functors $\langle T^1$ -gerbes with con. str. and curving $\rangle \rightarrow \langle T^2$ -gerbes with con. str. and curving \rangle .
- A U(1)-gerbe with con. str. given by ({U_i}, {A_{ij}}, {t_{ijk}}) gives rise to an exact Courant algebroid by gluing TU_i ⊕ T*U_i to TU_j ⊕ T*U_j through the B-field dA_{ij}.

Lie 2-Groups

• Lie 2-groups G describe symmetries of differentiable stacks as Lie groups describe symmetries of manifolds.

- Lie 2-groups G describe symmetries of differentiable stacks as Lie groups describe symmetries of manifolds.
- Two cases where the definition simplifies:
 - Strict Lie 2-groups = Lie Crossed Modules $(G, T, t, \triangleright)$.
 - Central extensions $BT \to \mathbb{G} \to G$.

- Lie 2-groups G describe symmetries of differentiable stacks as Lie groups describe symmetries of manifolds.
- Two cases where the definition simplifies:
 - Strict Lie 2-groups = Lie Crossed Modules $(G, T, t, \triangleright)$.
 - Central extensions $BT \to \mathbb{G} \to G$.
- [5, Schommer-Pries, 2009] proved central extensions = multiplicative gerbes and showed that the *String* 2-group has a finite dimensional model of the form BU(1) → String(n) → Spin(n).

Central Extensions of Lie 2-Groups

Definition [6, Carey et al., 2005], [5, Schommer-Pries, 2009]

A central extension $BT \to \mathbb{G} \to G$ is a *T*-gerbe over *G*, $\mathbb{G} \to G$, together with

• An isomorphism of T-gerbes over G imes G, $g_1^* \mathbb{G} \otimes g_2^* \mathbb{G} \stackrel{m}{ o} (g_1 g_2)^* \mathbb{G}$

Central Extensions of Lie 2-Groups

Definition [6, Carey et al., 2005], [5, Schommer-Pries, 2009]

A central extension $BT \to \mathbb{G} \to G$ is a *T*-gerbe over *G*, $\mathbb{G} \to G$, together with

- An isomorphism of T-gerbes over G imes G, $g_1^* \mathbb{G} \otimes g_2^* \mathbb{G} \stackrel{m}{\to} (g_1 g_2)^* \mathbb{G}$
- A 2-isomorphism of *T*-gerbes over $G \times G \times G$,

such that $\alpha(g_1, g_2, g_3)\alpha(g_1, g_2g_3, g_4)\alpha(g_2, g_3, g_4) = \alpha(g_1g_2, g_3, g_4)\alpha(g_1, g_2, g_3g_4).$

The 2-groups that relate to generalized geometry are **enhancements** of central extensions $BT \to \mathbb{G} \to G$.

Definition [7, Waldorf, 2008], [A.C., G.F., T., 2022]

A connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ is a central extension $BT \to \mathbb{G} \to G$ as before, where \mathbb{G} is equipped with a connective structure and m, α are an isomorphism and a 2-isomorphism of 'gerbes with connective structure'.

The 2-groups that relate to generalized geometry are **enhancements** of central extensions $BT \to \mathbb{G} \to G$.

Definition [7, Waldorf, 2008], [A.C., G.F., T., 2022]

A connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ is a central extension $BT \to \mathbb{G} \to G$ as before, where \mathbb{G} is equipped with a connective structure and m, α are an isomorphism and a 2-isomorphism of 'gerbes with connective structure'.

It is **holomorphic** if G, T, the gerbe and its connective structure are holomorphic, and m, α preserve the holomorphic structure.

Let θ^L , θ^R be the left- and right-invariant Maurer-Cartan 1-forms on G.

Theorem [7, Waldorf, 2008], [A.C., G.F., T., 2022]

1. Any Ad-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{t}$ satisfying a certain integrality condition determines a connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$.

Let θ^L , θ^R be the left- and right-invariant Maurer-Cartan 1-forms on G.

Theorem [7, Waldorf, 2008], [A.C., G.F., T., 2022]

- 1. Any Ad-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{t}$ satisfying a certain integrality condition determines a connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$.
- 2. A connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ determines canonically an Ad-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{t}$ and these constructions are inverse to each other.

Let θ^L , θ^R be the left- and right-invariant Maurer-Cartan 1-forms on G.

Theorem [7, Waldorf, 2008], [A.C., G.F., T., 2022]

- 1. Any Ad-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{t}$ satisfying a certain integrality condition determines a connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$.
- 2. A connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ determines canonically an Ad-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{t}$ and these constructions are inverse to each other.
- 3. A connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ has a canonical curving B^{θ} on \mathbb{G}_{∇} such that
 - The curvature of $m: g_1^* \mathbb{G}_\nabla \otimes g_2^* \mathbb{G}_\nabla \to (g_1 g_2)^* \mathbb{G}_\nabla$ is $-\langle g_1^* \theta^L \wedge g_2^* \theta^R \rangle \in \Lambda^2(\mathcal{G} \times \mathcal{G}, \mathfrak{t}).$
 - The curvature of \mathbb{G}_{∇} is $\frac{1}{6} \langle \theta^L \wedge [\theta^L \wedge \theta^L] \rangle \in \Lambda^3(G, \mathfrak{t}).$

Let θ^L , θ^R be the left- and right-invariant Maurer-Cartan 1-forms on G.

Theorem [7, Waldorf, 2008], [A.C., G.F., T., 2022]

- 1. Any Ad-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{t}$ satisfying a certain integrality condition determines a connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$.
- 2. A connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ determines canonically an Ad-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{t}$ and these constructions are inverse to each other.
- 3. A connective central extension $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ has a canonical curving B^{θ} on \mathbb{G}_{∇} such that
 - The curvature of $m: g_1^* \mathbb{G}_\nabla \otimes g_2^* \mathbb{G}_\nabla \to (g_1 g_2)^* \mathbb{G}_\nabla$ is $-\langle g_1^* \theta^L \wedge g_2^* \theta^R \rangle \in \Lambda^2(G \times G, \mathfrak{t}).$
 - The curvature of \mathbb{G}_{∇} is $\frac{1}{6} \langle \theta^L \wedge [\theta^L \wedge \theta^L] \rangle \in \Lambda^3(G, \mathfrak{t}).$

We call the pair (θ^L, B^θ) the **Maurer-Cartan 1-form** on \mathbb{G}_{∇} .

Holomorphic Connective Central Extensions

Proposition [A.C., G.F., T., 2022]

 $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ is holomorphic $\Leftrightarrow G$, T are holomorphic and $\langle \cdot, \cdot \rangle$ is \mathbb{C} -linear. In this case, B^{θ} is holomorphic.

Holomorphic Connective Central Extensions

Proposition [A.C., G.F., T., 2022]

 $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ is holomorphic $\Leftrightarrow G$, T are holomorphic and $\langle \cdot, \cdot \rangle$ is \mathbb{C} -linear. In this case, B^{θ} is holomorphic.

Definition [A.C., G.F., T., 2022]

The **complexification** of a central extension of Lie 2-groups $BT_{\nabla} \to \mathbb{K}_{\nabla} \to K$ classified by $\langle \cdot, \cdot \rangle : \mathfrak{k} \otimes \mathfrak{k} \to \mathfrak{t}$ is the holomorphic central extension $B(T^{\mathbb{C}})_{\nabla} \to \mathbb{K}_{\nabla}^{\mathbb{C}} \to K^{\mathbb{C}}$ classified by the \mathbb{C} -linear extension of $\langle \cdot, \cdot \rangle$.

2-Principal Bundles

2-Principal Bundles

Definition [8, Waldorf, 2009], [A.C., G.F., T., 2022]

Let $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ be a central extension. A \mathbb{G}_{∇} -principal bundle over M is a $G \to P \to M$ together with a T-gerbe with con. str. $\mathbb{P}_{\nabla} \to P$ and

• An isomorphism over P imes G, $p^* \mathbb{P}_{\nabla} \otimes g^* \mathbb{G}_{\nabla} \stackrel{act}{\to} (pg)^* \mathbb{P}_{\nabla}$

2-Principal Bundles

Definition [8, Waldorf, 2009], [A.C., G.F., T., 2022]

Let $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ be a central extension. A \mathbb{G}_{∇} -principal bundle over M is a $G \to P \to M$ together with a T-gerbe with con. str. $\mathbb{P}_{\nabla} \to P$ and

- An isomorphism over $P \times G$, $p^* \mathbb{P}_{\nabla} \otimes g^* \mathbb{G}_{\nabla} \stackrel{act}{\to} (pg)^* \mathbb{P}_{\nabla}$
- A 2-isomorphism over $P \times G \times G$,

such that $\rho(p, g_1, g_2)\rho(p, g_1g_2, g_3)\alpha(g_1, g_2, g_3) = \rho(pg_1, g_2, g_3)\rho(p, g_1, g_2g_3).$

Definition [8, Waldorf, 2009], [A.C., G.F., T., 2022]

A connection on $(P, \mathbb{P}_{\nabla}, act, \rho)$ is a pair (A, B), where $A \in \Omega^{1}(P, \mathfrak{g})$ is a connection on P and B is a curving on $\mathbb{P}_{\nabla} \to P$ such that the curvature of $act : p^* \mathbb{P}_{\nabla} \otimes g^* \mathbb{G}_{\nabla} \to (pg)^* \mathbb{P}_{\nabla}$ with respect to $(p^* B \otimes g^* B^{\theta}, (pg)^* B)$ is $-\langle p^* A \wedge g^* \theta^R \rangle \in \Lambda^2(P \times G, \mathfrak{t}).$

Definition [8, Waldorf, 2009], [A.C., G.F., T., 2022]

A connection on $(P, \mathbb{P}_{\nabla}, act, \rho)$ is a pair (A, B), where $A \in \Omega^{1}(P, \mathfrak{g})$ is a connection on P and B is a curving on $\mathbb{P}_{\nabla} \to P$ such that the curvature of $act : p^* \mathbb{P}_{\nabla} \otimes g^* \mathbb{G}_{\nabla} \to (pg)^* \mathbb{P}_{\nabla}$ with respect to $(p^* B \otimes g^* B^{\theta}, (pg)^* B)$ is $-\langle p^* A \wedge g^* \theta^R \rangle \in \Lambda^2(P \times G, \mathfrak{t}).$

Proposition: Bianchi Identity

If (A, B) is a connection, then the curvature of $\mathbb{P}_{\nabla} \to P$ with respect to B is $\hat{H} = -\pi^* H - CS_3(A) \in \Lambda^3(P, \mathfrak{t})$ for some $H \in \Lambda^3(M, \mathfrak{t})$ with $dH + \langle F_A \wedge F_A \rangle = 0$, where $CS_3(A) := \langle dA \wedge A \rangle + \frac{1}{3} \langle A \wedge [A \wedge A] \rangle$.

The pair $(F_A, H) \in \Lambda^2(M, ad P) \oplus \Lambda^3(M, \mathfrak{t})$ is the **curvature** of (A, B).

2-Principal Bundles and Courant Algebroids

Proposition [A.C., G.F., T., 2022]

A \mathbb{G}_{∇} -principal bundle $(P, \mathbb{P}_{\nabla}, act, \rho)$ gives rise to a Courant algebroid E by a reduction procedure as in [9, Bursztyn, Cavalcanti, Gualtieri, 2005], [10, García-Fernández, 2013].

A connection on $(P, \mathbb{P}_{\nabla}, act, \rho)$ gives a splitting $E = T^*M \oplus ad P \oplus TM$.

Connections on Holomorphic 2-Principal Bundles

Let $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ be a holomorphic extension.

Definition [A.C., G.F., T., 2022]

Let $(P, \mathbb{P}_{\nabla}, act, \rho)$ be a holomorphic \mathbb{G}_{∇} -bundle and (A, B) a connection on it, we say that it is **compatible with the holomorphic structure** if $A^{0,1} = \overline{\partial}_P$ and B can be represented by (2, 0) forms on P.

Connections on Holomorphic 2-Principal Bundles

Let $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ be a holomorphic extension.

Definition [A.C., G.F., T., 2022]

Let $(P, \mathbb{P}_{\nabla}, act, \rho)$ be a holomorphic \mathbb{G}_{∇} -bundle and (A, B) a connection on it, we say that it is **compatible with the holomorphic structure** if $A^{0,1} = \overline{\partial}_P$ and B can be represented by (2, 0) forms on P.

Proposition [A.C., G.F., T., 2022]

1. The curvature (F_A, H) of a connection that is compatible with a holomorphic structure satisfies $F_A^{0,2} = 0$, $H^{0,3+1,2} = 0$.

Connections on Holomorphic 2-Principal Bundles

Let $BT_{\nabla} \to \mathbb{G}_{\nabla} \to G$ be a holomorphic extension.

Definition [A.C., G.F., T., 2022]

Let $(P, \mathbb{P}_{\nabla}, act, \rho)$ be a holomorphic \mathbb{G}_{∇} -bundle and (A, B) a connection on it, we say that it is **compatible with the holomorphic structure** if $A^{0,1} = \overline{\partial}_P$ and B can be represented by (2, 0) forms on P.

Proposition [A.C., G.F., T., 2022]

- 1. The curvature (F_A, H) of a connection that is compatible with a holomorphic structure satisfies $F_A^{0,2} = 0$, $H^{0,3+1,2} = 0$.
- 2. Conversely, if $(P, \mathbb{P}_{\nabla}, act, \rho)$ is a smooth \mathbb{G}_{∇} -bundle and (A, B) is a connection on it such that $F_A^{0,2} = 0$, $H^{0,3+1,2} = 0$, then there exists a holomorphic \mathbb{G}_{∇} -bundle with compatible connection isomorphic to $(P, \mathbb{P}_{\nabla}, act, \rho, A, B)$ as smooth bundles with connection. It is unique up to holomorphic isomorphism preserving connections.

Let $BU(1)_{\nabla} \to \mathbb{K}_{\nabla} \to K$ be a central extension with K compact, let $(P_h, \mathbb{P}_{\nabla,h}, act, \rho)$ be a \mathbb{K}_{∇} -bundle over a complex manifold M and let $\mathbb{P}_{\nabla,h}^{\mathbb{C}}$ be its complexification.

Let $BU(1)_{\nabla} \to \mathbb{K}_{\nabla} \to K$ be a central extension with K compact, let $(P_h, \mathbb{P}_{\nabla, h}, act, \rho)$ be a \mathbb{K}_{∇} -bundle over a complex manifold M and let $\mathbb{P}_{\nabla, h}^{\mathbb{C}}$ be its complexification.

Theorem [A.C., G.F., T., 2022]

There is a one-to-one correspondence between:

- $((A_h, B_h), \omega)$, where $\omega \in \Lambda^{1,1}(M, \mathbb{R})$ and (A_h, B_h) is a connection on $\mathbb{P}_{\nabla, h}$ with $F_{A_h}^{0,2} = 0$, $H_h = d^c \omega$.
- Holomorphic structures on $\mathbb{P}^{\mathbb{C}}_{\nabla,h}$.

Let $BU(1)_{\nabla} \to \mathbb{K}_{\nabla} \to K$ be a central extension with K compact, let $(P_h, \mathbb{P}_{\nabla, h}, act, \rho)$ be a \mathbb{K}_{∇} -bundle over a complex manifold M and let $\mathbb{P}_{\nabla, h}^{\mathbb{C}}$ be its complexification.

Theorem [A.C., G.F., T., 2022]

There is a one-to-one correspondence between:

- $((A_h, B_h), \omega)$, where $\omega \in \Lambda^{1,1}(M, \mathbb{R})$ and (A_h, B_h) is a connection on $\mathbb{P}_{\nabla, h}$ with $F_{A_h}^{0,2} = 0$, $H_h = d^c \omega$.
- Holomorphic structures on $\mathbb{P}_{\nabla,h}^{\mathbb{C}}$.

Moreover, the holomorphic bundle corresponding to $((A_h, B_h), \omega)$ carries a canonical compatible connection with curvature $(F_{A_h}, -2i\partial\omega)$.

Let $BU(1)_{\nabla} \to \mathbb{K}_{\nabla} \to K$ be a central extension with K compact, let $(P_h, \mathbb{P}_{\nabla, h}, act, \rho)$ be a \mathbb{K}_{∇} -bundle over a complex manifold M and let $\mathbb{P}_{\nabla, h}^{\mathbb{C}}$ be its complexification.

Theorem [A.C., G.F., T., 2022]

There is a one-to-one correspondence between:

- $((A_h, B_h), \omega)$, where $\omega \in \Lambda^{1,1}(M, \mathbb{R})$ and (A_h, B_h) is a connection on $\mathbb{P}_{\nabla, h}$ with $F_{A_h}^{0,2} = 0$, $H_h = d^c \omega$.
- Holomorphic structures on $\mathbb{P}_{\nabla,h}^{\mathbb{C}}$.

Moreover, the holomorphic bundle corresponding to $((A_h, B_h), \omega)$ carries a canonical compatible connection with curvature $(F_{A_h}, -2i\partial\omega)$.

We define an **integrable connection** on $(P_h, \mathbb{P}_{\nabla,h}, act, \rho)$ to be a pair $((A_h, B_h), \omega)$ such that $F_{A_h}^{0,2} = 0$ and $H_h = d^c \omega$ (Note Bianchi $\Rightarrow dd^c \omega + \langle F_h \wedge F_h \rangle = 0$).

Conclusions

Conclusions

 We reinterpret the Hull-Strominger system as a system for integrable connections ((A_h, B_h), ω) with ω > 0 on a U(r)_∇-bundle over X:

$$F_h \wedge \omega^{n-1} = 0, \qquad d(||\Omega||_\omega \omega^{n-1}) = 0.$$

Conclusions

 We reinterpret the Hull-Strominger system as a system for integrable connections ((A_h, B_h), ω) with ω > 0 on a U(r)_∇-bundle over X:

$$F_h \wedge \omega^{n-1} = 0, \qquad d(||\Omega||_\omega \omega^{n-1}) = 0.$$

• **Question**: Can we interpret solutions to these equations as zeroes of some moment map on the space of integrable connections? Can we perform a (higher?) symplectic reduction giving a moduli space of solutions?

References I

- Mario Garcia-Fernandez, Roberto Rubio, and Carl Tipler. Gauge theory for string algebroids, 2020.
- 📔 Pavol Ševera.

Letters to alan weinstein about courant algebroids, 2017.

Braxton L. Collier.

Infinitesimal symmetries of dixmier-douady gerbes, 2011.

- Yunhe Sheng, Xiaomeng Xu, and Chenchang Zhu. String principal bundles and courant algebroids, 2017.
- Christopher J Schommer-Pries.

Central extensions of smooth 2–groups and a finite-dimensional string 2–group. *Geometry Topology*, 15(2):609–676, may 2011.

References II

Alan L. Carey, Stuart Johnson, Michael K. Murray, Danny Stevenson, and Bai-Ling Wang.
 Bundle gerbes for chern-simons and wess-zumino-witten theories.

Communications in Mathematical Physics, 259(3):577–613, jun 2005.

Konrad Waldorf.

Multiplicative bundle gerbes with connection. 2008.

🔋 Konrad Waldorf.

String connections and chern-simons theory. 2009.

Henrique Bursztyn, Gil R. Cavalcanti, and Marco Gualtieri. Reduction of courant algebroids and generalized complex structures. *Advances in Mathematics*, 211(2):726–765, jun 2007.

Mario Garcia-Fernandez.

Torsion-free generalized connections and heterotic supergravity. *Communications in Mathematical Physics*, 332(1):89–115, aug 2014.

Thanks!