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The Hull-Strominger System

® The Hull-Strominger System over a (possibly non-Kahler) Calabi-Yau manifold
(X, Q) with a hermitian vector bundle (E, h) is

FoAw"™ =0,  FP?=0,
d(|Qow™ ) =0,  ddw + (F, A Fp) =0,
for unknowns

1. we AYY(X,R) such that g := w(J-,+) >0,
2. Ap a unitary connection on (E, h).
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® The Hull-Strominger System over a (possibly non-Kahler) Calabi-Yau manifold
(X, Q) with a hermitian vector bundle (E, h) is

FoAw"™ =0,  FP?=0,
d(|Qow™ ) =0,  ddw + (F, A Fp) =0,
for unknowns

1. we AYY(X,R) such that g := w(J-,+) >0,
2. Ap a unitary connection on (E, h).

® |t can be reinterpreted [1, Garcia-Ferndndez, Rubio, Tipler, 2020] as a system for
integrable horizontal lifts on a string Courant algebroid, revealing more about its
symmetries and geometry (moment map interpretation).
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Connections on 2-Principal Bundles

® Conjecturally, smooth Courant algebroids are 'Atiyah algebroids’ for higher principal
bundles [2, Severa, 1998], [3, Collier, 2011], [4, Sheng, Xu, Zhu, 2017], but this is
still not a precise statement.
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Connections on 2-Principal Bundles

® Conjecturally, smooth Courant algebroids are 'Atiyah algebroids’ for higher principal
bundles [2, Severa, 1998], 3, Collier, 2011], [4, Sheng, Xu, Zhu, 2017], but this is

still not a precise statement.

® We introduce holomorphic String-principal bundles and connections on them
through a simple model based on gerbes and relate them to Courant algebroids.

® We reformulate the Hull-Strominger system as a system for connections on a
String-bundle via a higher Chern correspondence.
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Gerbes

Definition

For T an abelian Lie group, a T-gerbe with connective structure (con. str.) and
curving (£,V,B) — X is described in a cover {U;};c; of X by
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Gerbes

Definition
For T an abelian Lie group, a T-gerbe with connective structure (con. str.) and
curving (£,V,B) — X is described in a cover {U;};e; of X by

® tijk : Uijk — T, A,j € /\l(UU,t), B; € /\2(U,',t) such that

—1 —1
Aij — Ak + Ajx = t,:,*'kHMC on Uj,
B,‘ - Bj = —dAU on UU

Its curvature is H € A3(X, t) defined locally as H,y, := dB;.

It is holomorphic with compatible curving if t;; and A;; are holomorphic and
B; € /\Z’O(U,', t).
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Isomorphisms of Gerbes

Definition
An isomorphism of T-gerbes with con. str. ¢ : (£, V') — (£, V) is described by
® t;: Uj — T, Ai € N}(U;,t) such that
tr{jkti;kl = t,'jtl-zltjk on Ujjk,
Aij = A,‘j = t,-j-@Mc = A,' + Aj on UU
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Isomorphisms of Gerbes

Definition
An isomorphism of T-gerbes with con. str. ¢ : (£, V') — (£, V) is described by
® t;: Uj — T, Ai € N}(U;,t) such that
tr{jkti;kl = t,'jtl-zltjk on Ujjk,

Aij = A,‘j = t,-j-@Mc = A,' + Aj on UU

Its curvature with respect to curvings {B/}ic/, {Bi}ics is F, € N3(X,t) defined locally as
Fou, = dA; — B+ B;. (Note dF, = H — H').
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2-Isomorphisms of Gerbes

Definition

@1
A 2-isomorphism of gerbes with con. str. (c’,m,w is described by
N S

® t;: U; — T such that
1 -1 -1
tij,ltij,2 = l’,'tj on U,'j,

Ail— A,',Q = t;kGMC on U;.

)
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Constructions with Gerbes

® Pull-back and tensor product of gerbes.

10/28



Constructions with Gerbes

® Pull-back and tensor product of gerbes.

e Group homomorphisms T1 — T2 induce functors
(T1-gerbes with con. str. and curving) — (T2-gerbes with con. str. and curving).

10/28



Constructions with Gerbes

® Pull-back and tensor product of gerbes.

e Group homomorphisms T1 — T2 induce functors
(T1-gerbes with con. str. and curving) — (T2-gerbes with con. str. and curving).

® A U(1)-gerbe with con. str. given by ({U;}, {Ajj}, {tjk}) gives rise to an exact
Courant algebroid by gluing TU; © T*U; to TU; ® T*U; through the B-field dA;;.
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Lie 2-Groups

® Lie 2-groups G describe symmetries of differentiable stacks as Lie groups describe
symmetries of manifolds.
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Lie 2-Groups

® Lie 2-groups G describe symmetries of differentiable stacks as Lie groups describe
symmetries of manifolds.
® Two cases where the definition simplifies:
® Strict Lie 2-groups = Lie Crossed Modules (G, T, t,>).
® Central extensions BT - G — G.
® [5, Schommer-Pries, 2009] proved central extensions = multiplicative gerbes and
showed that the String 2-group has a finite dimensional model of the form
BU(1) — String(n) — Spin(n).
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Central Extensions of Lie 2-Groups

Definition [6, Carey et al., 2005], [5, Schommer-Pries, 2009]

A central extension BT — G — G is a T-gerbe over G, G — G, together with
® An isomorphism of T-gerbes over G x G, gfG ® g5G 2 (g12)"G
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Central Extensions of Lie 2-Groups

Definition [6, Carey et al., 2005], [5, Schommer-Pries, 2009]

A central extension BT — G — G is a T-gerbe over G, G — G, together with
® An isomorphism of T-gerbes over G x G, giG ® g;G 2 (g12)"G
® A 2-isomorphism of T-gerbes over G x G x G,

(8182,83)*mo (g1,82)*m
gGR G a6 (o (g2128)'G

(£1.8283)*mo (g2,83)*m

such that (g1, 82, 83) (81, 8283, 84) (&2, 83, 84) = (8182, 83, 84) (81, &2, 8384).
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Connective Central Extensions

The 2-groups that relate to generalized geometry are enhancements of central
extensions BT — G — G.

Definition [7, Waldorf, 2008], [A.C., G.F., T., 2022]

A connective central extension BTy — Gy — G is a central extension BT —- G — G
as before, where G is equipped with a connective structure and m, « are an isomorphism
and a 2-isomorphism of 'gerbes with connective structure'.
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Connective Central Extensions

The 2-groups that relate to generalized geometry are enhancements of central
extensions BT — G — G.

Definition [7, Waldorf, 2008], [A.C., G.F., T., 2022]

A connective central extension BTy — Gy — G is a central extension BT - G — G
as before, where G is equipped with a connective structure and m, « are an isomorphism
and a 2-isomorphism of 'gerbes with connective structure'.

It is holomorphic if G, T, the gerbe and its connective structure are holomorphic, and
m, « preserve the holomorphic structure.
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Connective Central Extensions

Let #-, OR be the left- and right-invariant Maurer-Cartan 1-forms on G.

Theorem [7, Waldorf, 2008], [A.C., G.F., T., 2022]

1. Any Ad-invariant symmetric bilinear form (-,-) : g ® g — t satisfying a certain
integrality condition determines a connective central extension BTy — Gy — G.
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Let #-, OR be the left- and right-invariant Maurer-Cartan 1-forms on G.

Theorem [7, Waldorf, 2008], [A.C., G.F., T., 2022]

1. Any Ad-invariant symmetric bilinear form (-,-) : g ® g — t satisfying a certain
integrality condition determines a connective central extension BTy — Gy — G.

2. A connective central extension BTy — Gy — G determines canonically an
Ad-invariant symmetric bilinear form (-,-) : g ® g — t and these constructions are
inverse to each other.

3. A connective central extension BTy — Gy — G has a canonical curving B on Gy
such that

® The curvature of m: g/Gv ® g5Gv — (g182)*Gv is — (g7 0" A g50F) € A2(G x G, t).
® The curvature of Gy is (6" A [05 A 0L]) € N3(G, t).
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Connective Central Extensions

Let #-, OR be the left- and right-invariant Maurer-Cartan 1-forms on G.

Theorem [7, Waldorf, 2008], [A.C., G.F., T., 2022]

1. Any Ad-invariant symmetric bilinear form (-,-) : g ® g — t satisfying a certain
integrality condition determines a connective central extension BTy — Gy — G.

2. A connective central extension BTy — Gy — G determines canonically an
Ad-invariant symmetric bilinear form (-,-) : g ® g — t and these constructions are
inverse to each other.

3. A connective central extension BTy — Gy — G has a canonical curving B on Gy
such that

® The curvature of m: g/Gv ® g5Gv — (g182)*Gv is — (g7 0" A g50F) € A2(G x G, t).
® The curvature of Gy is (6" A [05 A 0L]) € N3(G, t).

We call the pair (6%, BY) the Maurer-Cartan 1-form on Gy .
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Holomorphic Connective Central Extensions

Proposition [A.C., G.F., T., 2022]

BTy — Gy — G is holomorphic < G, T are holomorphic and (-, -) is C-linear. In this
case, B? is holomorphic.
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Holomorphic Connective Central Extensions

Proposition [A.C., G.F., T., 2022]

BTy — Gy — G is holomorphic < G, T are holomorphic and (-, -) is C-linear. In this
case, B? is holomorphic.

Definition [A.C., G.F., T., 2022

The complexification of a central extension of Lie 2-groups BTy — Ky — K classified
by (-,-) : £® £ — t is the holomorphic central extension B(TC)y — K% — KC classified
by the C-linear extension of (-, -).
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2-Principal Bundles

Definition [8, Waldorf, 2009], [A.C., G.F., T., 2022]

Let BTy — Gy — G be a central extension. A Gy-principal bundle over M is a
G — P — M together with a T-gerbe with con. str. Py — P and

® An isomorphism over P x G, p*Py ® g*Gvy 2 (pg) Py
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2-Principal Bundles

Definition [8, Waldorf, 2009], [A.C., G.F., T., 2022]

Let BTy — Gy — G be a central extension. A Gy-principal bundle over M is a
G — P — M together with a T-gerbe with con. str. Py — P and

® An isomorphism over P x G, p*Py ® g*Gvy 2 (pg) Py
® A 2-isomorphism over P x G x G,

(pg1.82)*acto(p,g1)*act
PPy ® giGv ® g3Gv |r (pg1&2)* Py

(p.g182)*act o (g1,82)*m

such that p(p, g1, 82)p(p, g182, 83)(g1, &, &3) = p(Pg1, &2, &3)p(P. 81, 8283)-
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Connections on 2-Principal Bundles

Definition [8, Waldorf, 2009], [A.C., G.F., T., 2022]

A connection on (P, Py, act, p) is a pair (A, B), where A € Q*(P, g) is a connection on
P and B is a curving on Py — P such that the curvature of

act : p*Py ® g*Gv — (pg)*Py with respect to (p*B ® g*BY, (pg)*B) is

—(p*A N g*0R) € N2(P x G, ¥).
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Connections on 2-Principal Bundles

Definition [8, Waldorf, 2009], [A.C., G.F., T., 2022]

A connection on (P, Py, act, p) is a pair (A, B), where A € Q*(P, g) is a connection on
P and B is a curving on Py — P such that the curvature of

act : p*Py ® g*Gv — (pg)*Py with respect to (p*B ® g*BY, (pg)*B) is

—(p*A N g*0R) € N2(P x G, ¥).

Proposition: Bianchi Identity

If (A, B) is a connection, then the curvature of Py — P with respect to B is
H=—n*H — CS3(A) € /\3(P t) for some H € A3(M, t) with dH + (Fa A Fa) = 0, where
CS3(A) := (dANA) + L(AAN[ANA]).

The pair (Fa, H) € A2(M, ad P) @ A3(M, t) is the curvature of (A, B).
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2-Principal Bundles and Courant Algebroids

Proposition [A.C., G.F., T., 2022]

A Gy-principal bundle (P, Py, act, p) gives rise to a Courant algebroid E by a reduction
procedure as in [9, Bursztyn, Cavalcanti, Gualtieri, 2005], [10, Garcia-Ferndndez, 2013].

A connection on (P, Py, act, p) gives a splitting E= T*M ® ad P & TM.
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Connections on Holomorphic 2-Principal Bundles

Let BTy — Gy — G be a holomorphic extension.

Definition [A.C., G.F., T., 2022]

Let (P, Py, act, p) be a holomorphic Gy-bundle and (A, B) a connection on it, we say
that it is compatible with the holomorphic structure if A%! = 9p and B can be
represented by (2,0) forms on P.
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Connections on Holomorphic 2-Principal Bundles

Let BTy — Gy — G be a holomorphic extension.

Definition [A.C., G.F., T., 2022]

Let (P, Py, act, p) be a holomorphic Gy-bundle and (A, B) a connection on it, we say
that it is compatible with the holomorphic structure if A% = Op and B can be
represented by (2,0) forms on P.

Proposition [A.C., G.F., T., 2022]

1. The curvature (Fa, Hg of a connection that is compatible with a holomorphic
structure satisfies Fg’ = [ H =10

2. Conversely, if (P,Py, act, p) is a smooth Gy-bundle and (A, B) is a connection on it
such that Fg’z =0, H%3t12 = 0, then there exists a holomorphic Gy-bundle with
compatible connection isomorphic to (P, Py, act, p, A, B) as smooth bundles with
connection. It is unique up to holomorphic isomorphism preserving connections.
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The Chern Correspondence

Let BU(1)v = Ky — K be a central extension with K compact, let (Py, Py s, act, p) be
a Ky-bundle over a complex manifold M and let ]P’% , be its complexification.

22/28



The Chern Correspondence

Let BU(1)v = Ky — K be a central extension with K compact, let (Py, Py s, act, p) be
a Ky-bundle over a complex manifold M and let ]P’% , be its complexification.

Theorem [A.C., G.F., T., 2022]
There is a one-to-one correspondence between:
® ((An, Bp),w), where w € AbL(M,R) and (A, By) is a connection on Py , with
Fa? =0, Hy = d°w.

® Holomorphic structures on PS ,.

22/28



The Chern Correspondence

Let BU(1)v = Ky — K be a central extension with K compact, let (Py, Py s, act, p) be
a Ky-bundle over a complex manifold M and let ]P’% , be its complexification.

Theorem [A.C., G.F., T., 2022]
There is a one-to-one correspondence between:
® ((An, Bp),w), where w € AbL(M,R) and (A, By) is a connection on Py , with
Fa? =0, Hy = d°w.

® Holomorphic structures on PS ,.

Moreover, the holomorphic bundle corresponding to ((Ap, Bp),w) carries a canonical
compatible connection with curvature (Fa,, —2i0w).
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The Chern Correspondence

Let BU(1)v = Ky — K be a central extension with K compact, let (Py, Py s, act, p) be
a Ky-bundle over a complex manifold M and let ]P’% , be its complexification.

Theorem [A.C., G.F., T., 2022]
There is a one-to-one correspondence between:
® ((An, Bp),w), where w € AbL(M,R) and (A, By) is a connection on Py , with
Fa? =0, Hp = dw.
® Holomorphic structures on }P’%,h.

Moreover, the holomorphic bundle corresponding to ((Ap, Bp),w) carries a canonical
compatible connection with curvature (Fa,, —2i0w).

We define an integrable connection on (P, Py j, act, p) to be a pair ((Ap, By),w) such
that F,?\;]2 =0 and Hj = d“w (Note Bianchi = dd“w + (Fy A Fp,) = 0).
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Conclusions

® We reinterpret the Hull-Strominger system as a system for integrable connections
((Ap, Bp),w) with w > 0 on a U(r)y-bundle over X:

Fp Aw™ 1t =0, d([|Q|low™ 1) = 0.
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Conclusions

® We reinterpret the Hull-Strominger system as a system for integrable connections
((Ap, Bp),w) with w > 0 on a U(r)y-bundle over X:

Fohw™l =0,  d(||Q/[w™) = 0.

® Question: Can we interpret solutions to these equations as zeroes of some moment
map on the space of integrable connections? Can we perform a (higher?) symplectic
reduction giving a moduli space of solutions?
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