G2 structure manifolds and almost contact structures

Magdalena Larfors

Generalized Geometry in Interaction, Madrid

Based on work with Xenia de la Ossa and Matthew Magill (2101.12605)

N4	
101207	1 artors
mage	

Motivation and summary

This talk:

Explore the connection between G_2 structures and almost contact structures

Key points:

- Almost contact structures are always present and reduce the structure group.
- Rarely used explicitly in the construction of G_2 (structure) manifolds.
- Effect on string constructions involving G₂ (structure) manifolds?

Motivation and summary

Motivation

Use string theory to probe geometry, deformations, invariants,...

Strings on 7-dim manifolds with G_2 structure

- 4D $\mathcal{N}=1$ vacua from M theory
 - G_2 holonomy: Minkowski (singularities \rightsquigarrow particle physics)
 - G₂ structure: AdS

• 3D
$$\mathcal{N} = 1$$
 heterotic string vacua (Minkowski/AdS):

integrable G_2 structure, $V \rightarrow Y G_2$ instanton bundle.

• 3D $\mathcal{N} = 1$ type II vacua (Minkowski/AdS):

 G_2 structure; branes and orientifolds as needed.

Outline

Motivation and summary

2 Setting the stage

- Almost contact structures
- G₂ structures

3 G_2 , ACMS and SU(3) structures

- G₂, ACMS, SU(3): existence and properties
- 3D $\mathcal{N} = 1$ heterotic string compactifications
- ACMS in heterotic string compactifications

G₂, ACM3S and SU(2) structures

- ACM3S, integrability and calibrated cycles
- Space of ACM3Ss

Conclusions and outlook

Setting the stage

Almost contact structures

Let Y be odd-dimensional, Riemannian manifold, with metric g. Y has an *almost contact structure* (J, R, σ) if it admits

- endomorphism J of the tangent bundle TY
- unit vector field R (with respect to the metric g),
- a 1-form σ (the contact form)

satisfying

$$J^2=-{f 1}+R\otimes\sigma\;,\quad \sigma(R)=1\;.$$

The ACS is metric (ACMS) if furthermore

 $g(Ju, Jv) = g(u, v) - \sigma(u) \sigma(v) , \qquad \forall u, v \in \Gamma(TY) .$

Almost contact structures

(Y, g), odd-dimensional, Riemannian manifold, has ACMS (J, R, σ) if it admits

- endomorphism J of the tangent bundle TY
- unit vector field R (with respect to the metric g),
- a 1-form σ (the contact form)

satisfying

$$\begin{aligned} J^2 &= -\mathbf{1} + R \otimes \sigma , \quad \sigma(R) = 1 , \\ g(Ju, Jv) &= g(u, v) - \sigma(u) \sigma(v) , \qquad \forall u, v \in \Gamma(TY) . \end{aligned}$$

Comment:

Odd-dimensional manifolds always admit a nowhere vanishing vector field ($\chi = 0$) Hopf:27

Moreover, the ACS is a **contact structure** if

$$\sigma \wedge \mathrm{d}\sigma \wedge \cdots \mathrm{d}\sigma \neq \mathbf{0} \; .$$

G₂ structures

Bonan:66, Fernandez–Gray:82, Bryant:87,03, Fernandez–Ugarte:98, Hitchin:00, Joyce:00, Friedrich–Ivanov:01, Gauntlett et.al.:01, Chiossi–Salamon:02, ...

- (Y, φ) has G₂ structure specified by non-degenerate positive 3-form φ
 True whenever Y is orientable and spin → Y admits a nowhere-vanishing spinor η.
- Locally

$$arphi_0 = (e^{12} + e^{34} + e^{56}) \wedge e^7 + e^{135} - e^{146} - e^{236} - e^{245}$$

• arphi
ightarrow Riemannian metric g_{arphi} on Y, and a 4-form $\psi = * arphi$

• Torsion classes \sim irreps of G_2 :

• G_2 holonomy $\iff d\varphi = \mathbf{0} = d\psi \iff \nabla_{LC} \eta = \mathbf{0}$

Any 7-dimensional G_2 structure manifold (Y, φ) admits (J, R, σ) :

- a nowhere vanishing vector field R
- a nowhere vanishing one-form $\sigma = g_{\varphi}(R, \cdot)$ w.l.o.g. $\sigma(R) = g_{\varphi}(R, R) = 1$
- an endomorphism J on TY: $J(u) = R \times_{\varphi} u$, $\forall u \in \Gamma(TY)$ $J^{a}{}_{b} = -\varphi^{a}{}_{bc}R^{c}$

• and furthermore a fundamental two form $\omega = i_R(\varphi)$

and the G_2 metric satisfies $g(Ju, Jv) = g(u, v) - \sigma(u) \sigma(v)$, $\forall u, v \in \Gamma(TY)$.

So, all G_2 structure manifold (Y, arphi) admits an almost contact metric structure.

Proving ACS properties is straightforward. E.g. $J^2 = - {f 1} + R \otimes \sigma$:

$$J^{a}{}_{b}J^{b}{}_{c} = \varphi^{a}{}_{bd}\varphi^{b}{}_{ce}R^{d}R^{e} = \dots = -\delta^{a}_{c} + R^{a}\sigma_{c}$$

Any 7-dimensional G_2 structure manifold (Y, φ) admits (J, R, σ) :

- a nowhere vanishing vector field R
- a nowhere vanishing one-form $\sigma = g_{\varphi}(R, \cdot)$ w.l.o.g. $\sigma(R) = g_{\varphi}(R, R) = 1$
- an endomorphism J on TY: $J(u) = R \times_{\varphi} u$, $\forall u \in \Gamma(TY)$ $J^{a}{}_{b} = -\varphi^{a}{}_{bc}R^{c}$

ullet and furthermore a fundamental two form $\omega=i_{ extsf{R}}(arphi)$

and the G_2 metric satisfies $g(Ju, Jv) = g(u, v) - \sigma(u) \sigma(v)$, $\forall u, v \in \Gamma(TY)$.

So, all G_2 structure manifold (Y, φ) admits an almost contact metric structure.

Proving ACS properties is straightforward. E.g. $J^2 = -\mathbf{1} + R \otimes \sigma$:

$$J^{a}{}_{b}J^{b}{}_{c} = \varphi^{a}{}_{bd}\varphi^{b}{}_{ce}R^{d}R^{e} = \dots = -\delta^{a}_{c} + R^{a}\sigma_{c}$$

Any 7-dimensional G_2 structure manifold (Y, φ) admits

- a nowhere vanishing unit vector field R
- a nowhere vanishing one-form $\sigma = g_{\varphi}(R,\cdot)$
- an endomorphism J on TY: $J(u) = R \times_{\varphi} u$, $\forall u \in \Gamma(TY)$
- a fundamental two form $\omega = i_R(\varphi)$

and the G_2 metric satisfies $g(Ju, Jv) = g(u, v) - \sigma(u) \sigma(v)$, $\forall u, v \in \Gamma(TY)$.

So, all G_2 structure manifold (Y, φ) admits an almost contact metric structure.

Contact structure requires $\sigma \wedge d\sigma \wedge d\sigma \wedge d\sigma \neq 0$ (like example in Jason's talk) In general, the *G*₂-compatible ACMS is *not* contact.

R and SU(3) structure

,...Friedrich et.al:97

Since they admit ACMS, (Y, φ) admit *two* nowhere-vanishing spinors $(\eta, R\eta)$. This reduces the structure group of Y to SU(3).

Remark:

For the G_2 connection ∇_T , we have $\nabla_T \eta = 0$, however generally $\nabla_T(R\eta) \neq 0$. So, generally, $\operatorname{Hol}(\nabla_T) \subseteq G_2$.

Only when ACMS compatible with ∇_T : Hol $(\nabla_T) \subseteq SU(3)$.

Transverse geometry and SU(3) structure

ACMS \implies (Y, φ) is foliated by 1D leaves (integral curves of *R*): Locall, cone-like metric $ds_{\varphi}^2 = \sigma^2 + ds_{\perp}^2$.

Vectors and k-forms can be decomposed w.r.t. the contact form σ :

- $u \in \Gamma(TY)$ is *transverse* to foliation \mathcal{F}_R if $u \in \Gamma(\text{Ker}(\sigma))$
- k-form α is transverse if $i_R(\alpha) = 0$
- $\forall k$ -form α , $\alpha = \sigma \land \alpha_0 + \alpha_{\perp}$, with α_0 and α_{\perp} transverse.

This transverse geometry has SU(3) structure (ω, Ω) , and

$$\varphi = \sigma \wedge \omega + \Omega_+ \ , \ \psi = *_{\varphi} \varphi = -\sigma \wedge \ \Omega_- + \frac{1}{2} \omega \wedge \omega \ .$$

This does not say there is a 6D submanifold. (Y, φ) admits 6D leaves $\iff \operatorname{Ker}(\sigma)$ integrable $\iff (\mathrm{d}\sigma)_{\perp} = 0 \iff \operatorname{ACS}$ is *not* contact.

Transverse geometry and SU(3) structure

ACMS \implies (Y, φ) is foliated by 1D leaves (integral curves of *R*): Locall, cone-like metric $ds_{\varphi}^2 = \sigma^2 + ds_{\perp}^2$. Vectors and *k*-forms can be decomposed w.r.t. the contact form σ :

 $r = r \in \Gamma(TY)$ is transverse to foliotion T if $r \in \Gamma(Vor(-))$

- $u \in \Gamma(TY)$ is *transverse* to foliation \mathcal{F}_R if $u \in \Gamma(\text{Ker}(\sigma))$
- k-form α is transverse if $i_R(\alpha) = 0$
- $\forall k$ -form α , $\alpha = \sigma \land \alpha_0 + \alpha_\perp$, with α_0 and α_\perp transverse.

This transverse geometry has SU(3) structure (ω, Ω) , and

$$\varphi = \sigma \wedge \omega + \Omega_+ \ , \ \psi = *_{\varphi} \varphi = -\sigma \wedge \ \Omega_- + \frac{1}{2} \omega \wedge \omega \ .$$

This does not say there is a 6D submanifold. (Y, φ) admits 6D leaves $\iff \operatorname{Ker}(\sigma)$ integrable $\iff (\mathrm{d}\sigma)_{\perp} = 0 \iff \operatorname{ACS}$ is *not* contact.

Transverse geometry and SU(3) structure

ACMS \implies (Y, φ) is foliated by 1D leaves (integral curves of R): Locall, cone-like metric $ds_{\varphi}^2 = \sigma^2 + ds_{\perp}^2$.

Vectors and k-forms can be decomposed w.r.t. the contact form σ :

- $u \in \Gamma(TY)$ is *transverse* to foliation \mathcal{F}_R if $u \in \Gamma(\operatorname{Ker}(\sigma))$
- k-form α is transverse if $i_R(\alpha) = 0$
- $\forall k$ -form α , $\alpha = \sigma \land \alpha_0 + \alpha_{\perp}$, with α_0 and α_{\perp} transverse.

This transverse geometry has SU(3) structure (ω, Ω) , and

$$\varphi = \sigma \wedge \omega + \Omega_+ \ , \ \psi = *_{\varphi} \varphi = -\sigma \wedge \ \Omega_- + \frac{1}{2} \omega \wedge \omega \ .$$

This does not say there is a 6D submanifold. (Y, φ) admits 6D leaves $\iff \operatorname{Ker}(\sigma)$ integrable $\iff (d\sigma)_{\perp} = 0 \iff \operatorname{ACS}$ is *not* contact.

Summary

Any G_2 structure manifold (Y, φ) admits (at least) an ACMS $(J, R, \sigma, g_{\varphi})$. Consequently, (Y, φ) has SU(3) structure (ω, Ω) .

Does this have an impact on string compactifications?

Let's look at 3D $\mathcal{N} = 1$ heterotic string vacua.

cf. talks by Jason, Mateo, Xenia

3D $\mathcal{N}=1$ heterotic string compactifications

Heterotic compactifications $\mathcal{M}_{10} = \mathcal{M}_3 \times \textbf{\textit{Y}}$

We have the following mathematical objects

- 7-dim Riemannian manifold Y with metric g_{mn}
- Vector bundle $V \rightarrow Y$ with connection A and structure group $G \subset E_8 \times E_8$
- Scalar ϕ
- 3-form flux defined by $H = dB + \frac{\alpha'}{4}(CS(A) CS(\Theta))$ where Θ is a connection of TY

Want to study heterotic $\mathcal{N} = 1$ G_2 systems $[(Y, \varphi), (V, A), (TY, \Theta), H]$.

3D $\mathcal{N}=1$ heterotic string compactifications

Heterotic $\mathcal{N} = 1$ G_2 system $[(Y, \varphi), (V, A), (TY, \Theta), H]$ SUSY constrains the geometry:

- \exists spinor η on Y, nowhere vanishing, Killing: $\left[\nabla_{H} \eta = 0 \right]$ $\iff Y$ has integrable G_2 structure φ with torsion T = H. Integrable G_2 structure means $\tau_2 = 0$ Fernandez, Ugarte:98
- connections A and Θ are G_2 instantons: e.g. $|F(A) \wedge \psi = 0|$.
- Bianchi identity of anomaly cancellation condition links everything:

$$\mathrm{d} H = \frac{\alpha'}{4} (\mathrm{tr} F(A) \wedge F(A) - \mathrm{tr} R(\Theta) \wedge R(\Theta))$$

 $\begin{array}{rcl} \mbox{Proven that SUSY + BI} \implies \mbox{heterotic EOM} & \Longleftrightarrow & \Theta \mbox{ is a } G_2 \mbox{ instanton} \\ & & Hull:86, \mbox{ Ivanov:10, Martelli-Sparks:10} \end{array}$

3D $\mathcal{N}=1$ heterotic string compactifications

Long history of heterotic $\mathcal{N} = 1$ G_2 systems Günyadin, Nicolai:95, Gauntlett, Martelli, Waldram, Kim:01,Friedrich, Ivanov:01,03, Gauntlett, Martelli, Waldram:04,Ivanov, Ivanov:05, ...

Examples

- Compact G₂ holonomy manifold, w.o. flux, bundle from standard embedding *Font:10*
- Compact 7-fold with G₂ structure, w. flux, G₂ instanton bundle
 Fernandez, Ivanov, Ugarte, Villacampa:11, F, I, U, Vassiliev:15, Lotay, Sa Earp:21, de la
 Ossa, Galdeano:21 → Jason's and Mateo's talks
- Non-compact 7-fold with G₂ structure, w. flux, G₂ instanton bundle *Günaydin, Nikolai:95; Fernandez, Ivanov, Ugarte, Villacampa:15; Hinoue, Yasui:14*

Recent work on infinitesimal deformations of such systems Garcia-Fernandez, Rubio, Tipler: 15, de la Ossa, ML, Svanes:16,17,19, Fiset, Quigley, Svanes:17, de la Ossa, ML, Magill, Svanes:19, Clarke, Garcia-Fernandez, Tipler:20, ... \rightarrow Xenia's talk

ACMS in heterotic string compactifications

 $KSE+BI+ACMS \rightarrow SU(3)$ torsion, connections and flux of transverse geometry. In general, $\nabla_T \omega \neq 0$ and $\nabla_T \Omega \neq 0$ as **holonomy stays** G_2 .

ACMS in heterotic string compactifications

Get *SU*(3) **holonomy** whenever $\nabla_T(R\eta) = 0$

 $\iff \nabla_T R = 0 \iff \nabla_a \sigma_b = 0 \iff R \text{ is a Killing vector, and } \mathrm{d}\sigma = T_0$

(recall $\alpha = \sigma \land \alpha_0 + \alpha_\perp$) cf. Gran, Papadopoulos et. al. 05, 07,16

• transverse geometry has Strominger-Hull *SU*(3) structure.

- Y is U(1) principal bundle over transverse geometry with hol. connection Σ (where σ = dr + Σ, and dσ = dΣ = d⊥Σ primitive).
- 3D spacetime is Minkowski.

This does not rely on integrability of $Ker(\sigma)$ (i.e. $(d\sigma)_{\perp} \neq 0$ in general)

ACMS in heterotic string compactifications

Get *SU*(3) **holonomy** whenever $\nabla_T(R\eta) = 0$

 $\iff \nabla_T R = 0 \iff \nabla_a \sigma_b = 0 \iff R \text{ is a Killing vector, and } \mathrm{d}\sigma = T_0$

(recall $\alpha = \sigma \land \alpha_0 + \alpha_\perp$) cf. Gran, Papadopoulos et. al. 05, 07,16

- transverse geometry has Strominger-Hull SU(3) structure.
- Y is U(1) principal bundle over transverse geometry with hol. connection Σ (where σ = dr + Σ, and dσ = dΣ = d⊥Σ primitive).
- 3D spacetime is Minkowski.

This does not rely on integrability of $Ker(\sigma)$ (i.e. $(d\sigma)_{\perp} \neq 0$ in general)

Example 1 (Y, φ) has G_2 holonomy:

 $T = 0 \implies d\sigma = 0$ and $Ker(\sigma)$ is necessarily integrable.

Y is a codimension one foliation with leaves which are Calabi–Yau 3-folds.

Example 2 Nilmanifold N(3,1) example Fernandez, Ivanov, Ugarte, Villacampa:11

Let e^a , a = 1, ..., 7 be left-invariant 1-forms on H(3, 1); all closed but e^7

$$\mathrm{d}e^7 = ae^{12} + be^{34} + ce^{56}$$

When c = -(a + b) this geometry solves the $\mathcal{N} = 1$ heterotic G_2 system with

$$\begin{split} \varphi &= (e^{12} + e^{34} + e^{56}) \wedge e^7 + e^{135} - e^{146} - e^{236} - e^{245} \\ T &= -\tau_3 = -(a+b)e^{567} + be^{347} + ae^{127} \\ \kappa^A, \kappa^\Theta \sim e^7 \quad \text{both } G_2 \text{ instantons.} \end{split}$$

A natural ACMS is given by $R = E_7$, $\sigma = e^7$. This gives

- $d\sigma$ is purely transverse, so $Ker(\sigma)$ is non-integrable.
- $\sigma \wedge d\sigma \wedge d\sigma \wedge d\sigma \neq 0$: contact structure.

•
$$\mathrm{d}\sigma = T_0$$
, $\mathrm{d}\sigma \wedge \omega \wedge \omega = 0$: $\mathcal{N} = 2$ SUSY.

Example 2 Nilmanifold N(3,1) example Fernandez, Ivanov, Ugarte, Villacampa:11

Let e^a , a = 1, ..., 7 be left-invariant 1-forms on H(3, 1); all closed but e^7

$$\mathrm{d}e^7 = ae^{12} + be^{34} + ce^{56}$$

When c = -(a + b) this geometry solves the $\mathcal{N} = 1$ heterotic G_2 system with

$$\begin{split} \varphi &= (e^{12} + e^{34} + e^{56}) \wedge e^7 + e^{135} - e^{146} - e^{236} - e^{245} \\ T &= -\tau_3 = -(a+b)e^{567} + be^{347} + ae^{127} \\ \kappa^A, \kappa^\Theta \sim e^7 \quad \text{both } G_2 \text{ instantons.} \end{split}$$

A natural ACMS is given by $R = E_7$, $\sigma = e^7$. This gives

- $d\sigma$ is purely transverse, so $Ker(\sigma)$ is non-integrable.
- $\sigma \wedge d\sigma \wedge d\sigma \wedge d\sigma \neq 0$: contact structure.

•
$$d\sigma = T_0$$
, $d\sigma \wedge \omega \wedge \omega = 0$: $\mathcal{N} = 2 \text{ SUSY}$.

Conclude: the ACMS can be a useful diagnostics of "hidden" SUSY (with torsion)

What about other heterotic G_2 solutions? Can readily check

- contact CY 7-manifolds of Lotay-Sa Earp
- Sasakian manifolds of de la Ossa-Galdeano

preserve exactly $\mathcal{N} = 1$ SUSY, not $\mathcal{N} = 2$.

The nilmanifold example had multiple ACMS (e.g. 7 left-invariant ones).

How many ACMS are guaranteed on general 7D G_2 structure manifolds?

Thomas:69

Any compact, orientable 7-dimensional manifold Y admits two globally defined, everywhere linearly independent vector fields $R^1, R^2 \in \Gamma(TY)$.

WLOG (Y, φ) admit an orthonormal 2-frame (R^1, R^2) , and thus two ACMS that are compatible with the G_2 metric.

Kuo:70

If the ACMSs associated to (R^1, R^2) satisfy

$$\begin{split} \sigma^{1}(R^{2}) &= \sigma^{2}(R^{1}) = 0\\ J^{1}(R^{2}) &= -J^{2}(R^{1})\\ \sigma^{1} \circ J^{2} &= -\sigma^{2} \circ J^{1}\\ J^{1}J^{2} - R^{1} \otimes \sigma^{2} &= -J^{2}J^{1} + R^{2} \otimes \sigma^{1} , \end{split}$$

then Y admits a third ACMS $J^3 = J^1 J^2 - R^1 \otimes \sigma^2$, $R^3 = J^1(R^2)$, $\sigma^3 = \sigma^1 \circ J^2$. Together, these three ACMS define an almost contact metric 3-structure (ACM3S)

 G_2 structure manifold: Todd:15 ACMSs associated to (R^1, R^2) automatically satisfy Kuo's constraints.

G_2 , ACM3S and SU(2) structures Kuo:70,...,Arikan et.al:11,12, Todd:15

 G_2 structure manifold (Y, φ) : ON 2-frame (R^1, R^2) gives a 3rd vector:

$$R^3 = R^1 imes_{arphi} R^2$$
.

Thus, any (Y, φ) admits ACM3S specified by (R^1, R^2, R^3) , s.t.

$$\sigma^{lpha}(R^{eta}) = \delta^{lphaeta} \ , \ \ J^{lpha}(R^{eta}) = \epsilon^{lphaeta\gamma}R^{\gamma} \ , \ \ \sigma^{lpha}\circ J^{eta} = -\sigma^{eta}\circ J^{lpha} \ .$$

In addition,

$$\sigma^{\gamma} = \frac{1}{2} \epsilon^{\alpha\beta\gamma} i_{R^{\beta}} i_{R^{\alpha}} \varphi \; .$$

This implies, for the G_2 3-form

$$\varphi = \frac{1}{3!} \epsilon_{\alpha\beta\gamma} \sigma^{\alpha} \wedge \sigma^{\beta} \wedge \sigma^{\gamma} + \sum_{\alpha} \sigma^{\alpha} \wedge \omega_{\perp}^{\alpha} .$$

 G_2 , ACM3S and SU(2) structures Kuo:70,...,Arikan et.al:11,12, Todd:15

The ACM3S gives

$$\varphi = \frac{1}{3!} \epsilon_{\alpha\beta\gamma} \sigma^{\alpha} \wedge \sigma^{\beta} \wedge \sigma^{\gamma} + \sum_{\alpha} \sigma^{\alpha} \wedge \omega_{\perp}^{\alpha} .$$

Selecting (R^1, R^2, R^3) induces a decomposition of the tangent bundle

 $TY \cong \mathcal{T} \oplus \mathcal{T}^{\perp},$

This reduces the structure group to SU(2) (i.e. subgroup that preserves 3-frame).

Comment SU(2) and SU(3) structures have been used in constructing and classifying $\mathcal{N} = 1$ string vacua.

Behrnt, Cvetic, Liu:05, Kim:05, Gran, Gutowski, Roest:07, Andriolo, Shiu, Triendl, van Riet, Venken, Zoccarato:18, Passias, Prins:19

Recall, for ACS, *R* decomposes $TY \cong \mathcal{T} \oplus \mathcal{T}^{\perp}$.

- $\bullet~\mathcal{T}$ is trivially involutive; tangent to 1D leaves of foliation.
- \mathcal{T}^{\perp} involutive if $\mathrm{d}\Sigma$ transverse.

For ACM3S, (R^1, R^2, R^3) also induces a decomposition $TY \cong \mathcal{T} \oplus \mathcal{T}^{\perp}$.

• $\mathcal{T}(\mathcal{T}^{\perp})$ need not be tangent to a 3D (4D) foliation.

$\mathcal{T} \text{ involutive } \iff i_{R^{\alpha}}i_{R^{\beta}}\mathrm{d}\xi = 0 \text{ for all } \xi \in \Gamma(\mathcal{T}^{*,\perp}), R^{\alpha} \in \Gamma(\mathcal{T}).$

• \mathcal{T} is involutive: \mathcal{T}_x is tangent to a leaf \mathcal{L}_x

• \mathcal{L} is parallelisable with volume form $\operatorname{Vol}_{\mathcal{L}} = \mathrm{d}\sigma^{123}$. Recall every 3D oriented manifold is parallelisable.

• In fact $\operatorname{Vol}_{\mathcal{L}} = \mathrm{d}\sigma^{123} = \varphi|_{\mathcal{L}} \implies \mathcal{L}$ is an associative cycle

• If $d\varphi = 0$, \mathcal{L} is also calibrated (... so branes wrapping \mathcal{L} give BPS states).

 \mathcal{T} involutive $\iff i_{R^{\alpha}}i_{R^{\beta}}\mathrm{d}\xi = 0$ for all $\xi \in \Gamma(\mathcal{T}^{*,\perp}), R^{\alpha} \in \Gamma(\mathcal{T}).$

- \mathcal{T} is involutive: \mathcal{T}_x is tangent to a leaf \mathcal{L}_x
- \mathcal{L} is parallelisable with volume form $\operatorname{Vol}_{\mathcal{L}} = \mathrm{d}\sigma^{123}$. Recall every 3D oriented manifold is parallelisable.
- In fact $\operatorname{Vol}_{\mathcal{L}} = \mathrm{d}\sigma^{123} = \varphi|_{\mathcal{L}} \implies |\mathcal{L} \text{ is an associative cycle}$
- If $d\varphi = 0$, \mathcal{L} is also calibrated (... so branes wrapping \mathcal{L} give BPS states).

 \mathcal{T} involutive $\iff i_{R^{\alpha}}i_{R^{\beta}}\mathrm{d}\xi = 0$ for all $\xi \in \Gamma(\mathcal{T}^{*,\perp}), R^{\alpha} \in \Gamma(\mathcal{T}).$

- \mathcal{T} is involutive: \mathcal{T}_x is tangent to a leaf \mathcal{L}_x
- \mathcal{L} is parallelisable with volume form $\operatorname{Vol}_{\mathcal{L}} = d\sigma^{123}$. Recall every 3D oriented manifold is parallelisable.

• In fact
$$\operatorname{Vol}_{\mathcal{L}} = \mathrm{d}\sigma^{123} = \varphi|_{\mathcal{L}} \implies \left| \mathcal{L} \text{ is an associative cycle} \right|$$

• If $d\varphi = 0$, \mathcal{L} is also calibrated (... so branes wrapping \mathcal{L} give BPS states).

 \mathcal{T} involutive $\iff i_{R^{\alpha}}i_{R^{\beta}}\mathrm{d}\xi = 0$ for all $\xi \in \Gamma(\mathcal{T}^{*,\perp}), R^{\alpha} \in \Gamma(\mathcal{T}).$

- \mathcal{T} is involutive: \mathcal{T}_x is tangent to a leaf \mathcal{L}_x
- \mathcal{L} is parallelisable with volume form $\operatorname{Vol}_{\mathcal{L}} = d\sigma^{123}$. Recall every 3D oriented manifold is parallelisable.
- In fact $\operatorname{Vol}_{\mathcal{L}} = \mathrm{d}\sigma^{123} = \varphi|_{\mathcal{L}} \implies \mathcal{L}$ is an associative cycle
- If $d\varphi = 0$, \mathcal{L} is also calibrated (... so branes wrapping \mathcal{L} give BPS states).

 \mathcal{T} involutive $\iff i_{R^{\alpha}}i_{R^{\beta}}\mathrm{d}\xi = 0$ for all $\xi \in \Gamma(\mathcal{T}^{*,\perp}), R^{\alpha} \in \Gamma(\mathcal{T}).$

- \mathcal{T} is involutive: \mathcal{T}_x is tangent to a leaf \mathcal{L}_x
- \mathcal{L} is parallelisable with volume form $\operatorname{Vol}_{\mathcal{L}} = d\sigma^{123}$. Recall every 3D oriented manifold is parallelisable.
- In fact $\operatorname{Vol}_{\mathcal{L}} = \mathrm{d}\sigma^{123} = \varphi|_{\mathcal{L}} \implies \mathcal{L}$ is an associative cycle
- If $d\varphi = 0$, \mathcal{L} is also calibrated (... so branes wrapping \mathcal{L} give BPS states).

 \mathcal{T} involutive $\iff i_{R^{\alpha}}i_{R^{\beta}}\mathrm{d}\xi = 0$ for all $\xi \in \Gamma(\mathcal{T}^{*,\perp}), R^{\alpha} \in \Gamma(\mathcal{T}).$

- \mathcal{T} is involutive: \mathcal{T}_x is tangent to a leaf \mathcal{L}_x
- \mathcal{L} is parallelisable with volume form $\operatorname{Vol}_{\mathcal{L}} = d\sigma^{123}$. Recall every 3D oriented manifold is parallelisable.
- In fact $\operatorname{Vol}_{\mathcal{L}} = \mathrm{d}\sigma^{123} = \varphi|_{\mathcal{L}} \implies \mathcal{L}$ is an associative cycle
- If $d\varphi = 0$, \mathcal{L} is also calibrated (... so branes wrapping \mathcal{L} give BPS states).

Natural question:

is there a non-trivial space \mathscr{C} of ACM3 structures compatible with a given G_2 structure?

Recall: ACM3S is uniquely given by ON 3-frame (R^1, R^2, R^3) , where $R^3 = R^1 \times_{\varphi} R^2$.

So fiberwise, need space of all ON, ordered pairs of vector fields in $T_x Y \cong \mathbb{R}^7$: \implies the Stiefel manifold $V_2(T_x Y) \cong G_2/SU(2)$ Harvey, Lawson:82.

Globally, get fibre bundle $\mathcal{V}_2(TY)$ with typical fibre $V_2(\mathbb{R}^7)$, and ON 2-frames (e.g. ACM3S) as sections.

Thus, the space of ACM3S is given by $\mathscr{C} = \Gamma(Y, \mathcal{V}_2(TY))$.

Comment: this is a non-empty space (Thomas:69)

Natural question:

is there a non-trivial space \mathscr{C} of ACM3 structures compatible with a given G_2 structure?

Recall: ACM3S is uniquely given by ON 3-frame (R^1, R^2, R^3) , where $R^3 = R^1 \times_{\varphi} R^2$.

So fiberwise, need space of all ON, ordered pairs of vector fields in $T_x Y \cong \mathbb{R}^7$: \implies the Stiefel manifold $V_2(T_x Y) \cong G_2/SU(2)$ Harvey, Lawson:82.

Globally, get fibre bundle $\mathcal{V}_2(TY)$ with typical fibre $V_2(\mathbb{R}^7)$, and ON 2-frames (e.g. ACM3S) as sections.

Thus, the space of ACM3S is given by $\mathscr{C} = \Gamma(Y, \mathcal{V}_2(TY))$.

Comment: this is a non-empty space (Thomas:69)

Thus, the space of ACM3S is given by $\mathscr{C} = \Gamma(Y, \mathcal{V}_2(TY))$.

In fact, we can say more: \mathscr{C} is a fibre bundle,

$$\mathcal{T} \to \mathcal{C} \xrightarrow{\pi} \mathcal{S}$$

with base corresponds to the space of splittings \mathscr{S} of the form $T^*Y = T^* \oplus T^{*\perp}$.

The space of splitting choices at a given point is $G(\varphi_x) = G_2/SO(4)$

Harvey, Lawson:82

Thus, let $\mathcal{G}(\varphi) \to Y$ be fibre bundle with typical fibre $G(\varphi_0)$. Then $\tilde{\mathscr{S}} := \Gamma(Y, \mathcal{G}(\varphi))$ contains \mathscr{S} .

Given \mathscr{S} , find \mathscr{T} by first fixing an arbitrary initial ON 3-frame (R^1, R^2, R^3) with $R^3 = R^1 \times_{\varphi} R^2$. By SO(3) transformations we can reach any other trivialisation (S^1, S^2, S^3) satisfying the ACM3S constraints. $\rightsquigarrow \mathscr{T} \sim \text{Maps}(Y, SO(3))$.

Thus, the space of ACM3S is given by $\mathscr{C} = \Gamma(Y, \mathcal{V}_2(TY))$.

In fact, we can say more: \mathscr{C} is a fibre bundle,

$$\mathcal{T} \to \mathcal{C} \xrightarrow{\pi} \mathcal{S}$$

with base corresponds to the space of splittings \mathscr{S} of the form $T^*Y = T^* \oplus T^{*\perp}$.

The space of splitting choices at a given point is $G(\varphi_x) = G_2/SO(4)$

Harvey, Lawson:82

Thus, let $\mathcal{G}(\varphi) \to Y$ be fibre bundle with typical fibre $G(\varphi_0)$. Then $\tilde{\mathscr{I}} := \Gamma(Y, \mathcal{G}(\varphi))$ contains \mathscr{S} .

Given \mathscr{S} , find \mathscr{T} by first fixing an arbitrary initial ON 3-frame (R^1, R^2, R^3) with $R^3 = R^1 \times_{\varphi} R^2$. By SO(3) transformations we can reach any other trivialisation (S^1, S^2, S^3) satisfying the ACM3S constraints. $\rightsquigarrow \mathscr{T} \sim \text{Maps}(Y, SO(3))$.

Thus, the space of ACM3S is given by $\mathscr{C} = \Gamma(Y, \mathcal{V}_2(TY))$.

In fact, we can say more: \mathscr{C} is a fibre bundle,

$$\mathcal{T} \to \mathcal{C} \xrightarrow{\pi} \mathcal{S}$$

with base corresponds to the space of splittings \mathscr{S} of the form $T^*Y = \mathcal{T}^* \oplus \mathcal{T}^{*\perp}$.

The space of splitting choices at a given point is $G(\varphi_x) = G_2/SO(4)$

Harvey, Lawson:82

Thus, let $\mathcal{G}(\varphi) \to Y$ be fibre bundle with typical fibre $\mathcal{G}(\varphi_0)$. Then $\tilde{\mathscr{I}} := \Gamma(Y, \mathcal{G}(\varphi))$ contains \mathscr{S} .

Given \mathscr{S} , find \mathscr{T} by first fixing an arbitrary initial ON 3-frame (R^1, R^2, R^3) with $R^3 = R^1 \times_{\varphi} R^2$. By SO(3) transformations we can reach any other trivialisation (S^1, S^2, S^3) satisfying the ACM3S constraints. $\rightsquigarrow \mathscr{T} \sim \operatorname{Maps}(Y, SO(3))$.

Example

Space of ACM3S in local neighbourhood of an associative three-cycle $X \in Y$.

- Construct ACM3S which restricts to a trivialisation of TX.
- Fixing boundary conditions is more subtle: topologically distinct ACMS at the edge of the local region.
- For $X = S^3$ we prove $\mathscr{T} \to \mathscr{C} \xrightarrow{\pi} \mathscr{S}$ is a non-trivial fibration.

Conclusions and outlook

Conclusions

Manifolds with G_2 structure (Y, φ) admit almost contact 3-structures

- $\chi(Y) = 0 \implies$ nowhere-vanishing vector field R and 1D foliation
- In fact, any spin 7D manifold admits an ON 2-frame (R^1, R^2)
- Using φ find a 3rd vector: ON 3-frame (R^1, R^2, R^3) with $R^3 = R^1 \times_{\varphi} R^2$.
- (R^1, R^2, R^3) equips (Y, φ) with an ACM3S.

$ACM(3)S \implies$ splitting of tangent bundle $TY \cong \mathcal{T} \oplus \mathcal{T}^{\perp}$

- ACMS: 1D foliation guaranteed, 6D foliation only if $(d\sigma)_{\perp} = 0$.
- ACM3S: 3D/4D *T*/*T*[⊥] not necessarily involutive.
 When they are, *Y* is foliated by associatives/coassociatives.

Conclusions and outlook

Conclusions

Manifolds with G_2 structure (Y, φ) admit ACM3S specified by (R^1, R^2, R^3)

$$\varphi = \frac{1}{3!} \epsilon_{\alpha\beta\gamma} \sigma^{\alpha} \wedge \sigma^{\beta} \wedge \sigma^{\gamma} + \sum_{\alpha} \sigma^{\alpha} \wedge \omega_{\perp}^{\alpha} ,$$

 $ACM(3)S \implies$ splitting of tangent bundle $TY \cong T \oplus T^{\perp}$

Outlook

- Probe relation between ACM(3)S and SUSY for type II, M theory.
- Effect of ACM(3)S on 3D/4D EFT arising from string compactifications? Action (superpotential); parametrisation & metric of moduli space?
- Determine space of ACM3S (in examples) Interesting that *C* is topological, e.g. for compact (Y, φ) with G₂ holonomy?
- Strengthen link between $\mathcal{T} = \mathcal{T} \oplus \mathcal{T}^{\perp}$, involutivity and calibrated manifolds.

Conclusions and outlook

Conclusions

Manifolds with G_2 structure (Y, φ) admit ACM3S specified by (R^1, R^2, R^3)

Outlook

- Probe relation between (A)CM(3)S and SUSY for type II, M theory.
- Effect of ACM(3)S on 3D/4D EFT arising from string compactifications? Action (superpotential); parametrisation & metric of moduli space?
- Determine space of ACM3S (in examples) Interesting that *C* is topological, e.g. for compact (Y, φ) with G₂ holonomy?
- Strengthen link between $\mathcal{T}=\mathcal{T}\oplus\mathcal{T}^{\perp},$ involutivity and calibrated manifolds.

Thank you for listening!

Additional slides: 3D EFT, G₂ and ACS

Moduli space as critical locus of a superpotential on off-shell parameter space Strategy: Dimensional reduction \implies 3D gravitino mass $M_{3/2} = e^{K}W$ Remark: need Hessian K

de la Ossa, ML, Magill, Svanes:19

$$W = \frac{1}{4} \int_{Y} e^{-2\phi} \left((H + h\varphi) \wedge \psi - \frac{1}{2} d\varphi \wedge \varphi \right)$$

Can show $\delta W = 0 \iff \mathcal{N} = 1$ heterotic G_2 system. Caveat: 3D $\mathcal{N} = 1$ supergravity lacks non-renormalisation theorems.

Additional slides: Superpotential and dimensional reduction

Fermionic part of 10D heterotic supergravity action

Bergshoeff, de Roo:89, Gurrieri, Lukas, Micu:07

 \rightarrow 3D kinetic and mass terms for gravitino

$$\begin{split} S_{0,F} &= -\frac{1}{2\kappa_{10}^2} \int_{M^{10}} d^{10}x \sqrt{-g} \ e^{-2\phi} \\ & \left(\overline{\Psi}_M \Gamma^{MNP} D_N \Psi_P - \frac{1}{24} \left(\overline{\Psi}_M \Gamma^{MNPQR} \Psi_R + 6 \ \overline{\Psi}^N \Gamma^P \Psi^Q \right) H_{NPQ} \right) \\ S_{3D} \supset -\frac{1}{2\kappa_3^2} \int d^3x \sqrt{-g} \ \left(\overline{\psi}_\mu \Gamma^{\mu\nu\kappa} D_\nu \psi_\kappa + m \overline{\psi}_\mu \Gamma^{\mu\kappa} \psi_\kappa \right) \end{split}$$

Straightforward, but

- field normalisation (correct EH term)
- conventions for gravitino mass in AdS (want SUSY $\leftrightarrow 0 = M_{3/2} \sim W$).

Additional slides: Superpotential and dimensional reduction

10D action contains $\int d^{10}X \sqrt{-g_{10}} e^{-2\phi} \left(-\frac{1}{24}\overline{\Psi}_{\mu}\Gamma^{\nu\mu}\Gamma^{ijk}\Psi_{\nu}H_{ijk}\right)$: \rightsquigarrow gravitino mass contributions

$$M_{3/2} = rac{1}{4} \int_{7} e^{-2\phi+n} \left(-rac{1}{2} d\varphi \wedge \varphi + (H+h\varphi) \wedge \psi
ight) \, .$$

(fixing conventions so that SUSY $\implies M_{3/2} = 0$) Analysing the Einstein–Hilbert term \implies

$$W = \frac{1}{4} \int_{Y} e^{-2\phi} \left((H + h\varphi) \wedge \psi - \frac{1}{2} d\varphi \wedge \varphi \right)$$

Can show $\delta W = 0 \iff \mathcal{N} = 1$ heterotic G_2 system

Additional slides: ACS and moduli space geometry

A problem in analysing beyond infinitesimal deformations is the lack a natural parametrisation for the parameter space. Phrased differently: as 3D superpotential is real, lack the guide from holomorphy

ACS \rightsquigarrow transverse geometry is (almost) complex \rightsquigarrow parametrisation? Hint: superpotential decomposes

$$\begin{split} W &= \int_{Y} e^{-2\phi} \, \sigma \wedge \operatorname{Im} \left(\left[\hat{H} + i \, \mathrm{d}_{\perp} \omega \right. \right. \\ &\left. + \frac{1}{8} \left(\omega \lrcorner (H_0 - \mathrm{d}_{\perp} \Sigma) + 7 \, h - \left(\Sigma \wedge H_0 + \frac{i}{2} \, R(\Omega_+) \right) \lrcorner \bar{\Omega} \right) \, \bar{\Omega} \right] \wedge \Omega \right) \; , \end{split}$$

where

$$\hat{H} = \mathrm{d}\hat{b} + rac{lpha'}{4}\left(\mathcal{CS}(\hat{a}) - \mathcal{CS}(\hat{ heta})
ight) \,.$$