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Motivation and summary

This talk:
Explore the connection between G2 structures and almost contact structures

Key points:

Almost contact structures are always present and reduce the structure group.

Rarely used explicitly in the construction of G2 (structure) manifolds.

Effect on string constructions involving G2 (structure) manifolds?
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Motivation and summary

Motivation
Use string theory to probe geometry, deformations, invariants,...

Strings on 7-dim manifolds with G2 structure

4D N = 1 vacua from M theory
I G2 holonomy: Minkowski (singularities  particle physics)
I G2 structure: AdS

3D N = 1 heterotic string vacua (Minkowski/AdS):

I integrable G2 structure, V → Y G2 instanton bundle.

3D N = 1 type II vacua (Minkowski/AdS):

I G2 structure; branes and orientifolds as needed.
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Setting the stage
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Almost contact structures Sasaki:60,61

Let Y be odd-dimensional, Riemannian manifold, with metric g .
Y has an almost contact structure (J,R, σ) if it admits

endomorphism J of the tangent bundle TY

unit vector field R (with respect to the metric g),

a 1-form σ (the contact form)

satisfying
J2 = −1 + R ⊗ σ , σ(R) = 1 .

The ACS is metric (ACMS) if furthermore

g(Ju, Jv) = g(u, v)− σ(u)σ(v) , ∀u, v ∈ Γ(TY ) .
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Almost contact structures Sasaki:60,61

(Y , g), odd-dimensional, Riemannian manifold, has ACMS (J,R, σ) if it admits

endomorphism J of the tangent bundle TY

unit vector field R (with respect to the metric g),

a 1-form σ (the contact form)

satisfying

J2 = −1 + R ⊗ σ , σ(R) = 1 ,

g(Ju, Jv) = g(u, v)− σ(u)σ(v) , ∀u, v ∈ Γ(TY ) .

Comment:
Odd-dimensional manifolds always admit a nowhere vanishing vector field (χ = 0)

Hopf:27

Moreover, the ACS is a contact structure if ...,Sparks:10

σ ∧ dσ ∧ · · · dσ 6= 0 .
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G2 structures
Bonan:66, Fernandez–Gray:82, Bryant:87,03, Fernandez–Ugarte:98, Hitchin:00,

Joyce:00, Friedrich–Ivanov:01, Gauntlett et.al.:01, Chiossi–Salamon:02, ...

(Y , ϕ) has G2 structure specified by non-degenerate positive 3-form ϕ

True whenever Y is orientable and spin  Y admits a nowhere-vanishing spinor η.

Locally

ϕ0 = (e12 + e34 + e56) ∧ e7 + e135 − e146 − e236 − e245 .

ϕ → Riemannian metric gϕ on Y , and a 4-form ψ = ∗ϕ

Torsion classes ∼ irreps of G2:

dϕ = τ0 ψ + 3 τ1 ∧ ϕ+ ∗τ3 ,

dψ = 4 τ1 ∧ ψ + ∗τ2 ,

Λ4 = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 ,

Λ5 = Λ5
7 ⊕ Λ5

14 .

G2 holonomy ⇐⇒ dϕ = 0 = dψ ⇐⇒ ∇LCη = 0
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G2, ACMS and SU(3) structures
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G2, ACMS and SU(3) structures ,...Arikan et.al:11,12, Todd:15

Any 7-dimensional G2 structure manifold (Y , ϕ) admits (J,R, σ):

a nowhere vanishing vector field R

a nowhere vanishing one-form σ = gϕ(R, ·)
w.l.o.g. σ(R) = gϕ(R,R) = 1

an endomorphism J on TY : J(u) = R ×ϕ u , ∀ u ∈ Γ(TY )
Jab = −ϕa

bcR
c

and furthermore a fundamental two form ω = iR(ϕ)

and the G2 metric satisfies g(Ju, Jv) = g(u, v)− σ(u)σ(v) ,∀u, v ∈ Γ(TY ).

So, all G2 structure manifold (Y , ϕ) admits an almost contact metric structure.

Proving ACS properties is straightforward. E.g. J2 = −1 + R ⊗ σ:

JabJ
b
c = ϕa

bdϕ
b
ceR

dRe = ... = −δac + Raσc
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G2, ACMS and SU(3) structures ,...Arikan et.al:11,12, Todd:15

Any 7-dimensional G2 structure manifold (Y , ϕ) admits

a nowhere vanishing unit vector field R

a nowhere vanishing one-form σ = gϕ(R, ·)
an endomorphism J on TY : J(u) = R ×ϕ u , ∀ u ∈ Γ(TY )

a fundamental two form ω = iR(ϕ)

and the G2 metric satisfies g(Ju, Jv) = g(u, v)− σ(u)σ(v) ,∀u, v ∈ Γ(TY ).

So, all G2 structure manifold (Y , ϕ) admits an almost contact metric structure.

Contact structure requires σ ∧ dσ ∧ dσ ∧ dσ 6= 0 (like example in Jason’s talk)
In general, the G2-compatible ACMS is not contact.
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G2, ACMS and SU(3) structures

R and SU(3) structure ,...Friedrich et.al:97

Since they admit ACMS, (Y , ϕ) admit two nowhere-vanishing spinors (η,Rη).

This reduces the structure group of Y to SU(3).

Remark:

For the G2 connection ∇T , we have ∇Tη = 0, however generally ∇T (Rη) 6= 0.
So, generally, Hol(∇T ) ⊆ G2.

Only when ACMS compatible with ∇T : Hol(∇T ) ⊆ SU(3).
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G2, ACMS and SU(3) structures

Transverse geometry and SU(3) structure

ACMS =⇒ (Y , ϕ) is foliated by 1D leaves (integral curves of R):
Locall, cone-like metric ds2

ϕ = σ2 + ds2
⊥.

Vectors and k-forms can be decomposed w.r.t. the contact form σ:

u ∈ Γ(TY ) is transverse to foliation FR if u ∈ Γ(Ker(σ))

k-form α is transverse if iR(α) = 0

∀ k-form α, α = σ ∧ α0 + α⊥, with α0 and α⊥ transverse.

This transverse geometry has SU(3) structure (ω,Ω), and

ϕ = σ ∧ ω + Ω+ , ψ = ∗ϕϕ = −σ ∧ Ω− +
1

2
ω ∧ ω .

This does not say there is a 6D submanifold.
(Y , ϕ) admits 6D leaves ⇐⇒ Ker(σ) integrable

⇐⇒ (dσ)⊥ = 0 ⇐⇒ ACS is not contact.
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G2, ACMS and SU(3) structures

Summary
Any G2 structure manifold (Y , ϕ) admits (at least) an ACMS (J,R, σ, gϕ).
Consequently, (Y , ϕ) has SU(3) structure (ω,Ω).

Does this have an impact on string compactifications?

Let’s look at 3D N = 1 heterotic string vacua.
cf. talks by Jason, Mateo, Xenia
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3D N = 1 heterotic string compactifications

Heterotic compactifications M10 =M3 × Y

We have the following mathematical objects

7-dim Riemannian manifold Y with metric gmn

Vector bundle V → Y with connection A and structure group G ⊂ E8 × E8

Scalar φ

3-form flux defined by H = dB + α′

4 (CS(A)− CS(Θ))
where Θ is a connection of TY

Want to study heterotic N = 1 G2 systems [(Y , ϕ), (V ,A), (TY ,Θ),H].
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3D N = 1 heterotic string compactifications

Heterotic N = 1 G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H]

SUSY constrains the geometry:

∃ spinor η on Y , nowhere vanishing, Killing: ∇Hη = 0

⇐⇒ Y has integrable G2 structure ϕ with torsion T = H.

Integrable G2 structure means τ2 = 0 Fernandez, Ugarte:98

connections A and Θ are G2 instantons: e.g. F (A) ∧ ψ = 0 .

Bianchi identity of anomaly cancellation condition links everything:

dH =
α′

4
(trF (A) ∧ F (A)− trR(Θ) ∧ R(Θ))

Proven that SUSY + BI =⇒ heterotic EOM ⇐⇒ Θ is a G2 instanton
Hull:86, Ivanov:10, Martelli–Sparks:10
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3D N = 1 heterotic string compactifications

Long history of heterotic N = 1 G2 systems
Günyadin, Nicolai:95, Gauntlett, Martelli, Waldram, Kim:01,Friedrich, Ivanov:01,03,

Gauntlett, Martelli, Waldram:04,Ivanov, Ivanov:05, ...

Examples

Compact G2 holonomy manifold, w.o. flux, bundle from standard embedding
Font:10

Compact 7-fold with G2 structure, w. flux, G2 instanton bundle
Fernandez, Ivanov, Ugarte, Villacampa:11, F, I, U, Vassiliev:15, Lotay, Sa Earp:21, de la

Ossa, Galdeano:21 → Jason’s and Mateo’s talks

Non-compact 7-fold with G2 structure, w. flux, G2 instanton bundle
Günaydin, Nikolai:95; Fernandez, Ivanov, Ugarte, Villacampa:15; Hinoue, Yasui:14

Recent work on infinitesimal deformations of such systems
Garcia-Fernandez, Rubio, Tipler: 15, de la Ossa, ML, Svanes:16,17,19, Fiset, Quigley, Svanes:17,

de la Ossa, ML, Magill, Svanes:19, Clarke, Garcia-Fernandez, Tipler:20, ... → Xenia’s talk
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ACMS in heterotic string compactifications

KSE+BI+ACMS → SU(3) torsion, connections and flux of transverse geometry.
In general, ∇Tω 6= 0 and ∇TΩ 6= 0 as holonomy stays G2.
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ACMS in heterotic string compactifications

Get SU(3) holonomy whenever ∇T (Rη) = 0

⇐⇒ ∇TR = 0 ⇐⇒ ∇aσb = 0 ⇐⇒ R is a Killing vector, and dσ = T0

(recall α = σ ∧ α0 + α⊥) cf. Gran, Papadopoulos et. al. 05, 07,16

transverse geometry has Strominger-Hull SU(3) structure.

Y is U(1) principal bundle over transverse geometry with hol. connection Σ
(where σ = dr + Σ, and dσ = dΣ = d⊥Σ primitive).

3D spacetime is Minkowski.

This does not rely on integrability of Ker(σ) (i.e. (dσ)⊥ 6= 0 in general)
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G2, ACMS and SU(3) structures

Example 1 (Y , ϕ) has G2 holonomy:

T = 0 =⇒ dσ = 0 and Ker(σ) is necessarily integrable.

Y is a codimension one foliation with leaves which are Calabi–Yau 3-folds.
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G2, ACMS and SU(3) structures

Example 2 Nilmanifold N(3, 1) example Fernandez, Ivanov, Ugarte, Villacampa:11

Let ea, a = 1, .., 7 be left-invariant 1-forms on H(3, 1); all closed but e7

de7 = ae12 + be34 + ce56 .

When c = −(a + b) this geometry solves the N = 1 heterotic G2 system with

ϕ = (e12 + e34 + e56) ∧ e7 + e135 − e146 − e236 − e245

T = −τ3 = −(a + b)e567 + be347 + ae127

κA, κΘ ∼ e7 both G2 instantons.

A natural ACMS is given by R = E7 , σ = e7. This gives

dσ is purely transverse, so Ker(σ) is non-integrable.

σ ∧ dσ ∧ dσ ∧ dσ 6= 0: contact structure.

dσ = T0 , dσ ∧ ω ∧ ω = 0: N = 2 SUSY .
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G2, ACMS and SU(3) structures

Conclude: the ACMS can be a useful diagnostics of “hidden” SUSY (with torsion)

What about other heterotic G2 solutions? Can readily check

contact CY 7-manifolds of Lotay–Sa Earp

Sasakian manifolds of de la Ossa–Galdeano

preserve exactly N = 1 SUSY, not N = 2.
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G2, ACM3S and SU(2) structures

The nilmanifold example had multiple ACMS (e.g. 7 left-invariant ones).

How many ACMS are guaranteed on general 7D G2 structure manifolds?

Thomas:69

Any compact, orientable 7-dimensional manifold Y admits two globally defined,
everywhere linearly independent vector fields R1,R2 ∈ Γ(TY ).

WLOG (Y , ϕ) admit an orthonormal 2-frame (R1,R2), and thus two ACMS that
are compatible with the G2 metric.
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G2, ACM3S and SU(2) structures

Kuo:70

If the ACMSs associated to (R1,R2) satisfy

σ1(R2) = σ2(R1) = 0

J1(R2) = −J2(R1)

σ1 ◦ J2 = −σ2 ◦ J1

J1J2 − R1 ⊗ σ2 = −J2J1 + R2 ⊗ σ1 ,

then Y admits a third ACMS J3 = J1J2 −R1 ⊗ σ2 , R3 = J1(R2) , σ3 = σ1 ◦ J2 .
Together, these three ACMS define an almost contact metric 3-structure (ACM3S)

G2 structure manifold: Todd:15

ACMSs associated to (R1,R2) automatically satisfy Kuo’s constraints.
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G2, ACM3S and SU(2) structures Kuo:70,..,Arikan et.al:11,12, Todd:15

G2 structure manifold (Y , ϕ): ON 2-frame (R1,R2) gives a 3rd vector:

R3 = R1 ×ϕ R2 .

Thus, any (Y , ϕ) admits ACM3S specified by (R1,R2,R3), s.t.

σα(Rβ) = δαβ , Jα(Rβ) = εαβγRγ , σα ◦ Jβ = −σβ ◦ Jα .

In addition,

σγ =
1

2
εαβγ iRβ iRαϕ .

This implies, for the G2 3-form

ϕ =
1

3!
εαβγσ

α ∧ σβ ∧ σγ +
∑

α

σα ∧ ωα⊥ .
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G2, ACM3S and SU(2) structures Kuo:70,..,Arikan et.al:11,12, Todd:15

The ACM3S gives

ϕ =
1

3!
εαβγσ

α ∧ σβ ∧ σγ +
∑

α

σα ∧ ωα⊥ .

Selecting (R1,R2,R3) induces a decomposition of the tangent bundle

TY ∼= T ⊕ T ⊥,

This reduces the structure group to SU(2) (i.e. subgroup that preserves 3-frame).
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G2, ACM3S and SU(2) structures

Comment SU(2) and SU(3) structures have been used in constructing and
classifying N = 1 string vacua.

Behrnt, Cvetic, Liu:05, Kim:05, Gran, Gutowski, Roest:07, Andriolo, Shiu, Triendl, van Riet,

Venken, Zoccarato:18, Passias, Prins:19
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ACM3S, integrability and calibrated cycles

Recall, for ACS, R decomposes TY ∼= T ⊕ T ⊥.

T is trivially involutive; tangent to 1D leaves of foliation.

T ⊥ involutive if dΣ transverse.

For ACM3S, (R1,R2,R3) also induces a decomposition TY ∼= T ⊕ T ⊥.

T (T ⊥) need not be tangent to a 3D (4D) foliation.

Magdalena Larfors G2 and ACS 17 June 2022 28 / 39



ACM3S, integrability and calibrated cycles

T involutive ⇐⇒ iRα iRβdξ = 0 for all ξ ∈ Γ(T ∗,⊥),Rα ∈ Γ(T ).

T is involutive: Tx is tangent to a leaf Lx

L is parallelisable with volume form VolL = dσ123.
Recall every 3D oriented manifold is parallelisable.

In fact VolL = dσ123 = ϕ|L =⇒ L is an associative cycle

If dϕ = 0, L is also calibrated (... so branes wrapping L give BPS states).

Similarily, T ⊥ is involutive =⇒ Y is foliated by co-associative 4-cycles.
(T ⊥ is involutive if and only if dσα = σβ ∧ µαβ , for one-forms µαβ).
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Space of ACM3Ss

Natural question:

is there a non-trivial space C of ACM3 structures compatible
with a given G2 structure?

Recall:
ACM3S is uniquely given by ON 3-frame (R1,R2,R3), where R3 = R1 ×ϕ R2.

So fiberwise, need space of all ON, ordered pairs of vector fields in TxY ∼= R7:
=⇒ the Stiefel manifold V2(TxY ) ∼= G2/SU(2) Harvey, Lawson:82.

Globally, get fibre bundle V2(TY ) with typical fibre V2(R7), and ON 2-frames
(e.g. ACM3S) as sections.

Thus, the space of ACM3S is given by C = Γ(Y ,V2(TY )).

Comment: this is a non-empty space (Thomas:69)
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Space of ACM3Ss

Natural question:

is there a non-trivial space C of ACM3 structures compatible
with a given G2 structure?
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Space of ACM3Ss

Thus, the space of ACM3S is given by C = Γ(Y ,V2(TY )).

In fact, we can say more: C is a fibre bundle,

T → C
π→ S

with base corresponds to the space of splittings S of the form T ∗Y = T ∗⊕T ∗⊥.

The space of splitting choices at a given point is G (ϕx) = G2/SO(4)
Harvey, Lawson:82

Thus, let G(ϕ)→ Y be fibre bundle with typical fibre G (ϕ0).
Then S̃ := Γ(Y ,G(ϕ)) contains S .

Given S , find T by first fixing an arbitrary initial ON 3-frame (R1,R2,R3) with
R3 = R1 ×ϕ R2. By SO(3) transformations we can reach any other trivialisation
(S1,S2,S3) satisfying the ACM3S constraints.  T ∼ Maps(Y ,SO(3)).
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Space of ACM3Ss

Example
Space of ACM3S in local neighbourhood of an associative three-cycle X ∈ Y .

Construct ACM3S which restricts to a trivialisation of TX .

Fixing boundary conditions is more subtle: topologically distinct ACMS at
the edge of the local region.

For X = S3 we prove T → C
π→ S is a non-trivial fibration.
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Conclusions and outlook

Conclusions

Manifolds with G2 structure (Y , ϕ) admit almost contact 3-structures

χ(Y ) = 0 =⇒ nowhere-vanishing vector field R and 1D foliation

In fact, any spin 7D manifold admits an ON 2-frame (R1,R2)

Using ϕ find a 3rd vector: ON 3-frame (R1,R2,R3) with R3 = R1 ×ϕ R2.

(R1,R2,R3) equips (Y , ϕ) with an ACM3S.

ACM(3)S =⇒ splitting of tangent bundle TY ∼= T ⊕ T ⊥
ACMS: 1D foliation guaranteed, 6D foliation only if (dσ)⊥ = 0.

ACM3S: 3D/4D T /T ⊥ not necessarily involutive.
When they are, Y is foliated by associatives/coassociatives.
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Conclusions and outlook

Conclusions

Manifolds with G2 structure (Y , ϕ) admit ACM3S specified by (R1,R2,R3)

ϕ =
1

3!
εαβγσ

α ∧ σβ ∧ σγ +
∑
α

σα ∧ ωα
⊥ ,

ACM(3)S =⇒ splitting of tangent bundle TY ∼= T ⊕ T ⊥

Outlook

Probe relation between ACM(3)S and SUSY for type II, M theory.

Effect of ACM(3)S on 3D/4D EFT arising from string compactifications?
Action (superpotential); parametrisation & metric of moduli space?

Determine space of ACM3S (in examples)
Interesting that C is topological, e.g. for compact (Y , ϕ) with G2 holonomy?

Strengthen link between T = T ⊕ T ⊥, involutivity and calibrated manifolds.
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Conclusions and outlook

Conclusions

Manifolds with G2 structure (Y , ϕ) admit ACM3S specified by (R1,R2,R3)

Outlook

Probe relation between (A)CM(3)S and SUSY for type II, M theory.

Effect of ACM(3)S on 3D/4D EFT arising from string compactifications?
Action (superpotential); parametrisation & metric of moduli space?

Determine space of ACM3S (in examples)
Interesting that C is topological, e.g. for compact (Y , ϕ) with G2 holonomy?

Strengthen link between T = T ⊕ T ⊥, involutivity and calibrated manifolds.

Thank you for listening!
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Additional slides: 3D EFT, G2 and ACS

Moduli space as critical locus of a superpotential on off-shell parameter space

Strategy: Dimensional reduction =⇒ 3D gravitino mass M3/2 = eKW

Remark: need Hessian K

de la Ossa, ML, Magill, Svanes:19

W =
1

4

∫

Y

e−2φ

(
(H + hϕ) ∧ ψ − 1

2
dϕ ∧ ϕ

)

Can show δW = 0 ⇐⇒ N = 1 heterotic G2 system.
Caveat: 3D N = 1 supergravity lacks non-renormalisation theorems.
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Additional slides: Superpotential and dimensional reduction

Fermionic part of 10D heterotic supergravity action
Bergshoeff, de Roo:89, Gurrieri, Lukas, Micu:07

→ 3D kinetic and mass terms for gravitino

Superpotential

S0,f = � 1

22
10

Z

M10

d10x
p�g e�2�

✓
 M�

MNPDN P � 1

24

⇣
 M�

MNPQR R + 6 
N
�P Q

⌘
HNPQ

◆
.

S3D � � 1

22
3

Z
d3x

p�g
�
 µ�

µ⌫D⌫  + m µ�
µ 

�
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Straightforward, but

field normalisation (correct EH term)

conventions for gravitino mass in AdS (want SUSY ↔ 0 = M3/2 ∼W ).
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Additional slides: Superpotential and dimensional reduction

10D action contains
∫
d10X

√−g10 e
−2φ

(
− 1

24 ΨµΓνµΓijkΨνHijk

)
:

 gravitino mass contributions

M3/2 =
1

4

∫

7

e−2φ+n

(
−1

2
dϕ ∧ ϕ+ (H + hϕ) ∧ ψ

)
.

(fixing conventions so that SUSY =⇒ M3/2 = 0)
Analysing the Einstein–Hilbert term =⇒

W =
1

4

∫

Y

e−2φ

(
(H + hϕ) ∧ ψ − 1

2
dϕ ∧ ϕ

)

Can show δW = 0 ⇐⇒ N = 1 heterotic G2 system
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Additional slides: ACS and moduli space geometry

A problem in analysing beyond infinitesimal deformations is the lack a natural
parametrisation for the parameter space.
Phrased differently: as 3D superpotential is real, lack the guide from holomorphy

ACS  transverse geometry is (almost) complex  parametrisation?
Hint: superpotential decomposes

W =

∫

Y

e−2φ σ ∧ Im
([

Ĥ + i d⊥ω

+
1

8

(
ωy(H0 − d⊥Σ) + 7 h −

(
Σ ∧ H0 +

i

2
R(Ω+)

)
yΩ̄

)
Ω̄

]
∧ Ω

)
,

where

Ĥ = db̂ +
α′

4

(
CS(â)− CS(θ̂)

)
.
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