Non-Kähler Calabi-Yau Geometry and Pluriclosed Flow

Mario Garcia-Fernandez¹, Josh Jordan^{*2}, Jeff Streets²

13 June 2022

문어 문

Outline

Background

- Hermitian Geometry
- Holomorphic Courant Algebroids
- Generalized Hermitian Metrics

2 Bismut Hermitian-Einstein

- Bismut Hermitian-Einstein Metrics
- Bismut's Identity
- \bullet Slope Stability of ${\cal Q}$
- Obstructions to Bismut Hermitian-Einstein Metrics

Implications for Pluriclosed Flow

- Pluriclosed Flow
- Schwarz Lemma
- Global Existence and Convergence on Bismut-flat Backgrounds
- Contractibility of the Space of Generalized Kähler Structures
- Global Existence on Complex Surfaces with $\kappa \geq 0$

Hermitian Geometry Holomorphic Courant Algebroids Generalized Hermitian Metrics

Background

*jpjorda1@uci.edu Non-Kähler Calabi-Yau Geometry and Pluriclosed Flow

イロト イヨト イヨト イヨト

Hermitian Geometry Holomorphic Courant Algebroids Generalized Hermitian Metrics

Hermitian Geometry

Definition 1 (Hermitian Geometry - Basic Definitions)

Given a Hermitian manifold (M^{2n}, J, g) , we make the following definitions.

- $\omega = gJ$ (and often g) is called pluriclosed if $\sqrt{-1}\partial\overline{\partial}\omega = 0$.
- A metric-compatible connection ∇ on a Hermitian bundle is called Hermitian if $\nabla J\equiv 0.$
- Provided ∇ is Hermitian and the bundle holomorphic as well, we will call ∇ Chern if $\nabla^{0,1} = \overline{\partial}$ (on $T_{\mathbb{C}}M$ equiv. torsion has no (1,1) part).
- Provided ∇ is a Hermitian connection on $T_{\mathbb{C}}M$, we call ∇ Bismut if its torsion can be lowered to a totally anti-symmetric 3-form.

・ 同 ト ・ ヨ ト ・ ヨ ト

Hermitian Geometry Holomorphic Courant Algebroids Generalized Hermitian Metrics

Hermitian Geometry

Definition 1 (Hermitian Geometry - Basic Definitions)

Given a Hermitian manifold (M^{2n}, J, g) , we make the following definitions.

- $\omega = gJ$ (and often g) is called pluriclosed if $\sqrt{-1}\partial\overline{\partial}\omega = 0$.
- A metric-compatible connection ∇ on a Hermitian bundle is called Hermitian if $\nabla J\equiv 0.$
- Provided ∇ is Hermitian and the bundle holomorphic as well, we will call ∇ Chern if ∇^{0,1} = ∂ (on T_CM equiv. torsion has no (1,1) part).
- Provided ∇ is a Hermitian connection on $T_{\mathbb{C}}M$, we call ∇ Bismut if its torsion can be lowered to a totally anti-symmetric 3-form.
- It can be shown that the Chern and Bismut connections are unique when g is pluriclosed with torsions depending on $\partial \omega$ and $\overline{\partial} \omega$. When $d\omega = 0$, these collapse into the Levi-Civita connection.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hermitian Geometry Holomorphic Courant Algebroids Generalized Hermitian Metrics

Hermitian Geometry

Definition 1 (Hermitian Geometry - Basic Definitions)

Given a Hermitian manifold (M^{2n}, J, g) , we make the following definitions.

- $\omega = gJ$ (and often g) is called pluriclosed if $\sqrt{-1}\partial\overline{\partial}\omega = 0$.
- A metric-compatible connection ∇ on a Hermitian bundle is called Hermitian if $\nabla J\equiv 0.$
- Provided ∇ is Hermitian and the bundle holomorphic as well, we will call ∇ Chern if $\nabla^{0,1} = \overline{\partial}$ (on $T_{\mathbb{C}}M$ equiv. torsion has no (1,1) part).
- Provided ∇ is a Hermitian connection on $T_{\mathbb{C}}M$, we call ∇ Bismut if its torsion can be lowered to a totally anti-symmetric 3-form.
- It can be shown that the Chern and Bismut connections are unique when g is pluriclosed with torsions depending on $\partial \omega$ and $\overline{\partial} \omega$. When $d\omega = 0$, these collapse into the Levi-Civita connection.
- Gauduchon ('97) showed that a complex manifold with a pluriclosed metric admits a distinguished, one-parameter family of Hermitian connections determined uniquely by the Chern and Bismut connections.

イロト イポト イヨト イヨト

э

Hermitian Geometry Holomorphic Courant Algebroids Generalized Hermitian Metrics

Hermitian Geometry

S

Definition 2 (Curvature tensor, First and Second Chern-Ricci Curvature, First Bismut-Ricci Curvature)

On a pluriclosed, Hermitian manifold (M^{2n}, J, g) we denote by Ω^{C} and Ω^{B} the curvatures of the Chern and Bismut connections on $T_{\mathbb{C}}M$ respectively.

$$\begin{split} g\Omega^{C} &\in \Lambda^{1,1} \otimes \Lambda^{1,1} & g\Omega^{B} \in \Lambda^{2} \otimes \Lambda^{1,1} \\ \rho^{C} &= \operatorname{tr} \Omega^{C} \in \Lambda^{1,1} & \rho^{B} &= \operatorname{tr} \Omega^{B} \in \Lambda^{2} \\ &= \sqrt{-1}\Lambda_{\omega}\Omega^{C} \in \operatorname{End}(TM \otimes \mathbb{C}) & \text{(not relevant in this paper)} \end{split}$$

-∢ ⊒ →

Hermitian Geometry Holomorphic Courant Algebroids Generalized Hermitian Metrics

Holomorphic Courant Algebroids - Basic Definitions

We will be working from the following definition, which covers the general case up to isomorphism.

イロト イポト イヨト イヨト

Holomorphic Courant Algebroids - Basic Definitions

We will be working from the following definition, which covers the general case up to isomorphism.

Definition 3 (Exact Holomorphic Courant Algebroid)

Given a complex manifold (M, J), $\tau \in \Lambda^{3,0+2,1}$, $d\tau = 0$, we define the exact holomorphic Courant algebroid $Q_{\tau} = (T^{1,0} \oplus T^*_{1,0}, \partial_{\tau}, \langle, \rangle, [,]_{\tau}, \pi)$ where:

•
$$\overline{\partial}_{\tau}(X+\xi) = \overline{\partial}X + \overline{\partial}\xi - \sqrt{-1}\tau^{2,1}$$
,

•
$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2}(\eta(X) + \xi(Y)),$$

•
$$[X + \xi, Y + \eta]_{\tau} = [X, Y] + \partial(\eta(X)) + i_X \partial \eta - i_Y \partial \xi + i_Y i_X \tau^{3,0},$$

•
$$\pi: T^{1,0} \oplus T^*_{1,0} \to T^{1,0}$$
 such that $\pi(X + \xi) = X$.

周 ト イ ヨ ト イ ヨ ト

Holomorphic Courant Algebroids - Basic Definitions

We will be working from the following definition, which covers the general case up to isomorphism.

Definition 3 (Exact Holomorphic Courant Algebroid)

Given a complex manifold (M, J), $\tau \in \Lambda^{3,0+2,1}$, $d\tau = 0$, we define the exact holomorphic Courant algebroid $Q_{\tau} = (T^{1,0} \oplus T^*_{1,0}, \partial_{\tau}, \langle, \rangle, [,]_{\tau}, \pi)$ where:

•
$$\overline{\partial}_{\tau}(X+\xi) = \overline{\partial}X + \overline{\partial}\xi - \sqrt{-1}\tau^{2,1}$$
,

•
$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2}(\eta(X) + \xi(Y)),$$

•
$$[X + \xi, Y + \eta]_{\tau} = [X, Y] + \partial(\eta(X)) + i_X \partial \eta - i_Y \partial \xi + i_Y i_X \tau^{3,0},$$

•
$$\pi: T^{1,0} \oplus T^*_{1,0} \to T^{1,0}$$
 such that $\pi(X + \xi) = X$.

• In the pluriclosed setting,
$$\tau = 2\sqrt{-1}\partial\omega$$
.

周 ト イ ヨ ト イ ヨ ト

Hermitian Geometry Holomorphic Courant Algebroids Generalized Hermitian Metrics

Holomorphic Courant Algebroids - Generalized Metrics

Definition 4

We call G a generalized Hermitian metric on \mathcal{Q}_{τ_0} provided G is a Hermitian metric on $T^{1,0} \oplus T^*_{1,0}$ of the form

$$G(X+\xi,\overline{X+\xi})=g(X,\overline{X})+g^{-1}(i_X\beta,i_{\overline{X}}\overline{\beta})-2\operatorname{Im}(g^{-1}(i_X\beta,\overline{\xi}))+g^{-1}(\xi,\overline{\xi}).$$

where g is a pluriclosed Hermitian metric on $T^{1,0}$ and $\beta \in \Lambda^{2,0}$ satisfies $\tau_0 - \partial \omega_g = d\beta$.

Hermitian Geometry Holomorphic Courant Algebroids Generalized Hermitian Metrics

Holomorphic Courant Algebroids - Generalized Metrics

Definition 4

We call G a generalized Hermitian metric on \mathcal{Q}_{τ_0} provided G is a Hermitian metric on $T^{1,0} \oplus T^*_{1,0}$ of the form

$$G(X+\xi,\overline{X+\xi})=g(X,\overline{X})+g^{-1}(i_X\beta,i_{\overline{X}}\overline{\beta})-2\operatorname{Im}(g^{-1}(i_X\beta,\overline{\xi}))+g^{-1}(\xi,\overline{\xi}).$$

where g is a pluriclosed Hermitian metric on $T^{1,0}$ and $\beta \in \Lambda^{2,0}$ satisfies $\tau_0 - \partial \omega_g = d\beta$.

• Only require $\tau_0 - \partial \omega = \overline{\partial} \beta$ corresponding to a loosening of equivalence from isomorphic as holo'c Courant algebroids to isomorphic as holomorphic, orthogonal bundles.

э

Bismut Hermitian-Einstein Metrics Bismut's Identity Slope Stability of *Q* Obstructions to Bismut Hermitian-Einstein Metrics

Bismut Hermitian-Einstein

*jpjorda1@uci.edu Non-Kähler Calabi-Yau Geometry and Pluriclosed Flow

イロト イヨト イヨト イヨト

Bismut Hermitian-Einstein Metrics Bismut's Identity Slope Stability of Q Obstructions to Bismut Hermitian-Einstein Metrics

Bismut Hermitian-Einstein Metrics

Definition 5

We call a Hermitian manifold (M, J, g) Bismut Hermitian-Einstein if

$$ho^B(g):=\sqrt{-1}\,{
m tr}\,\Omega^B_g\equiv 0$$

イロト イポト イヨト イヨト

Bismut Hermitian-Einstein Metrics Bismut's Identity Slope Stability of Q Obstructions to Bismut Hermitian-Einstein Metrics

Bismut Hermitian-Einstein Metrics

Definition 5

We call a Hermitian manifold (M, J, g) Bismut Hermitian-Einstein if

$$ho^B(g) := \sqrt{-1} \operatorname{tr} \Omega^B_g \equiv 0$$

- ρ^B is a representative of $c_1(M)$.
- Reduces to $\rho^{LC} = 0$ in Kähler setting.

•
$$\rho^{B} = \rho^{C} + dd^{*}\omega$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Bismut Hermitian-Einstein Metrics Bismut's Identity Slope Stability of \mathcal{Q} Obstructions to Bismut Hermitian-Einstein Metrics

Holomorphic Courant Algebroids - Bismut's Identity

In a 1989 paper, JM Bismut proved an identity between the Chern curvature of $T^{1,0} \oplus T^*_{1,0}$ with a twisted holo'c structure and the Bismut curvature of $T_{\mathbb{C}}M$.

< ロ > < 同 > < 三 > < 三 >

Holomorphic Courant Algebroids - Bismut's Identity

In a 1989 paper, JM Bismut proved an identity between the Chern curvature of $T^{1,0} \oplus T^{*}_{1,0}$ with a twisted holo'c structure and the Bismut curvature of $T_{\mathbb{C}}M$.

Theorem 6 ('21 Garcia-Fernandez, J, Streets; '89 Bismut)

On (M, J, ω_0) pluriclosed and given $\omega \in \Lambda^{1,1}_{\mathbb{R}}$ pluriclosed and $\beta \in \Lambda^{2,0}$ s.t. $\overline{\partial}\beta = \partial \omega_0 - \partial \omega$. From this, we can define $\mathcal{Q}_{\sqrt{-1}\partial\omega}$ and $G(\omega, 0)$ as above. We also define an isomorphism of vector bundles.

$$\psi_g : T_{\mathbb{C}}M \to T^{1,0} \oplus T^*_{1,0}, \quad X = X^{1,0} \oplus X^{0,1} \mapsto X^{1,0} - g(X^{0,1})$$

Holomorphic Courant Algebroids - Bismut's Identity

In a 1989 paper, JM Bismut proved an identity between the Chern curvature of $T^{1,0} \oplus T^*_{1,0}$ with a twisted holo'c structure and the Bismut curvature of $T_{\mathbb{C}}M$.

Theorem 6 ('21 Garcia-Fernandez, J, Streets; '89 Bismut)

On (M, J, ω_0) pluriclosed and given $\omega \in \Lambda^{1,1}_{\mathbb{R}}$ pluriclosed and $\beta \in \Lambda^{2,0}$ s.t. $\overline{\partial}\beta = \partial \omega_0 - \partial \omega$. From this, we can define $\mathcal{Q}_{\sqrt{-1}\partial\omega}$ and $G(\omega, 0)$ as above. We also define an isomorphism of vector bundles.

$$\psi_g: T_{\mathbb{C}}M \to T^{1,0} \oplus T^*_{1,0}, \quad X = X^{1,0} \oplus X^{0,1} \mapsto X^{1,0} - g(X^{0,1})$$

• Define a Hermitian connection on $T_{\mathbb{C}}M$ as follows.

$$g(\nabla_X^- Y, Z) = g(\nabla_X^{LC,g} Y, Z) + \frac{1}{2} d^c \omega(X, Y, Z)$$

This defines a holo'c structure on $T_{\mathbb{C}}M$ by $(\nabla^{-})^{0,1}$ and ψ_g can be viewed as a holo'c isometry $\psi_g : (T_{\mathbb{C}}M, (\nabla^{-})^{0,1}) \to \mathcal{Q}_{\sqrt{-1}\partial\omega}$.

Holomorphic Courant Algebroids - Bismut's Identity

In a 1989 paper, JM Bismut proved an identity between the Chern curvature of $T^{1,0} \oplus T^*_{1,0}$ with a twisted holo'c structure and the Bismut curvature of $T_{\mathbb{C}}M$.

Theorem 6 ('21 Garcia-Fernandez, J, Streets; '89 Bismut)

On (M, J, ω_0) pluriclosed and given $\omega \in \Lambda^{1,1}_{\mathbb{R}}$ pluriclosed and $\beta \in \Lambda^{2,0}$ s.t. $\overline{\partial}\beta = \partial \omega_0 - \partial \omega$. From this, we can define $\mathcal{Q}_{\sqrt{-1}\partial\omega}$ and $G(\omega, 0)$ as above. We also define an isomorphism of vector bundles.

$$\psi_g: T_{\mathbb{C}}M \to T^{1,0} \oplus T^*_{1,0}, \quad X = X^{1,0} \oplus X^{0,1} \mapsto X^{1,0} - g(X^{0,1})$$

• Define a Hermitian connection on $T_{\mathbb{C}}M$ as follows.

$$g(\nabla_X^- Y, Z) = g(\nabla_X^{LC,g} Y, Z) + \frac{1}{2}d^c\omega(X, Y, Z)$$

This defines a holo'c structure on $T_{\mathbb{C}}M$ by $(\nabla^{-})^{0,1}$ and ψ_g can be viewed as a holo'c isometry $\psi_g : (T_{\mathbb{C}}M, (\nabla^{-})^{0,1}) \to \mathcal{Q}_{\sqrt{-1}\partial\omega}$.

Denote the Chern connection on the holo'c, Herm. vector bundle (Q_{√-1∂ω}, G) by ∇^G. Further, ∇^G = (ψ_g)_{*}∇⁻, Ω^G = (ψ_g)_{*}Ω⁻.

Bismut Hermitian Einstein and Slope Stability of Q

Theorem 7 ('21 Garcia-Fernandez, J, Streets)

Given a pluriclosed manifold (M, J, g_0) and considering the holo'c Herm. vector bundle associated to $\mathcal{Q}_{\sqrt{-1}\partial\omega_0}$, we define a generalized Herm. metric $G = G(\omega, \beta)$. Then the Chern connection ∇^G on $\mathcal{Q}_{\sqrt{-1}\partial\omega_0}$ satisfies the following equation of endomorphisms of the underlying vector bundle of $\mathcal{Q}_{\sqrt{-1}\partial\omega_0}$.

$$S_{g}^{G} := \sqrt{-1}\Lambda_{\omega}\Omega^{G} = \sqrt{-1}(e^{\sqrt{-1}\beta})^{*} \begin{pmatrix} -g^{-1}\rho_{B}^{1,1} & g^{-1}\rho_{B}^{0,2}g^{-1} \\ \rho_{B}^{2,0} & -\rho_{B}^{1,1}g^{-1} \end{pmatrix}$$

伺い イラト イラト

Bismut Hermitian Einstein and Slope Stability of Q

Theorem 7 ('21 Garcia-Fernandez, J, Streets)

Given a pluriclosed manifold (M, J, g_0) and considering the holo'c Herm. vector bundle associated to $Q_{\sqrt{-1}\partial\omega_0}$, we define a generalized Herm. metric $G = G(\omega, \beta)$. Then the Chern connection ∇^G on $Q_{\sqrt{-1}\partial\omega_0}$ satisfies the following equation of endomorphisms of the underlying vector bundle of $Q_{\sqrt{-1}\partial\omega_0}$.

$$S_{g}^{G} := \sqrt{-1}\Lambda_{\omega}\Omega^{G} = \sqrt{-1}(e^{\sqrt{-1}\beta})^{*} \begin{pmatrix} -g^{-1}\rho_{B}^{1,1} & g^{-1}\rho_{B}^{0,2}g^{-1} \\ \rho_{B}^{2,0} & -\rho_{B}^{1,1}g^{-1} \end{pmatrix}$$

• This follows from the identity $\Omega^{\mathcal{B}}(X, Y, Z, W) = \Omega^{-}(Z, W, X, Y)$ and tracing Bismut's identity $\Omega^{\mathcal{C}, \mathcal{G}} = (\psi_g)_* \Omega^{-}$, it can also be verified directly by a brutal calculation.

・ 回 ト ・ ラ ト ・ ラ ト

Bismut Hermitian Einstein and Slope Stability of Q

Theorem 7 ('21 Garcia-Fernandez, J, Streets)

Given a pluriclosed manifold (M, J, g_0) and considering the holo'c Herm. vector bundle associated to $Q_{\sqrt{-1}\partial\omega_0}$, we define a generalized Herm. metric $G = G(\omega, \beta)$. Then the Chern connection ∇^G on $Q_{\sqrt{-1}\partial\omega_0}$ satisfies the following equation of endomorphisms of the underlying vector bundle of $Q_{\sqrt{-1}\partial\omega_0}$.

$$S_{g}^{G} := \sqrt{-1}\Lambda_{\omega}\Omega^{G} = \sqrt{-1}(e^{\sqrt{-1}\beta})^{*} \begin{pmatrix} -g^{-1}\rho_{B}^{1,1} & g^{-1}\rho_{B}^{0,2}g^{-1} \\ \rho_{B}^{2,0} & -\rho_{B}^{1,1}g^{-1} \end{pmatrix}$$

- This follows from the identity $\Omega^{\mathcal{B}}(X, Y, Z, W) = \Omega^{-}(Z, W, X, Y)$ and tracing Bismut's identity $\Omega^{\mathcal{C}, \mathcal{G}} = (\psi_g)_* \Omega^{-}$, it can also be verified directly by a brutal calculation.
- This statement implies that g is Bismut Hermitian-Einstein iff $S_{g}^{G} \equiv 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Bismut Hermitian Einstein and Slope Stability of Q

Theorem 8 ('21 Garcia-Fernandez, J, Streets)

(M, J, g) a pluriclosed Hermitian manifold. Let $a = [\tilde{\omega}^{n-1}] \in H^{n-1,n-1}_A$, where $\tilde{\omega}$ is the unique Gauduchon metric in the conformal class of ω s.t. $\int_M \omega^n = \int_M \tilde{\omega}^n$. Let $\mathcal{Q} = \mathcal{Q}_{\sqrt{-1}\partial\omega}$ as before. If g is Bismut Hermitian-Einstein, then for every subsheaf $\mathcal{F} \subset \mathcal{Q}$ we must have

$$\mu_{a}(\mathcal{F}) = rac{c_{1}(\det \mathcal{F}) \cdot a}{r} \leq 0.$$

Equality is obtained iff Q splits holo'cally.

くぼう くほう くほう

э

Bismut Hermitian Einstein and Slope Stability of Q

Theorem 8 ('21 Garcia-Fernandez, J, Streets)

(M, J, g) a pluriclosed Hermitian manifold. Let $\mathbf{a} = [\tilde{\omega}^{n-1}] \in H^{n-1,n-1}_A$, where $\tilde{\omega}$ is the unique Gauduchon metric in the conformal class of ω s.t. $\int_M \omega^n = \int_M \tilde{\omega}^n$. Let $\mathcal{Q} = \mathcal{Q}_{\sqrt{-1}\partial\omega}$ as before. If g is Bismut Hermitian-Einstein, then for every subsheaf $\mathcal{F} \subset \mathcal{Q}$ we must have

$$\mu_{a}(\mathcal{F}) = rac{c_{1}(\det \mathcal{F}) \cdot a}{r} \leq 0.$$

Equality is obtained iff Q splits holo'cally.

This result is immediate because c₁(Q) = 0 ∈ H^{1,1}_{BC}(M), so µ_a(Q) = 0, and the result follows from Donaldson-Uhlenbeck-Yau.

くぼう くほう くほう

э

Bismut Hermitian Einstein and Slope Stability of Q

Theorem 8 ('21 Garcia-Fernandez, J, Streets)

(M, J, g) a pluriclosed Hermitian manifold. Let $\mathbf{a} = [\tilde{\omega}^{n-1}] \in H^{n-1,n-1}_A$, where $\tilde{\omega}$ is the unique Gauduchon metric in the conformal class of ω s.t. $\int_M \omega^n = \int_M \tilde{\omega}^n$. Let $\mathcal{Q} = \mathcal{Q}_{\sqrt{-1}\partial\omega}$ as before. If g is Bismut Hermitian-Einstein, then for every subsheaf $\mathcal{F} \subset \mathcal{Q}$ we must have

$$\mu_{a}(\mathcal{F}) = rac{c_{1}(\det \mathcal{F}) \cdot a}{r} \leq 0.$$

Equality is obtained iff Q splits holo'cally.

- This result is immediate because c₁(Q) = 0 ∈ H^{1,1}_{BC}(M), so µ_a(Q) = 0, and the result follows from Donaldson-Uhlenbeck-Yau.
- Notice $\omega \mapsto [\tilde{\omega}^{n-1}]_{Aep}$ is complicated in general, but when n = 2, the Gauduchon criterion $\sqrt{-1}\partial\overline{\partial}\tilde{\omega}^{n-1} = 0$ is equivalent to the pluriclosed condition.

Bismut Hermitian-Einstein Metrics Bismut's Identity Slope Stability of ${\cal Q}$ Obstructions to Bismut Hermitian-Einstein Metrics

Main Theorem - The Obstruction

In what follows, we call $a \in H^{n-1,n-1}_A(M)$ positive if there is a Gauduchon metric $\tilde{\omega}$ s.t. $a = [\tilde{\omega}^{n-1}]_A$.

イロト 不得 トイヨト イヨト

÷.

Bismut Hermitian-Einstein Metrics Bismut's Identity Slope Stability of \mathcal{Q} Obstructions to Bismut Hermitian-Einstein Metrics

Main Theorem - The Obstruction

In what follows, we call $a \in H^{n-1,n-1}_A(M)$ positive if there is a Gauduchon metric $\tilde{\omega}$ s.t. $a = [\tilde{\omega}^{n-1}]_A$.

Theorem 9 ('21 Garcia-Fernandez, J, Streets)

(M, J) connected, compact, complex manifold admitting a pluriclosed, Bismut Hermitian-Einstein metric g. Then there exists a positive Aeppli class $a \in H^{n-1,n-1}_A$ s.t., for any complex manifold Z and any map $f : M \to Z$ with df surjective at one point, one has

 $f^*c_1(Z) \cdot a \geq 0.$

くぼう くほう くほう

Bismut Hermitian-Einstein Metrics Bismut's Identity Slope Stability of \mathcal{Q} Obstructions to Bismut Hermitian-Einstein Metrics

Main Theorem - The Obstruction

In what follows, we call $a \in H^{n-1,n-1}_A(M)$ positive if there is a Gauduchon metric $\tilde{\omega}$ s.t. $a = [\tilde{\omega}^{n-1}]_A$.

Theorem 9 ('21 Garcia-Fernandez, J, Streets)

(M, J) connected, compact, complex manifold admitting a pluriclosed, Bismut Hermitian-Einstein metric g. Then there exists a positive Aeppli class $a \in H_A^{n-1,n-1}$ s.t., for any complex manifold Z and any map $f : M \to Z$ with df surjective at one point, one has

$$f^*c_1(Z) \cdot a \geq 0.$$

Further, when Z = (M, J) and f = Id, one has $c_1(M) \cdot a > 0$ unless g is Kähler.

くぼう くほう くほう

Bismut Hermitian-Einstein Metrics Bismut's Identity Slope Stability of \mathcal{Q} Obstructions to Bismut Hermitian-Einstein Metrics

Main Theorem - The Obstruction

In what follows, we call $a \in H^{n-1,n-1}_A(M)$ positive if there is a Gauduchon metric $\tilde{\omega}$ s.t. $a = [\tilde{\omega}^{n-1}]_A$.

Theorem 9 ('21 Garcia-Fernandez, J, Streets)

(M, J) connected, compact, complex manifold admitting a pluriclosed, Bismut Hermitian-Einstein metric g. Then there exists a positive Aeppli class $a \in H_A^{n-1,n-1}$ s.t., for any complex manifold Z and any map $f : M \to Z$ with df surjective at one point, one has

$$f^*c_1(Z) \cdot a \geq 0.$$

Further, when Z = (M, J) and f = Id, one has $c_1(M) \cdot a > 0$ unless g is Kähler.

Corollary 10

Taking the setup of the prior theorem, if Z has $c_1(Z) < 0$, then M cannot admit a pluriclosed, Bismut Hermitian-Einstein metric.

イロト イポト イヨト イヨト

	Pluriclosed Flow
Background	Schwarz Lemma
Bismut Hermitian-Einstein	Global Existence and Convergence on Bismut-flat Backgrounds
Implications for Pluriclosed Flow	Contractibility of the Space of Generalized Kähler Structures
	Global Existence on Complex Surfaces with $\kappa \ge 0$

Implications for Pluriclosed Flow

문 문 문

Pluriclosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Pluriclosed Flow

Definition 11

Given (M, J) a complex manifold, a one-parameter family $(\omega_t, \beta_t) \in \Lambda^{1,1}_{\mathbb{R}} \oplus \Lambda^{2,0}$ is said to be a solution to pluriclosed flow provided

$$rac{\partial \omega_t}{\partial t} = -
ho_B^{1,1}(\omega_t), \qquad rac{\partial eta_t}{\partial t} = -
ho_B^{2,0}(\omega_t)$$

A 10

★ ∃ ► < ∃ ►</p>

Pluriclosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Pluriclosed Flow

Definition 11

Given (M, J) a complex manifold, a one-parameter family $(\omega_t, \beta_t) \in \Lambda^{1,1}_{\mathbb{R}} \oplus \Lambda^{2,0}$ is said to be a solution to pluriclosed flow provided

$$rac{\partial \omega_t}{\partial t} = -
ho_B^{1,1}(\omega_t), \qquad rac{\partial eta_t}{\partial t} = -
ho_B^{2,0}(\omega_t)$$

Theorem 12 ('21 Garcia-Fernandez, J, Streets)

Given $(M^{2n}, J, \omega_t, \beta_t)$ a solution to pluriclosed flow, the associated family of generalized Hermitian metrics $G_t = G(\omega_t, \beta_t)$ on $\mathcal{Q}_{\sqrt{-1}\partial\omega_0}$ satisfies

$$G^{-1} \frac{\partial G}{\partial t} = -S_g^G$$

< 回 > < 三 > < 三 >

э

Principsed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Schwarz Lemma

Theorem 13 (Classical Schwarz Lemma)

Let $(\mathcal{E}, \overline{\partial}, h) \to (M, J, g)$ be a holo'c Hermitian vector bundle over a Hermitian manifold. Then if we have a holo'c section $\sigma \in H^0(M, \mathcal{E})$, it must be that

 $\Delta_g^C |\sigma|_h^2 = |\nabla_h^C \sigma|_{g,h}^2 + h(S_g^h \sigma, \sigma)$

★ ∃ ► < ∃ ►</p>

A 1

Plunciosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Schwarz Lemma

Theorem 13 (Classical Schwarz Lemma)

Let $(\mathcal{E}, \overline{\partial}, h) \to (M, J, g)$ be a holo'c Hermitian vector bundle over a Hermitian manifold. Then if we have a holo'c section $\sigma \in H^0(M, \mathcal{E})$, it must be that

$$\Delta_g^C |\sigma|_h^2 = |\nabla_h^C \sigma|_{g,h}^2 + h(S_g^h \sigma, \sigma)$$

Corollary 14 ('21 Garcia-Fernandez, J, Streets)

Let $\mathcal{E} \to (M, J, g)$ be a holo'c vector bundle over a Hermitian manifold. If G, \tilde{G} are Hermitian metrics on \mathcal{E} , then

$$\Delta_g^C \operatorname{tr}_G \tilde{G} = |\Upsilon(G, \tilde{G})|_{G^{-1}, \tilde{G}}^2 + \operatorname{tr}_G \tilde{G}((S_g^G - S_g^{\tilde{G}}) \cdot, \cdot).$$

We use $\Upsilon(G, \tilde{G})$ to mean the difference of the G and \tilde{G} Chern connections on \mathcal{E} .

Plunciosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Schwarz Lemma

Theorem 13 (Classical Schwarz Lemma)

Let $(\mathcal{E}, \overline{\partial}, h) \to (M, J, g)$ be a holo'c Hermitian vector bundle over a Hermitian manifold. Then if we have a holo'c section $\sigma \in H^0(M, \mathcal{E})$, it must be that

$$\Delta_g^C |\sigma|_h^2 = |\nabla_h^C \sigma|_{g,h}^2 + h(S_g^h \sigma, \sigma)$$

Corollary 14 ('21 Garcia-Fernandez, J, Streets)

Let $\mathcal{E} \to (M, J, g)$ be a holo'c vector bundle over a Hermitian manifold. If G, \tilde{G} are Hermitian metrics on \mathcal{E} , then

$$\Delta_g^C \operatorname{tr}_G \tilde{G} = |\Upsilon(G, \tilde{G})|^2_{G^{-1}, \tilde{G}} + \operatorname{tr}_G \tilde{G}((S_g^G - S_g^{\tilde{G}}), \cdot).$$

We use $\Upsilon(G, \tilde{G})$ to mean the difference of the G and \tilde{G} Chern connections on \mathcal{E} . Moreover, if $G_t = G(\omega_t, \beta_t)$ for a solution to pluriclosed flow, we get the following useful evolution equation.

$$\left(\frac{\partial}{\partial t} - \Delta_{g}^{C}\right) \operatorname{tr}_{G} \tilde{G} = -|\Upsilon(G, \tilde{G})|_{G^{-1}, \tilde{G}}^{2} + \operatorname{tr}_{G} \tilde{G}(S_{g}^{\tilde{G}}, \cdot)$$

Pluriclosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Main Theorem - Existence and Convergence on Bismut-flat

Theorem 15 ('21 Garcia-Fernandez, J, Streets)

 (M^{2n}, J, ω_F) compact, Bismut-flat Hermitian manifold. Given ω_0 pluriclosed with $[\partial \omega_0] = [\partial \omega_F] \in H^{2,1}_{\overline{\partial}}$ the solution to pluriclosed flow with initial metric ω_0 exists on $[0, \infty)$ and converges to a Bismut-flat metric ω_{∞} .

通 ト イ ヨ ト イ ヨ ト ー

Pluriclosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Main Theorem - Existence and Convergence on Bismut-flat

Theorem 15 ('21 Garcia-Fernandez, J, Streets)

 (M^{2n}, J, ω_F) compact, Bismut-flat Hermitian manifold. Given ω_0 pluriclosed with $[\partial \omega_0] = [\partial \omega_F] \in H^{2,1}_{\overline{\partial}}$ the solution to pluriclosed flow with initial metric ω_0 exists on $[0, \infty)$ and converges to a Bismut-flat metric ω_{∞} .

• C⁰ estimate:

$$\left(rac{\partial}{\partial t}-\Delta
ight)\mathrm{tr}_{G_F}\;G=-|\Upsilon(G,G_F)|^2_{g,G^{-1},G_F}\leq 0$$

通 ト イ ヨ ト イ ヨ ト ー

Pluriclosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Main Theorem - Existence and Convergence on Bismut-flat

Theorem 15 ('21 Garcia-Fernandez, J, Streets)

 (M^{2n}, J, ω_F) compact, Bismut-flat Hermitian manifold. Given ω_0 pluriclosed with $[\partial \omega_0] = [\partial \omega_F] \in H^{2,1}_{\overline{\partial}}$ the solution to pluriclosed flow with initial metric ω_0 exists on $[0, \infty)$ and converges to a Bismut-flat metric ω_{∞} .

• C⁰ estimate:

$$\left(rac{\partial}{\partial t}-\Delta
ight)\mathrm{tr}_{G_F}\;G=-|\Upsilon(G,G_F)|^2_{g,G^{-1},G_F}\leq 0$$

• C^1 (similar to Calabi C^3) estimate:

$$\left(\frac{\partial}{\partial t} - \Delta_{g}^{C}\right) \left|\Upsilon(G, \tilde{G})\right|_{g, G^{-1}, \tilde{G}}^{2} = -\left|\nabla\Upsilon\right|_{g, G^{-1}, \tilde{G}}^{2} - \left|\overline{\nabla}\Upsilon + \overline{T} \cdot\Upsilon\right|_{g, G^{-1}, \tilde{G}}^{2} \leq 0$$

★ ∃ ► < ∃ ►</p>

э

Pluriclosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Main Theorem - Existence and Convergence on Bismut-flat

Theorem 15 ('21 Garcia-Fernandez, J, Streets)

 (M^{2n}, J, ω_F) compact, Bismut-flat Hermitian manifold. Given ω_0 pluriclosed with $[\partial \omega_0] = [\partial \omega_F] \in H^{2,1}_{\overline{\partial}}$ the solution to pluriclosed flow with initial metric ω_0 exists on $[0, \infty)$ and converges to a Bismut-flat metric ω_{∞} .

• C⁰ estimate:

$$\left(rac{\partial}{\partial t}-\Delta
ight)\mathrm{tr}_{G_F}\;G=-|\Upsilon(G,G_F)|^2_{g,G^{-1},G_F}\leq 0$$

• C^1 (similar to Calabi C^3) estimate:

$$\left(\frac{\partial}{\partial t} - \Delta_{g}^{C}\right) |\Upsilon(G, \tilde{G})|_{g, G^{-1}, \tilde{G}}^{2} = -|\nabla \Upsilon|_{g, G^{-1}, \tilde{G}}^{2} - |\overline{\nabla} \Upsilon + \overline{T} \cdot \Upsilon|_{g, G^{-1}, \tilde{G}}^{2} \leq 0$$

Parabolic Smoothing Estimate

$$\left(rac{\partial}{\partial t}-\Delta_{g}^{C}
ight)\left(t|\Upsilon(G,G_{F})|_{g,G}^{2}+A\operatorname{tr}_{G_{F}}G
ight)\leq0$$

4 3 5 4 3 5 5

Pluriclosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Main Theorem - Existence and Convergence on Bismut-flat

Theorem 15 ('21 Garcia-Fernandez, J, Streets)

 (M^{2n}, J, ω_F) compact, Bismut-flat Hermitian manifold. Given ω_0 pluriclosed with $[\partial \omega_0] = [\partial \omega_F] \in H^{2,1}_{\overline{\partial}}$ the solution to pluriclosed flow with initial metric ω_0 exists on $[0, \infty)$ and converges to a Bismut-flat metric ω_∞ .

• C⁰ estimate:

$$\left(rac{\partial}{\partial t}-\Delta
ight)\mathrm{tr}_{G_F}\;G=-|\Upsilon(G,G_F)|^2_{g,G^{-1},G_F}\leq 0$$

• C^1 (similar to Calabi C^3) estimate:

$$\left(\frac{\partial}{\partial t} - \Delta_{g}^{C}\right) \left|\Upsilon(G, \tilde{G})\right|_{g, G^{-1}, \tilde{G}}^{2} = -\left|\nabla\Upsilon\right|_{g, G^{-1}, \tilde{G}}^{2} - \left|\overline{\nabla}\Upsilon + \overline{T} \cdot\Upsilon\right|_{g, G^{-1}, \tilde{G}}^{2} \leq 0$$

• Parabolic Smoothing Estimate

$$\left(rac{\partial}{\partial t}-\Delta_{g}^{C}
ight)\left(t|\Upsilon(G,G_{F})|_{g,G}^{2}+A\operatorname{tr}_{G_{F}}G
ight)\leq0$$

• A blow up argument then gives C^{∞} regularity. Convergence and flatness follow from these estimates and an argument on subsequential limits.

Pluriclosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Main Theorem - Moduli Space of Generalized Kähler Structures

Theorem 16 ('21 Garcia-Fernandez, J, Streets)

 (M^{2n}, J, ω_F) compact, Bismut-flat Hermitian manifold. Given ω_0 pluriclosed with $[\partial \omega_0] = [\partial \omega_F] \in H^{2,1}_{\overline{\partial}}$ then the solution to generalized Kähler-Ricci flow exists on $[0, \infty)$ and converges to a Bismut-flat structure $(M, g_{\infty}, I_{\infty}, J)$. In particular, I is biholomorphic to a complex structure compatible with a Bismut-flat metric.

伺 ト イヨト イヨト

э

Pluriclosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Main Theorem - Moduli Space of Generalized Kähler Structures

Theorem 16 ('21 Garcia-Fernandez, J, Streets)

 (M^{2n}, J, ω_F) compact, Bismut-flat Hermitian manifold. Given ω_0 pluriclosed with $[\partial \omega_0] = [\partial \omega_F] \in H^{2,1}_{\overline{\partial}}$ then the solution to generalized Kähler-Ricci flow exists on $[0, \infty)$ and converges to a Bismut-flat structure $(M, g_{\infty}, I_{\infty}, J)$. In particular, I is biholomorphic to a complex structure compatible with a Bismut-flat metric.

• It is known that I evolves by:

$$\frac{\partial}{\partial t}I = L_{\theta_I^{\sharp} - \theta_J^{\sharp}}I = \rho_B^J \cdot \sigma$$

 σ is constant along flow lines and ρ^J_B is integrable because its information is equivalent to the derivative of G. So you just integrate and you get your I's.

・ 回 ト ・ ヨ ト ・ ヨ ト

Pluriclosed Flow Schwarz Lemma Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Main Theorem - Moduli Space of Generalized Kähler Structures

Theorem 16 ('21 Garcia-Fernandez, J, Streets)

 (M^{2n}, J, ω_F) compact, Bismut-flat Hermitian manifold. Given ω_0 pluriclosed with $[\partial \omega_0] = [\partial \omega_F] \in H^{2,1}_{\overline{\partial}}$ then the solution to generalized Kähler-Ricci flow exists on $[0, \infty)$ and converges to a Bismut-flat structure $(M, g_{\infty}, I_{\infty}, J)$. In particular, I is biholomorphic to a complex structure compatible with a Bismut-flat metric.

• It is known that I evolves by:

$$\frac{\partial}{\partial t}I = L_{\theta_I^{\sharp} - \theta_J^{\sharp}}I = \rho_B^J \cdot \sigma$$

- σ is constant along flow lines and ρ^J_B is integrable because its information is equivalent to the derivative of G. So you just integrate and you get your I's.
- This completely classifies all Bismut-flat structures on e.g. the standard Hopf surface.

・ 同 ト ・ ヨ ト ・ ヨ ト

Pluriclosed Flow Schwarz Lemma Gowergence on Bismut-flat Backgrounds Global Existence and Convergence on Bismut-flat Backgrounds Contractibility of the Space of Generalized Kähler Structures Global Existence on Complex Surfaces with $\kappa \geq 0$

Main Theorem - Global Existence on $\kappa \geq 0$

Theorem 17 ('21 Garcia-Fernandez, J, Streets)

Let (M^4, J) be a minimal, non-Kähler, complex surface of Kodaira dimension $\kappa \geq 0$. Given ω_0 a pluriclosed metric on M, the solution to pluriclosed flow exists on $[0, \infty)$.

• Suffices to check principal T^2 -bundles over Riemann surfaces $\pi: M^4 \to \Sigma^2$ with genus ≥ 1 by Kodaira classification.

く 目 ト く ヨ ト く ヨ ト

э

Main Theorem - Global Existence on $\kappa \geq 0$

Theorem 17 ('21 Garcia-Fernandez, J, Streets)

Let (M^4, J) be a minimal, non-Kähler, complex surface of Kodaira dimension $\kappa \geq 0$. Given ω_0 a pluriclosed metric on M, the solution to pluriclosed flow exists on $[0, \infty)$.

- Suffices to check principal T^2 -bundles over Riemann surfaces $\pi: M^4 \to \Sigma^2$ with genus ≥ 1 by Kodaira classification.
- If ω pluriclosed on such a manifold, then $\exists \tilde{\omega} \in [\omega] \in H^{1,1}_{Aep}(M)$ which is T^2 -invariant: $\tilde{\omega} = \pi^* \omega_{\Sigma} + \operatorname{tr}_h \mu \wedge J\mu$. Here, ω_{Σ} is Kähler on Σ , h is a metric on t, $\mu + J\mu$ is a Herm., principal T^2 -connection.

くぼう くほう くほう

э

Main Theorem - Global Existence on $\kappa \geq 0$

Theorem 17 ('21 Garcia-Fernandez, J, Streets)

Let (M^4, J) be a minimal, non-Kähler, complex surface of Kodaira dimension $\kappa \geq 0$. Given ω_0 a pluriclosed metric on M, the solution to pluriclosed flow exists on $[0, \infty)$.

• Suffices to check principal T^2 -bundles over Riemann surfaces $\pi: M^4 \to \Sigma^2$ with genus ≥ 1 by Kodaira classification.

• If ω pluriclosed on such a manifold, then $\exists \tilde{\omega} \in [\omega] \in H^{1,1}_{Aep}(M)$ which is T^2 -invariant: $\tilde{\omega} = \pi^* \omega_{\Sigma} + \operatorname{tr}_h \mu \wedge J \mu$. Here, ω_{Σ} is Kähler on Σ , h is a metric on t, $\mu + J \mu$ is a Herm., principal T^2 -connection.

• $\tilde{\Omega}^{B} = (R_{\Sigma} - |F_{\mu}|^{2}_{g_{\Sigma},h})\pi^{*}\omega_{\Sigma} \otimes \pi^{*}\omega_{\Sigma} + h(d\operatorname{tr}_{\omega_{\Sigma}}F_{\mu},\cdot) \otimes \pi^{*}\omega_{\Sigma}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Main Theorem - Global Existence on $\kappa \geq 0$

Theorem 17 ('21 Garcia-Fernandez, J, Streets)

Let (M^4, J) be a minimal, non-Kähler, complex surface of Kodaira dimension $\kappa \geq 0$. Given ω_0 a pluriclosed metric on M, the solution to pluriclosed flow exists on $[0, \infty)$.

• Suffices to check principal T^2 -bundles over Riemann surfaces $\pi: M^4 \to \Sigma^2$ with genus ≥ 1 by Kodaira classification.

• If ω pluriclosed on such a manifold, then $\exists \tilde{\omega} \in [\omega] \in H^{1,1}_{Aep}(M)$ which is T^2 -invariant: $\tilde{\omega} = \pi^* \omega_{\Sigma} + \operatorname{tr}_h \mu \wedge J\mu$. Here, ω_{Σ} is Kähler on Σ , h is a metric on t, $\mu + J\mu$ is a Herm., principal T^2 -connection.

- $\tilde{\Omega}^{B} = (R_{\Sigma} |F_{\mu}|^{2}_{g_{\Sigma},h})\pi^{*}\omega_{\Sigma} \otimes \pi^{*}\omega_{\Sigma} + h(d\operatorname{tr}_{\omega_{\Sigma}}F_{\mu},\cdot) \otimes \pi^{*}\omega_{\Sigma}$
- Schwarz Lemma for sections of a holo'c, Herm. bundle applied to $\Phi = \pi_* \circ p : \mathcal{Q} \to \mathcal{T}^{1,0}\Sigma \text{ where } p : \mathcal{Q} \to \mathcal{T}^{1,0}M \text{ estimates } |\Phi|^2_{g_{\Sigma}, G^{-1}} = \operatorname{tr}_{\omega} \pi^* \omega_{\Sigma}.$

$$\left(\frac{\partial}{\partial t} - \Delta_g\right) \mathsf{tr}_\omega \, \omega_\Sigma \leq \frac{1}{2} R_\Sigma (\mathsf{tr}_\omega \, \omega_\Sigma)^2$$

Main Theorem - Global Existence on $\kappa \ge 0$

Theorem 17 ('21 Garcia-Fernandez, J, Streets)

Let (M^4, J) be a minimal, non-Kähler, complex surface of Kodaira dimension $\kappa \geq 0$. Given ω_0 a pluriclosed metric on M, the solution to pluriclosed flow exists on $[0, \infty)$.

• Suffices to check principal T^2 -bundles over Riemann surfaces $\pi: M^4 \to \Sigma^2$ with genus ≥ 1 by Kodaira classification.

• If ω pluriclosed on such a manifold, then $\exists \tilde{\omega} \in [\omega] \in H^{1,1}_{Aep}(M)$ which is T^2 -invariant: $\tilde{\omega} = \pi^* \omega_{\Sigma} + \operatorname{tr}_h \mu \wedge J\mu$. Here, ω_{Σ} is Kähler on Σ , h is a metric on t, $\mu + J\mu$ is a Herm., principal T^2 -connection.

- $\tilde{\Omega}^{B} = (R_{\Sigma} |F_{\mu}|^{2}_{g_{\Sigma},h})\pi^{*}\omega_{\Sigma} \otimes \pi^{*}\omega_{\Sigma} + h(d\operatorname{tr}_{\omega_{\Sigma}}F_{\mu},\cdot) \otimes \pi^{*}\omega_{\Sigma}$
- Schwarz Lemma for sections of a holo'c, Herm. bundle applied to $\Phi = \pi_* \circ p : \mathcal{Q} \to \mathcal{T}^{1,0}\Sigma \text{ where } p : \mathcal{Q} \to \mathcal{T}^{1,0}M \text{ estimates } |\Phi|^2_{g_{\Sigma}, G^{-1}} = \operatorname{tr}_{\omega} \pi^* \omega_{\Sigma}.$

$$\left(\frac{\partial}{\partial t} - \Delta_g\right) \mathsf{tr}_\omega \, \omega_\Sigma \leq \frac{1}{2} R_\Sigma (\mathsf{tr}_\omega \, \omega_\Sigma)^2$$

• Earlier Schwarz Lemma to estimate $\operatorname{tr}_{G} \tilde{G}: \left(\frac{\partial}{\partial t} - \Delta_{g}\right) \operatorname{tr}_{G} \tilde{G} \leq C \operatorname{tr}_{G} \tilde{G}.$

医下子 医下