Futaki invariants and harmonic metrics for the Hull-Strominger system

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interaction

16th June 2022

I+D+i SEV2015-05554-18-1 funded by MCIN/AEI/10.13039/501100011033

Joint work with M. Garcia-Fernandez

・ 日本・ 4 聞 を 4 聞 を 4 聞 を 4 目 を 9 の 0 の

alez Molina

ICMAT-CSIC Generalized Geometry in Interaction

Motivation

- Geometrization of *Reid's fantasy*.
- Conifold transitions connect CY 3-folds with different topology.
- Obstructions to pushing solutions along surgeries.

Raul Gonzalez Molina

 (X, Ω) compact complex manifold with holomorphic volume form (dim_CX = 3) $V_i \rightarrow X$ holomorphic vector bundle i = 0, 1

ICMAT-CSIC Generalized Geometry in Interaction

 (X, Ω) compact complex manifold with holomorphic volume form (dim_CX = 3) $V_i \rightarrow X$ holomorphic vector bundle i = 0, 1

Definition

The Hull-Strominger system for a hermitian metric ω on X and a pair of hermitian metrics h_i on V_i and $\alpha \in \mathbb{R}_{>0}$ consists of

$$F_{h_i} \wedge \omega^2 = 0$$

$$d(||\Omega||_{\omega}\omega^2) = 0, \qquad \mathfrak{b} = [||\Omega||_{\omega}\omega^2] \in H^{2,2}_{BC}(X, \mathbb{R})$$

$$dd^c \omega - \alpha \operatorname{tr} F_{h_1} \wedge F_{h_1} + \alpha \operatorname{tr} F_{h_2} \wedge F_{h_2} = 0$$

Raul Gonzalez Molina

 (X, Ω) compact complex manifold with holomorphic volume form (dim_CX = 3) $V_i \rightarrow X$ holomorphic vector bundle i = 0, 1

Definition

The Hull-Strominger system for a hermitian metric ω on X and a pair of hermitian metrics h_i on V_i and $\alpha \in \mathbb{R}_{>0}$ consists of

$$F_{h_i} \wedge \omega^2 = 0$$

$$d(||\Omega||_{\omega}\omega^2) = 0, \qquad \mathfrak{b} = [||\Omega||_{\omega}\omega^2] \in H^{2,2}_{BC}(X,\mathbb{R})$$

$$dd^c \omega - \alpha \operatorname{tr} F_{h_1} \wedge F_{h_1} + \alpha \operatorname{tr} F_{h_2} \wedge F_{h_2} = 0$$

Sometimes: $V_0 \cong T^{1,0}$

Raul Gonzalez Molina

Futaki invariants and harmonic metrics for the Hull-Strominger system

ICMAT-CSIC Generalized Geometry in Interaction

○
$$F_{h_i} \wedge \omega^2 = 0 \rightarrow \text{stability}$$
 (Hermite-Einstein)

・ロト・聞ト・ヨト・ヨト ヨー わらの

Raul Gonzalez Molin

ICMAT-CSIC Generalized Geometry in Interaction

- $F_{h_i} \wedge \omega^2 = 0$ → stability (Hermite-Einstein)

CMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina

- $F_{h_i} \wedge \omega^2 = 0$ → stability (Hermite-Einstein)
- $\ \, \bigcirc \ \ \, dd^c\omega \alpha \ {\rm tr} \ F_{h_0} \wedge F_{h_0} + \alpha \ {\rm tr} \ F_{h_1} \wedge F_{h_1} = 0 \quad \rightarrow \quad ? \quad ({\rm anomally \ cancelation})$

Raul Gonzalez Molina

○
$$F_{h_i} \wedge \omega^2 = 0$$
 → stability (Hermite-Einstein)

③ $d(||Ω||_ωω^2) = 0$ → topology, holonomy (conformally balanced)

 $\ \, \bigcirc \ \ \, dd^c\omega - \alpha \ {\rm tr} \ F_{h_0} \wedge F_{h_0} + \alpha \ {\rm tr} \ F_{h_1} \wedge F_{h_1} = 0 \quad \rightarrow \quad ? \quad ({\rm anomally \ cancelation})$

→ Question: which $\mathfrak{b} \in H^{2,2}_{BC}(X, \mathbb{R})$ are realized as solutions to Hull-Strominger?

Raul Gonzalez Molina

- $F_{h_i} \wedge \omega^2 = 0 \rightarrow \text{stability}$ (Hermite-Einstein)
- $\ \, \bigcirc \ \ \, dd^c\omega \alpha \ {\rm tr} \ F_{h_0} \wedge F_{h_0} + \alpha \ {\rm tr} \ F_{h_1} \wedge F_{h_1} = 0 \quad \rightarrow \quad ? \quad ({\rm anomally \ cancelation})$

→ Question: which $\mathfrak{b} \in H^{2,2}_{BC}(X, \mathbb{R})$ are realized as solutions to Hull-Strominger? → Strategy: Geometrize anomaly cancellation equation

Bismut's observation:

• Let ω be a hermitian *pluriclosed* metric, i.e. $dd^c\omega = 0$ (large volume limit)

ICMAT-CSIC Generalized Geometry in Interaction

Bismut's observation:

- Let ω be a hermitian *pluriclosed* metric, i.e. $dd^c\omega = 0$ (large volume limit)
- $Q = T^{1,0} \oplus T^*_{1,0}$ with Dolbeault operator

$$\overline{\partial}_{Q} = \begin{pmatrix} \overline{\partial} & 0\\ 2i\partial\omega & \overline{\partial} \end{pmatrix} \qquad T^{1,0}_{1,0}$$

<ロ>

Raul Gonzalez Molina

Bismut's observation:

- Let ω be a hermitian *pluriclosed* metric, i.e. $dd^c\omega = 0$ (large volume limit)
- $Q = T^{1,0} \oplus T^*_{1,0}$ with Dolbeault operator

$$\overline{\partial}_{Q} = \begin{pmatrix} \overline{\partial} & 0\\ 2i\partial\omega & \overline{\partial} \end{pmatrix} \qquad T^{1,0}_{1,0}$$

• **G** =
$$g \oplus g^{-1}$$
 hermitian metric on Q , ($\omega = g(\mathcal{J}, \cdot)$)

Raul Gonzalez Molina

Bismut's observation:

- Let ω be a hermitian *pluriclosed* metric, i.e. $dd^c\omega = 0$ (large volume limit)
- $Q = T^{1,0} \oplus T^*_{1,0}$ with Dolbeault operator

$$\overline{\partial}_{Q} = \begin{pmatrix} \overline{\partial} & 0\\ 2i\partial\omega & \overline{\partial} \end{pmatrix} \qquad \begin{array}{c} T^{1,0}\\ T^{*}_{1,0} \end{array}$$

•
$$\mathbf{G} = g \oplus g^{-1}$$
 hermitian metric on Q , $(\omega = g(\mathcal{J}, \cdot))$
Then, under the identification $Q \xrightarrow{(\mathrm{Id}, g^{-1})} T^{1,0} \oplus T^{0,1}$, $D^G \mapsto \nabla_{\mathbb{C}}^-$

$$\nabla^- = \nabla^g + \frac{1}{2}g^{-1}d^c\omega$$

Raul Gonzalez Molina

~~ Try to generalize for the Hull-Strominger system situation:

ICMAT-CSIC Generalized Geometry in Interaction

~~ Try to generalize for the Hull-Strominger system situation:

• Let (ω, h_0, h_1) be a solution to the anomally cancellation equation

 $dd^{c}\omega - \alpha \operatorname{tr} F_{h_{0}} \wedge F_{h_{0}} + \alpha \operatorname{tr} F_{h_{1}} \wedge F_{h_{1}} = 0$

ICMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina

→ Try to generalize for the Hull-Strominger system situation:

• Let (ω, h_0, h_1) be a solution to the anomally cancellation equation

 $dd^{c}\omega - \alpha \operatorname{tr} F_{h_{0}} \wedge F_{h_{0}} + \alpha \operatorname{tr} F_{h_{1}} \wedge F_{h_{1}} = 0$

• $Q = T^{1,0} \oplus \text{End } V_i \oplus T^*_{1,0}$ with Dolbeault operator

$$\overline{\partial}_{Q} = \begin{pmatrix} \overline{\partial} & 0 & 0 \\ -F_{h_{i}} & \overline{\partial}_{V_{i}} & 0 \\ 2i\partial\omega & 2\langle F_{h_{i}}, \cdot \rangle & \overline{\partial} \end{pmatrix} \qquad \begin{array}{c} T^{1,0} \\ \text{End } V_{i} \\ T^{*}_{1,0} \end{array}$$

where $\langle \cdot, \cdot \rangle = -\alpha \operatorname{tr}_{V_0} + \alpha \operatorname{tr}_{V_1}$

Raul Gonzalez Molina

Futaki invariants and harmonic metrics for the Hull-Strominger system

ICMAT-CSIC Generalized Geometry in Interaction

• Hermitian metric: with $\langle \cdot, \cdot \rangle = -\alpha tr_{V_0} + \alpha tr_{V_1}$

$$\mathbf{G} = \begin{pmatrix} g & 0 & 0 \\ 0 & \langle \cdot, \overline{\cdot} \rangle & 0 \\ 0 & 0 & g^{-1} \end{pmatrix} \qquad \frac{T^{1,0}}{\text{End } V_i}$$

・ロト・雪ト・雪ト・雪 ののの

CMAT-CSIC Generalized Geometry in Interactior

Raul Gonzalez Molina

• Hermitian metric: with $\langle \cdot, \cdot \rangle = -\alpha tr_{V_0} + \alpha tr_{V_1}$

$$\mathbf{G} = \begin{pmatrix} g & 0 & 0 \\ 0 & \langle \cdot, \overline{\cdot} \rangle & 0 \\ 0 & 0 & g^{-1} \end{pmatrix} \qquad \frac{T^{1,0}}{End V_i}$$

Warning: **G** is *not* positive unless $rk V_0 = 0$.

Raul Gonzalez Molina

• Hermitian metric: with $\langle \cdot, \cdot \rangle = -\alpha \operatorname{tr}_{V_0} + \alpha \operatorname{tr}_{V_1}$

$$\mathbf{G} = \begin{pmatrix} g & 0 & 0 \\ 0 & \langle \cdot, \overline{\cdot} \rangle & 0 \\ 0 & 0 & g^{-1} \end{pmatrix} \qquad \frac{T^{1,0}}{\text{End } V_i}$$

Warning: **G** is *not* positive unless $rk V_0 = 0$.

Then, under the identification $Q \xrightarrow{(\mathrm{Id},\mathrm{Id},\mathrm{g}^{-1})} T^{1,0} \oplus \mathrm{End} V_i \oplus T^{0,1}$

$$D_V^G(W + r_1 + r_2) = \nabla_V^- W - g^{-1} \langle i_V F_{h_i} r_i \rangle + d^{h_i} r_i - F_{h_i}(V, W)$$

V, W \in T_\mathbb{C}, r_i \in End V_i

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interaction

• Hermitian metric: with $\langle \cdot, \cdot \rangle = -\alpha tr_{V_0} + \alpha tr_{V_1}$

$$\mathbf{G} = \begin{pmatrix} g & 0 & 0 \\ 0 & \langle \cdot, \overline{\cdot} \rangle & 0 \\ 0 & 0 & g^{-1} \end{pmatrix} \qquad \frac{T^{1,0}}{\text{End } V_i}$$

Warning: **G** is *not* positive unless $rk V_0 = 0$.

Then, under the identification $Q \xrightarrow{(\mathrm{Id},\mathrm{Id},g^{-1})} T^{1,0} \oplus \mathrm{End} V_i \oplus T^{0,1}$

$$D_V^G(W + r_1 + r_2) = \nabla_V^- W - g^{-1} \langle i_V F_{h_i} r_i \rangle + d^{h_i} r_i - F_{h_i}(V, W)$$

V, W \in T_\mathbb{C}, r_i \in End V_i

~~ Observe that we recover Bismut's observation

Raul Gonzalez Molina

Let (ω, h_0, h_1) solve the anomaly cancellation equation, then:

ICMAT-CSIC Generalized Geometry in Interaction

Let (ω, h_0, h_1) solve the anomaly cancellation equation, then:

• Q is a (non-exact) Courant algebroid in the sense of generalized geometry.

CMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina

Let (ω, h_0, h_1) solve the anomaly cancellation equation, then:

• Q is a (non-exact) Courant algebroid in the sense of generalized geometry.

$$0 \to T^* \to Q \to A_{\mathrm{Fr} V_i} \to 0$$

CMAT-CSIC Generalized Geometry in Interaction

Radi Gonzalez monna

Let (ω, h_0, h_1) solve the anomaly cancellation equation, then:

• Q is a (non-exact) Courant algebroid in the sense of generalized geometry.

$$0 \to T^* \to Q \to A_{\mathrm{Fr}\ V_i} \to 0$$
$$0 \to \mathrm{End}\ V_i \to A_{\mathrm{Fr}\ V_i} \to T \to 0$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interaction

Let (ω, h_0, h_1) solve the anomaly cancellation equation, then:

• Q is a (non-exact) Courant algebroid in the sense of generalized geometry.

$$0 \to T^* \to Q \to A_{\operatorname{Fr} V_i} \to 0$$
$$0 \to \operatorname{End} V_i \to A_{\operatorname{Fr} V_i} \to T \to 0$$

• $\overline{\partial}_Q$ arises from reduction + Jacobi id. (Gualtieri, Bursztyn-Cavalcanti-Gualtieri)

Raul Gonzalez Molir

CMAT CSIC Constalized Coomstry in Interaction

Let (ω, h_0, h_1) solve the anomaly cancellation equation, then:

• Q is a (non-exact) Courant algebroid in the sense of generalized geometry.

$$0 \to T^* \to Q \to A_{\operatorname{Fr} V_i} \to 0$$
$$0 \to \operatorname{End} V_i \to A_{\operatorname{Fr} V_i} \to T \to 0$$

- $\overline{\partial}_Q$ arises from reduction + Jacobi id. (Gualtieri, Bursztyn-Cavalcanti-Gualtieri)
- **G** arising from $\langle \cdot, \cdot \rangle$ + generalized metric.

Raul Gonzalez Molina

Let (ω, h_0, h_1) solve the anomaly cancellation equation, then:

• Q is a (non-exact) Courant algebroid in the sense of generalized geometry.

$$0 \to T^* \to Q \to A_{\operatorname{Fr} V_i} \to 0$$
$$0 \to \operatorname{End} V_i \to A_{\operatorname{Fr} V_i} \to T \to 0$$

- $\overline{\partial}_Q$ arises from reduction + Jacobi id. (Gualtieri, Bursztyn-Cavalcanti-Gualtieri)
- **G** arising from $\langle \cdot, \cdot \rangle$ + generalized metric.

Upshot: Generalized geometry 'encodes' the information of a solution in (Q, D^G) .

Futaki invariants and harmonic metrics for the Hull-Strominger system

Let (ω, h_0, h_1) be a solution to the anomally cancellation equation, and let (Q, G) be its associated hol. Courant algebroid.

ICMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina

Let (ω, h_0, h_1) be a solution to the anomally cancellation equation, and let (Q, G) be its associated hol. Courant algebroid.

Curvature tensor of **G**:

$$F_G = \begin{pmatrix} R_{\nabla^-} - \mathbb{F}^{\dagger} \wedge \mathbb{F} & -\mathbb{I}^{\dagger} \\ \mathbb{I} & [F_{h_i},] - \mathbb{F} \wedge \mathbb{F}^{\dagger} \end{pmatrix}$$

where

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interaction

Let (ω, h_0, h_1) be a solution to the anomally cancellation equation, and let (Q, G) be its associated hol. Courant algebroid.

Curvature tensor of **G**:

$$F_G = \begin{pmatrix} R_{\nabla^-} - \mathbb{F}^{\dagger} \wedge \mathbb{F} & -\mathbb{I}^{\dagger} \\ \mathbb{I} & [F_{h_i},] - \mathbb{F} \wedge \mathbb{F}^{\dagger} \end{pmatrix}$$

where

$$\begin{split} i_W i_V \mathbb{F}^{\dagger} \wedge \mathbb{F}(Z) &= g^{-1} \langle i_W F_{h_i}, F_{h_i}(V, Z) \rangle - g^{-1} \langle i_V F_{h_i}, F_{h_i}(W, Z) \rangle, \\ i_W i_V \mathbb{I}(Z) &= (\nabla_Z^{h_i, -} F_{h_i})(V, W) - F_{h_i}(V, g^{-1} i_Z i_W d^c \omega) + F_{h_i}(W, g^{-1} i_Z i_V d^c \omega), \\ i_W i_V \mathbb{F} \wedge \mathbb{F}^{\dagger}(r) &= F_{h_i}(W, g^{-1} \langle i_V F_{h_i}, r \rangle) - F_{h_i}(V, g^{-1} \langle i_W F_{h_i}, r \rangle). \end{split}$$

Raul Gonzalez Molina

Theorem (Garcia-Fernandez, GM)

Let (ω, h_0, h_1) be a solution to the Hull-Strominger system, and let (Q, G) be its associated hol. Courant algebroid. Then

 $F_{\mathbf{G}} \wedge \omega^{n-1} = 0$

CMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina

Theorem (Garcia-Fernandez, GM)

Let (ω, h_0, h_1) be a solution to the Hull-Strominger system, and let (Q, G) be its associated hol. Courant algebroid. Then

$$F_{\mathbf{G}} \wedge \omega^{n-1} = 0$$

- Exact counterpart of result in perturbation theory by De la Ossa-Larfors- Svanes [*Restrictions of Heterotic G2 Structures and Instanton Connections, '17*] in the physics literature.
- Under strictly weaker assumptions, the same result holds \rightsquigarrow *GRic* flatness, Gen. Ricci flow // Supergravity eqs.
- Expect a generalized geometric proof.

Existence of Hermitian-Einstein metrics admits a moment map interpretation ~> moment map invariant (Futaki)

ICMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina

 \mathcal{F}_{1}

Existence of Hermitian-Einstein metrics admits a moment map interpretation ~> moment map invariant (Futaki)

Proposition

Let X be compact complex, $\mathfrak{b} \in H^{n-1,n-1}_{BC}(X,\mathbb{R})$ a balanced class, and let $\mathcal{E} \to X$ be a holomorphic vector bundle. Then, the map

$$f_{\Sigma}: H^{0}(X, \operatorname{End} \mathcal{E}) \to \mathbb{C}$$

 $\varphi \mapsto \int_{X} \operatorname{tr}(\varphi \circ F_{h}) \wedge \omega^{n-1}$

defines a character that does not depend on the (pseudo)hermitian metric h nor on the representative $\omega^{n-1} \in \mathfrak{b}$. Moreover, $\mathcal{F}_{\mathfrak{b}}$ vanishes if there exist (ω_0, h_0) such that $\omega_0^{n-1} \in \mathfrak{b}$,

$$F_{h_0} \wedge \omega_0^{n-1} = 0$$

Raul Gonzalez Molina

To introduce the Futaki invariant in our setting:

Proposition (Garcia-Fernandez, Shahbazi, Rubio, Tipler)

Let (X, Ω) Calabi-Yau, holomorphic bundles V_0, V_1 . Let \mathfrak{S} be the set of equivalence classes of hol. Courant algebroids extending V_i . Then, \mathfrak{S} is an affine space for the vector space given by the image of

$$H^{1,1}_A(X) \xrightarrow{\partial} H^1(\Omega^{2,0} \xrightarrow{d} \Omega^{3,0+2,1} \xrightarrow{d} \ldots)$$

Raul Gonzalez Molina

To introduce the Futaki invariant in our setting:

Proposition (Garcia-Fernandez, Shahbazi, Rubio, Tipler)

Let (X, Ω) Calabi-Yau, holomorphic bundles V_0, V_1 . Let \mathfrak{S} be the set of equivalence classes of hol. Courant algebroids extending V_i . Then, \mathfrak{S} is an affine space for the vector space given by the image of

$$H^{1,1}_A(X) \xrightarrow{\partial} H^1(\Omega^{2,0} \xrightarrow{d} \Omega^{3,0+2,1} \xrightarrow{d} \ldots)$$

→ family of Futaki characters:

$$\mathfrak{H} \to \mathfrak{S}, \qquad \mathfrak{H}_{\mathfrak{s}} = H^0(X, \operatorname{End} Q_{\mathfrak{s}}), \qquad \mathfrak{s} \in \mathfrak{S}$$
$$\{\mathcal{F}^{\mathfrak{s}} : \mathfrak{H}_{\mathfrak{s}} \to H^{1,1}_A(X)\}_{\mathfrak{s} \in \mathfrak{S}}, \qquad \varphi \mapsto [\operatorname{tr}(\varphi \circ F_{\mathbf{G}})]$$

Raul Gonzalez Molina

Theorem (Garcia-Fernandez, GM)

Let (X, Ω) Calabi-Yau and let V_0 , V_1 be holomorphic vector bundles, and let \mathfrak{S} be the affine space of hol. Courant algebroids extending V_i . Suppose (ω, h_0, h_1) is a solution to the Hull-Strominger system. Then, there exists $\mathfrak{s} \in \mathfrak{S}$ such that

$$\langle \mathcal{F}^{\mathfrak{s}}, \mathfrak{b} \rangle = 0$$

for $\mathfrak{b} = [||\Omega||_{\omega_0} \omega_0^{n-1}].$

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interaction

Theorem (Garcia-Fernandez, GM)

Let (X, Ω) Calabi-Yau and let V_0 , V_1 be holomorphic vector bundles, and let \mathfrak{S} be the affine space of hol. Courant algebroids extending V_i . Suppose (ω, h_0, h_1) is a solution to the Hull-Strominger system. Then, there exists $\mathfrak{s} \in \mathfrak{S}$ such that

$$\langle \mathcal{F}^{\mathfrak{s}}, \mathfrak{b} \rangle = 0$$

for $\mathfrak{b} = [||\Omega||_{\omega_0} \omega_0^{n-1}].$

 \rightsquigarrow use this as an obstruction!

Raul Gonzalez Molina

Definition

Let (X, Ω) Calabi-Yau, V_0 , V_1 holomorphic vector bundles, and Q_s a hol. Courant algebroid extending V_i . Then, a solution to the Hull-Strominger system (ω, h_0, h_1) is in Q_s if the associated $(Q, D^G) \cong Q_s$.

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interaction

Definition

Let (X, Ω) Calabi-Yau, V_0 , V_1 holomorphic vector bundles, and Q_s a hol. Courant algebroid extending V_i . Then, a solution to the Hull-Strominger system (ω, h_0, h_1) is in Q_s if the associated $(Q, D^G) \cong Q_s$.

Corollary

Suppose
$$\mathfrak{s} \in \mathfrak{S}$$
 and $\mathfrak{b} \in H^{n-1,n-1}_{BC}(X,\mathbb{R})$ be such that

 $\langle \mathcal{F}^{\mathfrak{s}}, \mathfrak{b} \rangle \neq 0$

then, there exists no solution (ω, h_0, h_1) solution to the Hull-Strominger system in $Q_{\mathfrak{s}}$ with $[||\Omega||_{\omega}, \omega^{n-1}] = \mathfrak{b}.$

Raul Gonzalez Molina

Corollary

Let (X, Ω) Calabi-Yau and V_0 , V_1 holomorphic vector bundles. Suppose \mathfrak{b} balanced class such that

 $\langle \mathcal{F}^{\mathfrak{s}}, \mathfrak{b} \rangle \neq 0, \qquad \forall \mathfrak{s} \in \mathfrak{S}$

Then, there is no solution to the Hull-Strominger system (ω, h_0, h_1) with $[||\Omega||_{\omega}\omega^2] = \mathfrak{b}$.

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interaction

Corollary

Let (X, Ω) Calabi-Yau and V_0 , V_1 holomorphic vector bundles. Suppose b balanced class such that

 $\langle \mathcal{F}^{\mathfrak{s}}, \mathfrak{b} \rangle \neq 0, \qquad \forall \mathfrak{s} \in \mathfrak{S}$

Then, there is no solution to the Hull-Strominger system (ω, h_0, h_1) with $[||\Omega||_{\omega}\omega^2] = \mathfrak{b}$.

Fact:

• If X satisfies the $\partial \overline{\partial}$ -lemma, then $\mathfrak{S} = \{*\} \rightsquigarrow \{\mathcal{F}^{\mathfrak{s}}\}$ reduces to \mathcal{F}_{0} .

Raul Gonzalez Molina

Corollary

Let (X, Ω) Calabi-Yau and V_0 , V_1 holomorphic vector bundles. Suppose b balanced class such that

 $\langle \mathcal{F}^{\mathfrak{s}}, \mathfrak{b} \rangle \neq 0, \qquad \forall \mathfrak{s} \in \mathfrak{S}$

Then, there is no solution to the Hull-Strominger system (ω, h_0, h_1) with $[||\Omega||_{\omega}\omega^2] = \mathfrak{b}$.

Fact:

If X satisfies the ∂∂-lemma, then S = {*} → {F^s} reduces to F₀.
→ may have salient implications in the geometrization of Reid's fantasy // string landscape.

Raul Gonzalez Molina

Proposition (Garcia-Fernandez, GM)

Let $Q_{\mathfrak{s}}$ be the hol. Courant algebroid associated to (ω, h) , let $\mathfrak{b}_0 = [\omega_0^{n-1}]$ be a balanced class and let $\varphi = (\phi, \sigma_i, a_i, b) \in H^0(X, \text{End } Q_{\mathfrak{s}})$. Then:

$$\langle \mathcal{F}^{\mathfrak{s}}(\varphi), \mathfrak{b}_{0} \rangle = -\int_{X} (\operatorname{tr}_{g,g_{0}} R_{\nabla^{B}} + \langle \Lambda_{\omega_{0}} F_{h}, F_{h} \rangle) (e_{k}, \phi^{*_{g}} e_{k}^{0,1} - \phi e_{k}^{1,0}) \frac{\omega_{0}^{n}}{n} - \int_{X} \langle \operatorname{tr}_{g,g_{0}} R_{\nabla^{B}}^{0,2}, b \rangle_{g} \frac{\omega_{0}^{n}}{n}$$
$$+ \int_{X} \left(\operatorname{tr}_{\operatorname{End}} V_{i}(\sigma[\Lambda_{\omega_{0}} F_{h}, \cdot]) + \langle \sigma F_{h}(e_{j}^{0}, e_{k}), F_{h}(\mathcal{J}e_{j}^{0}, e_{k}) \rangle \right) \frac{\omega_{0}^{n}}{n}$$
$$+ 2 \int_{X} \langle \alpha(e_{k}), \Lambda_{\omega_{0}} \nabla_{e_{k}}^{h,-} F_{h} + F_{h}(\mathcal{J}e_{j}^{0}, g^{-1}d^{c}\omega(e_{j}^{0}, e_{k}, \cdot)) \rangle \frac{\omega_{0}^{n}}{n}$$

for any choices of g-orthonormal basis e_1, \ldots, e_{2n} and g_0 -orthonormal basis e_1^0, \ldots, e_{2n}^0 .

Futaki invariants and harmonic metrics for the Hull-Strominger system

Example: 1-dim. family of complex nilmanifolds with Lie $\cong \mathfrak{h}_2, \mathfrak{h}_4, \mathfrak{h}_5$

▲□▶▲圖▶▲圖▶▲圖▶ = つんの

ICMAT-CSIC Generalized Geometry in Interact

Example: 1-dim. family of complex nilmanifolds with Lie $\cong \mathfrak{h}_2, \mathfrak{h}_4, \mathfrak{h}_5$

$$(\mathfrak{g}_b, \mathfrak{f}_b)_{b \in \mathbb{R}} \leftrightarrow d\omega_1 = d\omega_2 = 0, d\omega_3 = \omega_{12} + \omega_{1\overline{1}} + b\omega_{1\overline{2}} - \omega_{2\overline{2}}, \qquad \langle \omega_i \rangle = \mathfrak{g}_{1,0}^*$$

CMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina

Example: 1-dim. family of complex nilmanifolds with Lie $\cong \mathfrak{h}_2, \mathfrak{h}_4, \mathfrak{h}_5$

$$(\mathfrak{g}_b, \mathfrak{f}_b)_{b \in \mathbb{R}} \leftrightarrow d\omega_1 = d\omega_2 = 0, d\omega_3 = \omega_{12} + \omega_{1\overline{1}} + b\omega_{1\overline{2}} - \omega_{2\overline{2}}, \qquad \langle \omega_i \rangle = \mathfrak{g}_{1,0}^*$$
$$= \Gamma \backslash G_b, \Gamma \subset G_b \text{ discrete, cocompact. } X_{b,\Gamma} \xrightarrow{p} \mathbb{C}^2 / \mathbb{Z}[i]^2 = T^4,$$

(Fernandez-Ivanov-Ugarte-Villacampa)

メロトメ聞 とくほとくほとう ほうのべの

Raul Gonzalez Molina

 $X_{b,\Gamma}$

ICMAT-CSIC Generalized Geometry in Interaction

Example: 1-dim. family of complex nilmanifolds with Lie $\cong \mathfrak{h}_2, \mathfrak{h}_4, \mathfrak{h}_5$

$$(\mathfrak{g}_b,\mathfrak{f}_b)_{b\in\mathbb{R}}\leftrightarrow d\omega_1=d\omega_2=0, d\omega_3=\omega_{12}+\omega_{1\overline{1}}+b\omega_{1\overline{2}}-\omega_{2\overline{2}}, \qquad \langle\omega_i\rangle=\mathfrak{g}_{1,0}^*$$

 $X_{b,\Gamma} = \Gamma \setminus G_b, \Gamma \subset G_b$ discrete, cocompact. $X_{b,\Gamma} \xrightarrow{p} \mathbb{C}^2 / \mathbb{Z}[i]^2 = T^4$, (Fernandez-Ivanov-Ugarte-Villacampa)

SU(3)-structure $\omega_0 = \frac{i}{2}(\omega_{1\overline{1}} + \omega_{2\overline{2}} + \omega_{3\overline{3}}), \Omega = \omega_{123} \rightsquigarrow \mathfrak{b}_0 = [||\Omega||_{\omega_0}\omega_0^2]$

- イロト イ理ト イヨト イヨト ヨー のへの

Raul Gonzalez Molina

Example: 1-dim. family of complex nilmanifolds with Lie $\cong \mathfrak{h}_2, \mathfrak{h}_4, \mathfrak{h}_5$

$$(\mathfrak{g}_b,\mathfrak{f}_b)_{b\in\mathbb{R}}\leftrightarrow d\omega_1=d\omega_2=0, d\omega_3=\omega_{12}+\omega_{1\overline{1}}+b\omega_{1\overline{2}}-\omega_{2\overline{2}}, \qquad \langle\omega_i\rangle=\mathfrak{g}_{1,0}^*$$

 $X_{b,\Gamma} = \Gamma \setminus G_b, \Gamma \subset G_b$ discrete, cocompact. $X_{b,\Gamma} \xrightarrow{p} \mathbb{C}^2 / \mathbb{Z}[i]^2 = T^4$, (Fernandez-Ivanov-Ugarte-Villacampa)

SU(3)-structure $\omega_0 = \frac{i}{2}(\omega_{1\overline{1}} + \omega_{2\overline{2}} + \omega_{3\overline{3}}), \Omega = \omega_{123} \rightsquigarrow \mathfrak{b}_0 = [||\Omega||_{\omega_0}\omega_0^2]$

$$V_0 = p^* \mathcal{L}, \ \mathcal{L} \to T^4, \qquad V_1 = \mathrm{rk} \ 0$$

Raul Gonzalez Molin

ICMAI-CSIC Generalized Geometry in Interac

Example: 1-dim. family of complex nilmanifolds with Lie $\cong \mathfrak{h}_2, \mathfrak{h}_4, \mathfrak{h}_5$

$$(\mathfrak{g}_b,\mathfrak{f}_b)_{b\in\mathbb{R}}\leftrightarrow d\omega_1=d\omega_2=0, d\omega_3=\omega_{12}+\omega_{1\overline{1}}+b\omega_{1\overline{2}}-\omega_{2\overline{2}}, \qquad \langle\omega_i\rangle=\mathfrak{g}_{1,0}^*$$

 $X_{b,\Gamma} = \Gamma \setminus G_b, \Gamma \subset G_b$ discrete, cocompact. $X_{b,\Gamma} \xrightarrow{p} \mathbb{C}^2 / \mathbb{Z}[i]^2 = T^4$, (Fernandez-Ivanov-Ugarte-Villacampa)

 $SU(3)\text{-structure }\omega_0 = \frac{i}{2}(\omega_{1\overline{1}} + \omega_{2\overline{2}} + \omega_{3\overline{3}}), \, \Omega = \omega_{123} \rightsquigarrow \mathfrak{b}_0 = [||\Omega||_{\omega_0}\omega_0^2]$

$$V_0 = p^* \mathcal{L}, \ \mathcal{L} \to T^4, \qquad V_1 = \mathrm{rk} \ 0$$

 $F_{h_0} = \pi(m(\omega_{1\overline{1}} - \omega_{2\overline{2}}) + n(\omega_{1\overline{2}} - \omega_{2\overline{1}}) + ip(\omega_{1\overline{2}} + \omega_{2\overline{1}}))), \qquad (m, n, p) \in \mathbb{Z}^3 \setminus \{0, 0, 0\}$

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interactior

Example: 1-dim. family of complex nilmanifolds with Lie $\cong \mathfrak{h}_2, \mathfrak{h}_4, \mathfrak{h}_5$

$$(\mathfrak{g}_b,\mathfrak{f}_b)_{b\in\mathbb{R}}\leftrightarrow d\omega_1=d\omega_2=0, d\omega_3=\omega_{12}+\omega_{1\overline{1}}+b\omega_{1\overline{2}}-\omega_{2\overline{2}}, \qquad \langle\omega_i\rangle=\mathfrak{g}_{1,0}^*$$

 $X_{b,\Gamma} = \Gamma \setminus G_b, \Gamma \subset G_b$ discrete, cocompact. $X_{b,\Gamma} \xrightarrow{p} \mathbb{C}^2 / \mathbb{Z}[i]^2 = T^4$, (Fernandez-Ivanov-Ugarte-Villacampa)

 $SU(3)\text{-structure }\omega_0 = \frac{i}{2}(\omega_{1\overline{1}} + \omega_{2\overline{2}} + \omega_{3\overline{3}}), \, \Omega = \omega_{123} \rightsquigarrow \mathfrak{b}_0 = [||\Omega||_{\omega_0}\omega_0^2]$

$$V_0 = p^* \mathcal{L}, \ \mathcal{L} \to T^4, \qquad V_1 = \mathrm{rk} \ 0$$

$$F_{h_0} = \pi(m(\omega_{1\overline{1}} - \omega_{2\overline{2}}) + n(\omega_{1\overline{2}} - \omega_{2\overline{1}}) + ip(\omega_{1\overline{2}} + \omega_{2\overline{1}}))), \qquad (m, n, p) \in \mathbb{Z}^3 \setminus \{0, 0, 0\}$$

$$dd^{c}\omega_{0} - lpha \operatorname{tr} F_{h_{0}} \wedge F_{h_{0}} = 0, \ \alpha = (3+b^{2})/\pi(m^{2}+n^{2}+p^{2}) > 0 \rightsquigarrow Q_{0}$$

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interaction

Proposition (Garcia-Fernandez, GM)

Let $(X_{b,\Gamma}, \Omega)$ as above. Let \mathfrak{S} be the classyfing space of hol. Courant algebroids extending \mathcal{L} . Then,

• dim $\mathfrak{S} = 4$

• For any
$$\mathfrak{s} \in \mathfrak{S}, \mathfrak{s} \neq 0$$
:

 $\langle \mathcal{F}^{\mathfrak{s}}, \mathfrak{b}_0 \rangle \neq 0,$

In particular, any $Q_{\mathfrak{s}}$ with $\mathfrak{s} \neq 0$ does not support a solution to the Hull-Strominger system (ω, h) such that $[||\Omega||_{\omega}\omega^2] = \mathfrak{b}_0$.

Raul Gonzalez Molina

Proposition (Garcia-Fernandez, GM)

Let $(X_{b,\Gamma}, \Omega)$ as above. Let \mathfrak{S} be the classyfing space of hol. Courant algebroids extending \mathcal{L} . Then,

• dim $\mathfrak{S} = 4$

• For any
$$\mathfrak{s} \in \mathfrak{S}, \mathfrak{s} \neq 0$$
:

 $\langle \mathcal{F}^{\mathfrak{s}}, \mathfrak{b}_0 \rangle \neq 0,$

In particular, any $Q_{\mathfrak{s}}$ with $\mathfrak{s} \neq 0$ does not support a solution to the Hull-Strominger system (ω, h) such that $[||\Omega||_{\omega}\omega^2] = \mathfrak{b}_0$.

Remark: For any hol. Courant algebroid Q_5 , we either find an obstruction or find a solution to Hull-Strominger with respect to \mathfrak{b}_0 .

 $(\boldsymbol{Q}, D^{\mathbf{G}})$ from a solution to Hull-Strominger.

CMAT-CSIC Generalized Geometry in Interaction

 (Q, D^G) from a solution to Hull-Strominger.

Recall: **G** is not positive unless rk $V_0 = 0 \rightsquigarrow$ no slope stability.

CMAT-CSIC Generalized Geometry in Interaction

 (Q, D^G) from a solution to Hull-Strominger.

Recall: **G** is not positive unless $rk V_0 = 0 \rightsquigarrow$ no slope stability.

In fact, we have:

Proposition (Garcia-Fernandez, GM)

Let (X, Ω) be Kähler-Calabi-Yau (ω, h_0, h_1) be a solution to the Hull-Strominger system. Suppose that $\mathfrak{b} = [||\Omega||_{\omega}\omega^2] = [\omega_0]^2$ for ω_0 Kähler, and that the associated hol. Courant algebroid Q is \mathfrak{b} -polystable. Then ω is Kähler and h_0 , h_1 are flat.

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interaction

 (Q, D^G) from a solution to Hull-Strominger.

Recall: **G** is not positive unless rk $V_0 = 0 \rightsquigarrow$ no slope stability.

In fact, we have:

Proposition (Garcia-Fernandez, GM)

Let (X, Ω) be Kähler-Calabi-Yau (ω, h_0, h_1) be a solution to the Hull-Strominger system. Suppose that $\mathfrak{b} = [||\Omega||_{\omega}\omega^2] = [\omega_0]^2$ for ω_0 Kähler, and that the associated hol. Courant algebroid Q is \mathfrak{b} -polystable. Then ω is Kähler and h_0 , h_1 are flat.

\rightsquigarrow need a different GIT stability notion.

 (Q, D^G) from a solution to Hull-Strominger.

ICMAT-CSIC Generalized Geometry in Interaction

 (Q, D^G) from a solution to Hull-Strominger. Given **H** *positive* hermitian metric on *Q*, have two decompositions:

CMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina

 (Q, D^G) from a solution to Hull-Strominger. Given **H** *positive* hermitian metric on *Q*, have two decompositions:

• $D^{\mathbf{G}} = \nabla^{\mathbf{H}} + \Psi$ (**H**-hermitian + **H**-skew hermitian)

CMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina

 (Q, D^G) from a solution to Hull-Strominger. Given **H** *positive* hermitian metric on *Q*, have two decompositions:

- $D^{\mathbf{G}} = \nabla^{\mathbf{H}} + \Psi$ (**H**-hermitian + **H**-skew hermitian)
- $D^{\mathbf{G}} = D^{\mathbf{H}} + \Phi$ (Chern + Higgs field)

CMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina

 (Q, D^G) from a solution to Hull-Strominger. Given **H** *positive* hermitian metric on Q, have two decompositions:

- $D^{\mathbf{G}} = \nabla^{\mathbf{H}} + \Psi$ (**H**-hermitian + **H**-skew hermitian)
- $D^{\mathbf{G}} = D^{\mathbf{H}} + \Phi$ (Chern + Higgs field)

 \rightsquigarrow associated Hitchin equations

Raul Gonzalez Molina

ICMAT-CSIC Generalized Geometry in Interaction

 (Q, D^G) from a solution to Hull-Strominger. Given **H** *positive* hermitian metric on *Q*, have two decompositions:

- $D^{\mathbf{G}} = \nabla^{\mathbf{H}} + \Psi$ (**H**-hermitian + **H**-skew hermitian)
- $D^{\mathbf{G}} = D^{\mathbf{H}} + \Phi$ (Chern + Higgs field)

~> associated Hitchin equations

~~ supplement with harmonic condition

 $\nabla^{\mathbf{H}}(\mathcal{J}\Psi)\wedge\omega^{n-1}=0$

Raul Gonzalez Molina

 (Q, D^G) from a solution to Hull-Strominger. Given **H** *positive* hermitian metric on Q, have two decompositions:

- $D^{\mathbf{G}} = \nabla^{\mathbf{H}} + \Psi$ (**H**-hermitian + **H**-skew hermitian)
- $D^{\mathbf{G}} = D^{\mathbf{H}} + \Phi$ (Chern + Higgs field)

→ associated Hitchin equations

~~ supplement with harmonic condition

 $\nabla^{\mathbf{H}}(\mathcal{J}\Psi) \wedge \omega^{n-1} = 0$

Question: Does (Q, D^G) carry a harmonic metric? \rightsquigarrow fulfilled in Examples. If so, can propose a sensible notion of GIT stability:

Raul Gonzalez Molina

Definition

Let $(Q, \langle \cdot, \cdot \rangle, D)$ be an orthogonal holomorphic vector bundle and suppose

$$D^{0,1} = \overline{\partial}_Q$$
, $F_D \wedge \omega^{n-1} = 0$

Q is $[\omega^{n-1}]$ -semistable if for any isotropic coherent subsheaf \mathcal{F} that is *D*-preserved

 $\mu_{[\omega^{n-1}]}(\mathcal{F}) \leq 0$

Raul Gonzalez Molina

CMAT CSIC Commeliand Commetencia Internetion

Definition

Let $(Q, \langle \cdot, \cdot \rangle, D)$ be an orthogonal holomorphic vector bundle and suppose

$$D^{0,1} = \overline{\partial}_Q$$
, $F_D \wedge \omega^{n-1} = 0$

Q is $[\omega^{n-1}]$ -semistable if for any isotropic coherent subsheaf \mathcal{F} that is *D*-preserved

$$\mu_{[\omega^{n-1}]}(\mathcal{F}) \le 0$$

Proposition (Garcia-Fernandez, GM)

Let (X, Ω) Calabi-Yau, V_0 , V_1 hol. vector bundles, (ω, h_1, h_2) be a solution to the Hull-Strominger system and suppose (Q, D^G) carries a harmonic metric. Then Q is $[||\Omega||_{\omega}\omega^{n-1}]$ -polystable.

Raul Gonzalez Molina

CMAT-CSIC Generalized Geometry in Interaction

Future directions

- Evaluate \mathcal{F}_0 on algebraic Calabi-Yau threefolds
- Answer:

Question: Does (Q, D^G) carry a harmonic metric?

- Hitchin-Kobayashi correspondence? At least: produce GIT obstructions.
- Interaction between moduli structures.

Raul Gonzalez Molina

Thank you for your attention!

メロトメ母 トメヨト ヨー うえの

CMAT-CSIC Generalized Geometry in Interaction

Raul Gonzalez Molina