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Motivation: Categories of generalized boundary conditions

A generalized complex (GC) structure is a complex structure on
TM ⊕ T ∗M:

I : TM ⊕ T ∗M → TM ⊕ T ∗M, I2 = −1.

The integrability condition is with respect to the Courant bracket.
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Motivation: Categories of generalized boundary conditions

Examples:

Symplectic structure ω : TM → T ∗M

Iω =

(
0 −ω−1

ω 0

)
.

Complex structure I : TM → TM

II =

(
I 0
0 −I ∗

)
.
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Motivation: Categories of generalized boundary conditions

We would like to define categories of boundary conditions for GC
structures.
Examples:

Symplectic structure ω: A-model

Cω = Fuk(ω).

Objects: Lagrangians with local systems, Coisotropic branes
(Kapustin-Orlov).

Complex structure I : B-model

CI = Coh(I ),

Objects: Complex submanifolds with holomorphic vector bundles.

What about other GC structures?
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Motivation: Categories of generalized boundary conditions

The deformations of the A and B-models match the deformations of the
corresponding GC structures. For example, the deformations of the
B-model are given by

H0(∧2T )⊕ H1(T )⊕ H2(O).

H1(T ): infinitesimal deformations of complex structure.

H0(∧2T )⊕ H2(O) take you out of complex into generalized
complex.

We’re interested mostly in H0(∧2T ) which corresponds to the
‘non-commutative’ deformations of Coh(I ).
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Holomorphic Poisson deformation

Holomorphic Poisson structure: σ ∈ H0(∧2TM), such that

∂σ = 0, [σ, σ] = 0.

σ = − 1
4 (P + iQ)

Deformation of II :

I~σ =

(
I ~Q
0 −I ∗

)
.

The category of branes C~σ should give a ‘non-commutative’ deformation
of Coh(I ). This would give a geometric approach to non-commutative
geometry. Let’s ignore the difficulties and see what we can do.
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Geometric quantization of Kähler manifolds: B-model

1 Compact symplectic manifold: (M, ω),

2 Prequantization: (L,∇) such that

∇2 = −2πiω.

3 Complex polarization: complex structure I such that

ωI + I ∗ω = 0, I ∗ω > 0.

4 Quantization is given by the global holomorphic sections:

H0(M, L) = ker∇0,1.
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Homogeneous coordinate ring: B-model

The complex structure I plays an auxiliary role: it tells us which
subset of sections of L to select, but it is not encoded in the
quantization. In good cases, the quantization is invariant under
deformations of I .

To encode the complex structure, we must quantize all integral
multiples: ω, 2ω, 3ω, ... to obtain the homogeneous coordinate ring

A =
⊕
n≥0

H0(M, L⊗n).

Kodaira embedding theorem: This algebra encodes (M, I ).

If we deform the polarization I to a ‘generalized complex
polarization’ I~σ by turning on a Poisson structure, the product on
A will deform to give a quantization of σ.
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Homogeneous coordinate ring: B-model

Recast A purely in terms of the category Coh(I ):

A =
⊕
n≥0

H0(M, L⊗n) =
⊕
n≥0

HomI (O,Φn(O)),

where

O ∈ Coh(I ) is the trivial line bundle,

Φ is an autoequivalence of Coh(I ):

Φ : E 7→ E ⊗ L.

When we turn on σ, the category Coh(I ) should deform to C~σ. We must
also deform O and Φ along with it.

Francis Bischoff Exeter College, University of Oxford

Brane quantization of toric Poisson varieties



Branes on Poisson varieties

The objects of the conjectural category C~σ were defined by Gualtieri.

Definition

A brane on Iσ is a unitary line bundle (L,∇) such that

FI + I ∗F + FQF = 0,

where ∇2 = −2πiF .

There is always a trivial solution given by (O,∇ = d).
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Branes on Poisson varieties

The deformation of Φ was also given in the work of Gualtieri.

Theorem (Gualtieri)

(L,∇) a holomorphic prequantization of ω. If L admits a Poisson module
structure, then the functor Φ = L⊗ (−) deforms to an autoequivalence
T of Cσ.

Starting with the brane (O, d), we get a sequence of branes T k(O).
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Branes on Poisson varieties

Constructing the equivalence T :

Let h be the metric on L, and let ∇ be the Chern connection.

Let Q̂ be the Poisson module, which is a lift of Q to tot(L).

Let W = Q̂(d log h), a Poisson vector field on M, with flow ϕt .

Then T (B) = (L,∇)⊗ ϕ∗1B, where

∇ =

∫ 1

0

ϕ∗t (∇)dt.
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Non-commutative homogeneous coordinate ring

Having obtained deformations O and T , we get the deformed
homogeneous coordinate ring:

A~ =
⊕
n≥0

HomC~σ
(O,T n(O)).

Major Problem: We don’t know how to compute the homomorphisms
in C~σ. We’re stuck!
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In this project we develop a new approach to the category of boundary
conditions which uses the A-model of an auxiliary symplectic manifold.
We implement this for the deformation quantization of toric Poisson
varieties.
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Geometric quantization: A-model approach

Encode Kähler geometry (M, I , ω, (L,∇)) as a pair of A-branes in
(T ∗M, ω0 = Im(Ω0)).

1 Lagrangian brane: L = (0M ,O, d) (zero section)

2 Space-filling brane: B = (U, ∇̂) = (π∗L, π∗∇− 2πiRe(α0)), where
dα0 = Ω0, the canonical holomorphic symplectic form.

F = i
2π
∇̂2.

F + iω0 = Ω0 + π∗ω, the twisted cotangent bundle.

Definition. (U, ∇̂) is a space-filling brane in (T ∗M, ω0) if F + iω0 is a
holomorphic symplectic form.

Intersection recovers Kähler structure: (U, ∇̂)|L = (L,∇).
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Geometric quantization: A-model approach
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Geometric quantization: A-model approach

The quantization is defined as the space of homomorphisms in the
A-model between the branes (Gukov-Witten):

Homω0 (L,B).

Proposal to compute this based on holomorphic geometric
quantization:

Holomorphic prequantization of B: (U,D) = (π∗L, π∗∇− 2πiα0).

Holomorphic polarization F of F + iω0: Fibres of projection

π : T ∗M → M.

Homω0 (L,B) defined to be holomorphic D-flat sections along leaves
intersecting L:

Homω0 (L,B) ∼= H0(M, L) = HomI (O, L).
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Homogeneous coordinate ring: A-model approach

The cotangent bundle (T ∗M, ω0) is a symplectic groupoid:

⊕ : T ∗M ×M T ∗M → T ∗M.

This endows the A-model with a tensor product.

The zero section is a monoidal unit: L ∗ L = L.

The rescalings kω are encoded by the tensor powers B∗k .

Homogeneous coordinate ring given by

A =
⊕
n≥0

Homω0 (L,B∗n),

with product induced by tensor product of branes.
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Generalized complex branes: A-model approach

Given GC branes B1 and B2 for a GC structure I, how can we compute
the space of homomorphisms HomI(B1,B2)?

A GC structure I has an underlying real Poisson structure Q:

I =

(
∗ Q
∗ ∗

)
.

Q may be integrated to a (local) symplectic groupoid (G, ω0) ⇒ M.
Can think of this as the space of Hamiltonian paths in M up to
Hamiltonian homotopies.

We make use of the A-model of this symplectic manifold. It has a
tensor structure which comes from the multiplication on G. The unit
object is the identity bisection L.
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Generalized complex branes: A-model approach

The map (t, s) : (G, ω0)→ (M ×M, I× IT ) is generalized
holomorphic (Crainic).

Given GC branes Bi , Bj on I, we obtain an A-brane in (G, ω0):

Bi,j = (t, s)−1(Bi × B∗j ).

We then define the space of homomorphisms using the A-model:

HomI(Bj ,Bi ) := Homω0 (L,Bi,j),

The composition of morphisms is induced by the tensor product.
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Implementation: Toric Poisson structures

Toric Kähler structure: (S1)n ⊂ (C×)n yρ (M, ω, I ).

Lift to holomorphic Hamiltonian action (C×)n y (T ∗M,Ω0) with
moment map

J0 : T ∗M → Cn.

Equivariant prequantization (L,∇), ρ̂ : (C×)n → Aut(L).

R-matrix C ∈ ∧2Rn. This defines a holomorphic Poisson structure
on M:

σC = ρ∗(C ),

and Poisson module structure on L:

σ̂C = ρ̂∗(C ).
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Implementation: Toric Poisson structures

The Poisson structure σC deforms I into GC structure:

I~σC
=

(
I ~Q
0 −I ∗

)
.

And the Poisson module structure σ̂C allows us to deform Φ = L⊗ (−)
into an autoequivalence T of C~σC

.
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Implementation: Toric Poisson structures

Symplectic groupoid of σC is a deformation of T ∗M:

The underlying symplectic manifold is given by T ∗M,

Structure maps deformed: target and source

t(z) = e
1
2 CJ0(z)π(z), s(z) = e−

1
2 CJ0(z)π(z),

multiplication

m(x , y) = e−
1
2 CJ0(y)x + e

1
2 CJ0(x)y .

As a result, the A-model is unchanged, but its tensor structure is
deformed.
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Implementation: Toric Poisson structures
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Implementation: Toric Poisson structures

In order to construct the deformed homogeneous coordinate ring:

We construct the family of branes Bn = T n(O) = (L⊗n,∇⊗n), where

∇⊗n =
1

n

∫ n

0

(ϕ∗t∇⊗n)dt.

We pullback to get branes on T ∗M:

Bn,0 = (t, s)−1(Bn ×O).

Theorem (B, Gualtieri) Bn,0 ∼= B∗n.

The algebra:

AC =
⊕
n≥0

Homω0 (L,B∗n).

As a vector space, this does not change, but the product is deformed
via the deformed tensor product.
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Twisted graded monoid

What geometric structures underly the collection of branes Bn,0?

1 The brane Bn,0 equips T ∗M with the structure of a prequantized
holomorphic symplectic manifold: (Zn,Ωn,Un,Dn). In fact, these
spaces are holomorphic symplectic Morita equivalences of σC .

2 The tensor product structure for the branes translates to the
composition of holomorphic symplectic Morita equivalences:

m : Zk ×M Zr → Zk+r .

3 These lift to the prequantizations:

Θ : (Uk ,Dk) � (Ur ,Dr )|Zk×MZr → (Uk+r ,Dk+r ).

This is given by

Θ(x,y)(f , g) = e iπC(J(x),J(y))(e−
1
2 CJ(y)f )⊗ (e

1
2 CJ(x)g).
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Twisted graded monoid

We summarise this by saying that

tn∈Z(Zn,Ωn,Un,Dn)

is a holomorphic symplectic groupoid equipped with multiplicative
prequantization.
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Quantization

The quantization Homω0 (L,B1,0) is computed as before, via holomorphic
geometric quantization.

We use the same holomorphic prequantization of B1,0: (U1,D1).

The polarization via fibres is no longer good, since it does not
respect the multiplication.

Instead we take as holomorphic polarization F the fibres of
holomorphic moment map

J : (Z1,Ω1)→ Cn,

which is constructed from J0 and the moment map for ω.

Quantization

Homω0 (L,B0,1) =
⊕

BS leaves intersecting L

H0(U1)D1|F .
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Quantization

The polarization F behaves differently:

1 Not all fibres admit holomorphic flat sections:

BS Leaves ⇐⇒ Lattice points Zn ⊂ Cn.

2 Not all fibres intersect L:

J−1(z) ∩ L 6= ∅ ⇐⇒ z ∈ ∆

Therefore, we obtain the weight space decomposition of H0(M, L):

Homω0 (L,B0,1) =
⊕

z∈∆∩Zn

Cz .
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Quantization
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Non-commutative homogeneous coordinate ring

Theorem (B, Gualtieri)

The algebra AC and the homogeneous coordinate ring of the toric variety
have canonically isomorphic underlying graded vector spaces

AC
∼=
⊕
n≥0

H0(M, L⊗n).

Under this identification the product of two homogeneous sections f and
g , with respective TC-weights w1,w2 ∈ t∗C, is given by

f ∗ g = e
i

4πC(w1,w2)f ⊗ g ,

resulting in the commutation relations

f ∗ g = e
i

2πC(w1,w2)g ∗ f .
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