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Motivation: Categories of generalized boundary conditions

A generalized complex (GC) structure is a complex structure on
T™M & T*M:

I:TM@® T*M - TM & T*M, I? = —1.

The integrability condition is with respect to the Courant bracket.
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Motivation: Categories of generalized boundary conditions

Examples:

m Symplectic structure w: TM — T*M
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Motivation: Categories of generalized boundary conditions

We would like to define categories of boundary conditions for GC
structures.
Examples:

m Symplectic structure w: A-model
C. = Fuk(w).

Objects: Lagrangians with local systems, Coisotropic branes
(Kapustin-Orlov).

m Complex structure / : B-model
C/ = COh(/),

Objects: Complex submanifolds with holomorphic vector bundles.
What about other GC structures?
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Motivation: Categories of generalized boundary conditions

The deformations of the A and B-models match the deformations of the
corresponding GC structures. For example, the deformations of the
B-model are given by

HY(A2T) @ HY(T) @ H*(0).

m HY(T): infinitesimal deformations of complex structure.

m HO(A2T) @ H?(O) take you out of complex into generalized
complex.
We're interested mostly in H*(A2T) which corresponds to the
‘non-commutative’ deformations of Coh(/).
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Holomorphic Poisson deformation

m Holomorphic Poisson structure: o € H°(A2Ty), such that

Jo =0, [0,0] = 0.

no- () "9).

The category of branes Cj, should give a ‘non-commutative’ deformation
of Coh(I). This would give a geometric approach to non-commutative
geometry. Let's ignore the difficulties and see what we can do.

mo=—-1P+iQ)
m Deformation of I;:
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Geometric quantization of Kahler manifolds: B-model

Compact symplectic manifold: (M, w),
Prequantization: (L, V) such that

V? = —2miw.
Complex polarization: complex structure / such that
wl+1"w =0, I"w > 0.
Quantization is given by the global holomorphic sections:

H°(M, L) = ker V°1.
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Homogeneous coordinate ring: B-model

m The complex structure / plays an auxiliary role: it tells us which
subset of sections of L to select, but it is not encoded in the
quantization. In good cases, the quantization is invariant under
deformations of /.
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Homogeneous coordinate ring: B-model

m The complex structure / plays an auxiliary role: it tells us which
subset of sections of L to select, but it is not encoded in the
quantization. In good cases, the quantization is invariant under
deformations of /.

m To encode the complex structure, we must quantize all integral
multiples: w, 2w, 3w, ... to obtain the homogeneous coordinate ring

A= H (M, L5).

n>0
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Homogeneous coordinate ring: B-model

m The complex structure / plays an auxiliary role: it tells us which
subset of sections of L to select, but it is not encoded in the
quantization. In good cases, the quantization is invariant under
deformations of /.

m To encode the complex structure, we must quantize all integral
multiples: w, 2w, 3w, ... to obtain the homogeneous coordinate ring

A= H (M, L5).

n>0

m Kodaira embedding theorem: This algebra encodes (M, /).
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Homogeneous coordinate ring: B-model

Francis Bischoff

The complex structure I plays an auxiliary role: it tells us which
subset of sections of L to select, but it is not encoded in the
quantization. In good cases, the quantization is invariant under
deformations of /.

To encode the complex structure, we must quantize all integral
multiples: w, 2w, 3w, ... to obtain the homogeneous coordinate ring

A= H (M, L5).
n>0
Kodaira embedding theorem: This algebra encodes (M, /).

If we deform the polarization / to a ‘generalized complex
polarization’ I, by turning on a Poisson structure, the product on
A will deform to give a quantization of o.
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Homogeneous coordinate ring: B-model

Recast A purely in terms of the category Coh(/):

A= H (M, L5") = €] Hom, (0, v"(0)),

n>0 n>0

where
m O € Coh(!) is the trivial line bundle,

m & is an autoequivalence of Coh(/):
P: &= ERL

When we turn on o, the category Coh(!) should deform to Cp,. We must
also deform O and @ along with it.
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Branes on Poisson varieties

The objects of the conjectural category Cp, were defined by Gualtieri.

Definition

A brane on I, is a unitary line bundle (L, V) such that
FI + I"F + FQF = 0,

where V2 = —27iF.

There is always a trivial solution given by (O, V = d).
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Branes on Poisson varieties

The deformation of ¢ was also given in the work of Gualtieri.

Theorem (Gualtieri)

(L, V) a holomorphic prequantization of w. If L admits a Poisson module
structure, then the functor ® = L ® (—) deforms to an autoequivalence
T of C,.

Starting with the brane (O, d), we get a sequence of branes T(0).

Francis Bischoff Exeter College, University of Oxford

Brane quantization of toric Poisson varieties



Branes on Poisson varieties

Constructing the equivalence T:
m Let h be the metric on L, and let V be the Chern connection.
m Let Q be the Poisson module, which is a lift of @ to tot(L).
m Let W= @(dlog h), a Poisson vector field on M, with flow ;.
m Then T(B) = (L, V) ® 3} B, where

1
V=/ vi (V)dt.
0
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Non-commutative homogeneous coordinate ring

Having obtained deformations O and T, we get the deformed
homogeneous coordinate ring:

An = @) Home, (0, T"(0)).

n>0

Major Problem: We don't know how to compute the homomorphisms
in Crs. We're stuck!
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In this project we develop a new approach to the category of boundary
conditions which uses the A-model of an auxiliary symplectic manifold.
We implement this for the deformation quantization of toric Poisson

varieties.
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Abstract
In this paper we propose a i li of the relationship between
compact Kéihler manifolds and complex projective algebraic varieties. Beginning with a
prequantized Kéhler structure, we use a holomorphic Poisson tensor to deform the underly-
ing complex structure into a generalized complex structure, such that the prequantum line
bundle and its tensor powers deform to a sequence of generalized complex branes. Taking
homomorphisms between the resulting branes, we obtain a noncommutative deformation of
the homogeneous coordinate ring. As a proof of concept, this is implemented for all compact
toric Kéhler manifolds equipped with an R-matrix holomorphic Poisson structure, resulting
in what could be called noncommutative toric varieties.

To define the homomorphisms between generalized complex branes, we propose a method
which involves lifting each pair of generalized complex branes to a single coisotropic A-brane
in the real symplectic groupoid of the underlying Poisson structure, and compute morphisms
in the A-model between the Lagrangian identity bisection and the lifted coisotropic brane.
This is done with the use of a multiplicative holomorphic Lagrangian polarization of the
groupoid.
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Geometric quantization: A-model approach

Encode Kahler geometry (M, /,w, (L, V)) as a pair of A-branes in
(T*M,OJO = /m(Qo))
Lagrangian brane: £ = (0p, O, d) (zero section)
Space-filling brane: B = (U, V) = (x*L,7*V — 27iRe()), where
dag = g, the canonical holomorphic symplectic form.
mF= §©2
m F+ iwy = Qo + 7w, the twisted cotangent bundle.

Definition. (U, V) is a space-filling brane in (T*M,w) if F + iwp is a
holomorphic symplectic form.

Intersection recovers Kihler structure: (U, V)| = (L, V).
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Geometric quantization: A-model approach
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Geometric quantization: A-model approach

The quantization is defined as the space of homomorphisms in the
A-model between the branes (Gukov-Witten):

Hom,, (L, B).

Proposal to compute this based on holomorphic geometric
quantization:

m Holomorphic prequantization of B: (U, D) = (7*L, 7*V — 27micy).

m Holomorphic polarization F of F + iwg: Fibres of projection
. T*M — M.

m Hom,, (L, B) defined to be holomorphic D-flat sections along leaves
intersecting L:

Hom,,, (£, B) = H*(M, L) = Hom,(O, L).
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Homogeneous coordinate ring: A-model approach

The cotangent bundle (T*M,wyg) is a symplectic groupoid:
&:T"Mxy T"M — T*M.
This endows the A-model with a tensor product.
m The zero section is a monoidal unit: £ £ = L.

m The rescalings kw are encoded by the tensor powers B*<.

Homogeneous coordinate ring given by

A= P Hom,(L,B*"),

n>0

with product induced by tensor product of branes.
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Generalized complex branes: A-model approach

Given GC branes By and B, for a GC structure I, how can we compute
the space of homomorphisms Homy(Bi, B)?

m A GC structure I has an underlying real Poisson structure Q:

H—(: fj).
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Generalized complex branes: A-model approach

Given GC branes By and B, for a GC structure I, how can we compute
the space of homomorphisms Homy(Bi, B)?

m A GC structure I has an underlying real Poisson structure Q:

H—(: fj).

m Q may be integrated to a (local) symplectic groupoid (G,wp) = M.
Can think of this as the space of Hamiltonian paths in M up to
Hamiltonian homotopies.
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Generalized complex branes: A-model approach

Given GC branes By and B, for a GC structure I, how can we compute
the space of homomorphisms Homy(Bi, B)?

m A GC structure I has an underlying real Poisson structure Q:

I= (* Q> .
x %

m Q may be integrated to a (local) symplectic groupoid (G,wp) = M.
Can think of this as the space of Hamiltonian paths in M up to
Hamiltonian homotopies.

m We make use of the A-model of this symplectic manifold. It has a

tensor structure which comes from the multiplication on G. The unit
object is the identity bisection L.

Francis Bischoff Exeter College, University of Oxford

Brane quantization of toric Poisson varieties



Generalized complex branes: A-model approach

m The map (t,s): (G,wo) = (M x M, T x 1) is generalized
holomorphic (Crainic).
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Generalized complex branes: A-model approach

m The map (t,s): (G,wo) = (M x M, T x 1) is generalized
holomorphic (Crainic).

m Given GC branes B;, B; on I, we obtain an A-brane in (G,wp):

B,‘J = (t,S)il(B; X Bf).

Francis Bischoff Exeter College, University of Oxford

Brane quantization of toric Poisson varieties



Generalized complex branes: A-model approach

m The map (t,s): (G,wo) = (M x M, T x 1) is generalized
holomorphic (Crainic).
m Given GC branes B;, B; on I, we obtain an A-brane in (G,wp):

B,‘J = (t,S)il(B; X Bf).
m We then define the space of homomorphisms using the A-model:

Homy(B;, Bj) := Hom.,,(L, B; j),
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Generalized complex branes: A-model approach

m The map (t,s): (G,wo) = (M x M, T x 1) is generalized
holomorphic (Crainic).

m Given GC branes B;, B; on I, we obtain an A-brane in (G,wp):
Bij= (t,s)*l(B; X Bf).
m We then define the space of homomorphisms using the A-model:
Homy(B;, Bj) := Hom.,,(L, B; j),

m The composition of morphisms is induced by the tensor product.
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Implementation: Toric Poisson structures

m Toric Kahler structure: (S')" C (C*)" ~, (M, w, ).
m Lift to holomorphic Hamiltonian action (C*)" ~ (T*M,Qq) with
moment map
Jo: T"M — C".
m Equivariant prequantization (L, V), p: (C*)" — Aut(L).
m R-matrix C € A2R". This defines a holomorphic Poisson structure

on M:
oc = P*(C)a
and Poisson module structure on L:
&c = p(C).
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Implementation: Toric Poisson structures

The Poisson structure o¢ deforms | into GC structure:

I hQ
Hhac = (0 /*) .

And the Poisson module structure ¢ allows us to deform ® = L @ (—)
into an autoequivalence T of Cp..
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Implementation: Toric Poisson structures

Symplectic groupoid of o¢ is a deformation of T*M:
m The underlying symplectic manifold is given by T*M,

m Structure maps deformed: target and source
t(z) = e%CJo(z)ﬂ—(ZL s(z) = e_%cjo(z)ﬂ(z)’
multiplication
m(x,y) = e 1Ch(y 4 e%CJo(x)y.

As a result, the A-model is unchanged, but its tensor structure is
deformed.
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Implementation: Toric Poisson structures

NS
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Implementation: Toric Poisson structures

In order to construct the deformed homogeneous coordinate ring:
m We construct the family of branes B, = T"(0O) = (L®", V®n), where

R N
ven - / (017" dt.
nJjo

m We pullback to get branes on T*M:
Bno = (t,s) (B, x O).

m Theorem (B, Gualtieri) B, = B*".

m The algebra:
Ac = @ Hom,, (L, B").

n>0

As a vector space, this does not change, but the product is deformed
via the deformed tensor product.
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Twisted graded monoid

What geometric structures underly the collection of branes B, o7

The brane B, ¢ equips T*M with the structure of a prequantized
holomorphic symplectic manifold: (Z,,Q,, U,, D). In fact, these
spaces are holomorphic symplectic Morita equivalences of o¢.

The tensor product structure for the branes translates to the
composition of holomorphic symplectic Morita equivalences:

m: Zx Xpm Zr — Ziyr
These lift to the prequantizations:
O : (Uk, D) X (U;, D) zex sz, = (Uktry Dicyr)-
This is given by

Oy (f.8) = eiﬂc(J(x).,J(y))(e—%CJ(y) f)® (e%CJ(x)g).
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Twisted graded monoid

We summarise this by saying that
unEZ(Zn» Qn; Una Dn)

is a holomorphic symplectic groupoid equipped with multiplicative
prequantization.
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Quantization

The quantization Hom,,, (L, B1 ) is computed as before, via holomorphic
geometric quantization.

m We use the same holomorphic prequantization of By o: (U1, D1).

m The polarization via fibres is no longer good, since it does not
respect the multiplication.

m Instead we take as holomorphic polarization F the fibres of
holomorphic moment map

J: (Zl,Ql) — (Cn,

which is constructed from Jy and the moment map for w.

m Quantization

Hom,,, (£, Bo1) = b HO(Uy)Prl=,

BS leaves intersecting £
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Quantization

The polarization F behaves differently:
Not all fibres admit holomorphic flat sections:

BS Leaves <= Lattice points Z" c C".
Not all fibres intersect L:
JH)NLAD <= zeA
Therefore, we obtain the weight space decomposition of HO(M, L):

Hom., (L, Bo1) = € Cz.

zeEANZ"
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Non-commutative homogeneous coordinate ring

Theorem (B, Gualtieri)

The algebra A¢ and the homogeneous coordinate ring of the toric variety
have canonically isomorphic underlying graded vector spaces

Ac = P HO(M, L5
n>0
Under this identification the product of two homogeneous sections f and
g, with respective Tc-weights wi, wy € {7, is given by
fxg= er Cww) ¢ R g,
resulting in the commutation relations

fxg= eﬁc(wl’WZ)g * f.
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