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Subject of this talk

Interaction between

Superconformal algebras

Super current algebras

Quadratic Lie algebras

Courant algebroids
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The Virasoro algebra

Punctured disc:
◦
D1 =SpecC[t±1]

Lie algebra of vector fields:

Vect(
◦
D1) = DerC(C[t±1]) = C[t±1]

d

dt
Nice basis of vector fields:

Ln := −tn+1 d

dt
, for n ∈ Z

Lie bracket: [Lm, Ln] = (m − n)Lm+n

Virasoro algebra: the central extension

0→ CC −→ Vir −→ Vect(
◦
D)→ 0,

i.e., Vir = Vect(
◦
D)⊕ CC as a vector space, with commutators

[Lm, Ln] = (m − n)Lm+n + δm+n,0(m3 −m)
C

12
,

[C,−] = 0.

Define Vc(Vir) = U(Vir)/(C− c1) (localize the universal enveloping
algebra at central charge c ∈ C).



4/36

Affinization of quadratic Lie algebras

Finite-dimensional quadratic Lie C-algebra: (g, 〈−,−〉)

Loop algebra: Lg = Map(
◦
D1, g) = g[t±1] (with

◦
D1 = SpecC[t±1])

Affinization or current algebra: central Lie-algebra extension

0→ CK −→ ĝ −→ Lg→ 0,

i.e., ĝ = Lg⊕ CK as a vector space, with commutators (for a, b ∈ g):

[atm, btn] = [a, b]tm+n + mδm+n,0〈a, b〉K,
[K, atm] = 0.

Define • Vk(g) = U(ĝ)/(k − K) for ‘level’ k ∈ C,
• Ω=(Casimir operator of (g, 〈−,−〉) ∈ U(g) (UEA of g),
• 2h∨ dim g = Tr(ad(Ω): g→ g) (‘dual Coxeter number’).

Theorem (1968)

If k + h∨ 6= 0, then ∃ a canonical embedding Vc(Vir) ⊂ Vk(g) of central
charge c = k dim g

k+h∨ .
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Affinization and the Sugawara construction
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Superconformal algebras (Fattori–Kac, 2002)

Fix N odd variables θ1, . . . , θN .

Punctured superdisc:
◦
D1|N = SpecC[t±1, θ1, . . . , θN ] (super Spec)

Define the supercontact 1-form on
◦
D1|N :

α := dt+
∑

θidθi ∈Ω1(
◦
D1|N)

and Lie superalgebra of supercontact vector fields

K (1 |N) := {v | ∃ function fv s.t. Lvα = fvα} ⊂ Vect
( ◦
D1|N

)
.

For N ≤ 3, K (1 |N) admits one non-trivial central extension
K(1 |N) = K (1 |N)⊕ CC (as a Lie conformal algebra).

For N = 4, there are two non-trivial central extensions (for the
derived Lie algebra K (1 |N)′ ⊂ K (1 |N)), i.e., two central charges.

For N ≥ 5, there are no non-trivial central extensions.
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N = 1: The Neveu–Schwarz superconformal algebra

Neveu–Schwarz superconformal algebra NS = K(1 |1):
Generated by Lm, Gn, C (m ∈ Z, n ∈ 1

2 + Z), with commutation relations

[Lm, Ln] = (m − n)Lm+n + δm+n,0(m3 −m)
C

12
,

[Lm, Gn] =
(m

2
− n
)
Gm+n, [C,−] = 0,

[Gm, Gn] = 2Lm+n + δm+n,0

(
m2 − 1

4

)
C

3
.

Finite-dimensional quadratic Lie superalgebra: (g, 〈−,−〉)
N = 1 super loop algebra: L1|1g = Map(

◦
D1|1, g) = g[t±1, θ]

Superaffinization or supercurrent algebra: ĝsuper = L1|1g⊕ CK as a
vector space, with commutators (for a, b ∈ g):

[atm, btn] = [a, b]tm+n + mδm+n,0〈a, b〉K, [K,−] = 0,

[atm, btnθ] = [a, b]tm+nθ, [atmθ, btnθ] = δm+n,−1〈b, a〉K.



6/36

Neveu–Schwarz and superaffinization of Lie algebras
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The Kac–Todorov construction

Define Vc(NS) = U(NS)/(C− c1) (localize universal enveloping algebra at
central charge c ∈ C)

Theorem (1985)

If k + h∨ 6= 0, then ∃ a canonical embedding Vc(NS) ⊂ Vk+h∨(gsuper ) of

central charge c = k dim g
k+h∨ + dim g

2 .

Algebraic problem: obtain an N=2 SUSY version, i.e., an
embedding of the N=2 superconformal algebra

Vc(K(1 |2)) ⊂ Vk(gsuper ),

where now Vc(K(1 |2)) = U(K(1 |2))/(C− c1).
The most natural framework to construct any of these embedding is the
theory of vertex algebras.

Geometric problem: apply this embedding in Borisov’s
vertex-algebra approach to (0,2) mirror symmetry.
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Vertex algebras: quantization on the punctured disc

Vertex algebras quantize operator-valued distributions on the punctured
disc using the following principles:

View C[z±1] as the space of test functions. This is a topological
algebra, for the linear topology with a neighbourhood basis of
0 ∈ C[z±] given by the subspaces z−NC[z ] ⊂ C[z±1] (N ∈ Z).

Interpret quantum fields as operator-valued ‘distributions’ on
◦
D1,

i.e., continuous linear maps into a topological algebra U of operators:

a : C[z±] −→ U .

Find a suitable set F of continuous distributions that are ‘local to
each other’, so they can be ‘multiplied’.

We write distributions C[z±]→ U as U-valued formal Laurent series

a(z) =
∑
n∈Z

a(n)z
−n−1 ∈ U [[z±1]]

(a(n)=‘Fourier modes’) via the pairing

C[z±1]⊗ U [[z±1]]→ U , ϕ⊗ a 7→ Res
z=0

(ϕ(z)a(z)) =
1

2πi

∮
ϕ(z)a(z)dz .
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Vertex algebras: locality

Suppose U is a Lie algebra. Two U-valued formal distributions

a(z) =
∑
n∈Z

a(n)z
−n−1, b(w) =

∑
n∈Z

b(n)w
−n−1 ∈ U [[z±1]],

are mutually local if ∃p(z ,w)∈U [[z ,w ]][z−1,w−1, (z − w)−1] such that

[a(z),b(w)] = ι|z|>|w |p(z ,w)− ι|w |>|z|p(z ,w) ∈ U [[z±1,w±1]].

*: The right-hand side measures the failure of the diagram to commute.

Then [a(z), b(w)] can be multiplied by C((z)) and C((w)).
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Vertex algebras: Operator Product Expansion

Two U-valued formal distributions

a(z) =
∑
m∈Z

a(m)z
−m−1 ∈ U [[z±1]], b(w) =

∑
n∈Z

b(n)w
−n−1 ∈ U [[w±1]],

are local to each other iff ∃ sequence {c j(w)}Nj=1 ⊂ U [[w±1]] such that

[a(z), b(w)]
def
=
∑

m,n∈Z
[a(m), b(n)]z−m−1w−n−1 =

N∑
j=0

1

j!
∂jwδ(z − w) c j(w).

In this case, one usually writes an OPE

a(z)b(w) ∼
N∑
j=0

c j(w)

(z − w)j+1

and defines the λ-bracket

[aλb] =
N∑
j=0

λj

j!
c j ∈

(
U [[w±1]]

)
[λ]

Reference: V. G. Kac: Vertex algebras for beginners (2nd ed., 1998).
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Vertex algebras: Virasoro and affinization

Return to the examples in the Sugawara construction:

Vir = DerC(C[t±1])⊕ CC, ĝ = g[t±1]⊕ CK.

The Virasoro vector L(z) =
∑
n∈Z

Lnz
−n−2 ∈ Vir[[z±1]] is continuous as

a linear map C[z±1]→ Vir, local with respect to itself, and has OPE

[LλL] = (∂ + 2λ)L + λ3 C

12
.
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The ‘currents’ a(z) =
∑
n∈Z

(atn)z−n−1 ∈ ĝ[[z±1]] (for a ∈ g) are

continous as linear maps C[z±1]→ ĝ, local to each other and have
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SUSY Lie conformal algebras

A vertex algebra can be seen as a quantized version of a Poisson
algebra:

it has a bracket, called ‘Λ-bracket’, describing the OPEs,
it has a multiplication, called ‘normal ordered product’.

Both operations should satisfy some version of the Leibzniz rule.

Define graded associative algebras (with variables S , χ odd and T , λ even)

H =
C〈S ,T 〉

(S2 = T )
, L =

C〈χ, λ〉
(χ2 = −λ)

.

Notation: ∇ = (T ,S), Λ = (λ, χ) and another copy Γ = (γ, η) of Λ.

The most basic piece of a SUSY vertex algebra is the Λ-bracket:

Definition (Heluani–Kac 2007)

A (NK = 1) SUSY Lie conformal algebra is given by

an H-module R,

a parity-reversing Λ-bracket [·Λ·] : R⊗R −→ L⊗R,

axioms (a, b, c ∈ R):

[aΛb] = (−1)|a||b|[b−Λ−∇a],

[aΛ[bΓc]] = (−1)|a|+1[[aΛb]Λ+Γc] + (−1)(|a|+1)(|b|+1)[bΓ[aΛc]],

[SaΛb] = χ[aΛb], [aΛSb] = −(−1)|a| (S + χ) [aΛb].
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SUSY vertex algebras

Definition (Heluani–Kac 2007; cf. Barron 2000)

A (NK = 1) SUSY vertex algebra is given by

a (SUSY) Lie conformal algebra (V , [·Λ·]),

a normally ordered product V × V −→ V , (a, b) 7−→ :ab :,

a vacuum vector |0〉 ∈ V that is a right unit for the normally ordered
product,

axioms (a, b, c ∈ V ):

:ab :− (−1)|a||b|:ba : =

∫ 0

−∇
dΛ[aΛb],

: (:ab :)c :− :a(:bc :) : = :

(∫ ∇
0

dΛ a

)
[bΛc] : + (−1)|a||b|:

(∫ ∇
0

dΛ b

)
[aΛc] :,

[aΛ:bc :] = : [aΛb]c : + (−1)(|a|+1)|b|:b[aΛc] : +

∫ Λ

0
dΓ[[aΛb]Γc].
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Remarks

Just as a Lie algebra g freely generates the universal enveloping
algebra U(g), a Lie conformal algebra R freely generates a universal
enveloping SUSY vertex algebra V(R), with a universal property with
respect to morphisms into SUSY vertex algebras.

R V

V(R)

∀

∃!

A SUSY vertex algebra has a canonical state-field correspondence

Y : V → End(V )[[z±1, θ]], a 7→ a(z , θ) =
∑
n∈Z

z−n−1a(n|1) + z−n−1θa(n|0).

The Fourier modes a(n|1), a(n|0) generate a (non-SUSY) vertex
algebra, whose λ-bracket is related to the SUSY Λ-bracket via

[aΛb] =
∑
n∈N

λn

n!
a(n|0)(b) +

∑
n∈N

χλn

n!
a(n|1)(b) = [Saλb] + χ[aλb].
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Example 1: The N=1 superconformal vertex algebra is freely
generated by an odd superfield H and an (even) central charge C, i.e.,

R = H⊗ CH⊕ CC,
with non-zero Λ-bracket

[HΛH] = (2T + χS + 3λ) H +
χλ2

3
C.

Expanding in components the corresponding superfield

H(z , θ) = G(z) + 2θ L(z),

and the field components in Fourier modes

L(z) =
∑
n∈Z

Lnz
−2−n, G(z) =

∑
n∈ 1

2
+Z

Gnz
− 3

2
−n ∈ K(1 |1)[[z±1]],

one recovers the usual Virasoro and Neveu–Schwarz commutation
relations

[Lm, Ln] = (m − n)Lm+n + δm+n,0(m3 −m)
C

12
,

[Lm, Gn] =
(m

2
− n
)
Gm+n,

[Gm, Gn] = 2Lm+n + δm+n,0

(
m2 − 1

4

)
C

3
.
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Example 2: The chiral de Rham complex Ωch
M

(Malikov, Schechtman, Vaintrob 1999)

The CDR is a sheaf of vertex algebras over a manifold M that to each
open subset U ⊂ M attaches the vertex algebra Ωch

M (U) generated by

f ∈ C∞(U), α ∈ Ω1(U), {LX , ιX | X ∈ Vect(U)},

subject to the λ-commutators (Song; Linshaw–Mathai 2015)

[LX λf ] = λ(Xf ), [LX λιY ] = λι[X ,Y ], [LX λLY ] = λL[X ,Y ],

[LX λα] = λ(LieX α), [ιX λα] = λ(iXα), [ιX λιY ] = 0.

and appropriate relations involving normal ordered products (for simplicity,
we forget about the SUSY structure).
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Example 3: The N=2 superconformal vertex algebra VC(K(1 |2)) is
freely generated by an odd superfield H , an even superfield J and an
(even) central charge C, i.e.,

R = H⊗ (CH⊕ CJ)⊕ CC,
with non-zero Λ-brackets [HΛH] = (2T + χS + 3λ) H + χλ2

3 C (as above),

[JΛJ] = −
(
H +

λχ

3
C

)
, [HΛJ] = (2T + 2λ+ χS) J.

Expanding in components the corresponding superfields

J(z , θ)=−i
(
J(z)+θ

(
G−(z)−G+(z)

))
, H(z , θ)=

(
G+(z)+G−(z)

)
+2θL(z),

and the field components in Fourier modes

J(z) =
∑
n∈Z

Jnz
−1−n, G±(z) =

∑
n∈ 1

2
+Z

G±n z
− 3

2
−n,

one obtains from the above Λ-brackets the commutation relations

[Jm, Jn]=
m

3
δm,−nc , [Jm, G

±
n ]=±G±m+n, [G±m, Ln]=

(
m − n

2

)
G±m+n,

[Lm, Jn]=−nJm+n, [G+
m, G

−
n ]=Lm+n+

m − n

2
Jm+n+

C

6

(
m2 − 1

4

)
δm,−n.
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G+(z)+G−(z)

)
+2θL(z),

and the field components in Fourier modes

J(z) =
∑
n∈Z

Jnz
−1−n, G±(z) =

∑
n∈ 1

2
+Z

G±n z
− 3

2
−n,

one obtains from the above Λ-brackets the commutation relations

[Jm, Jn]=
m

3
δm,−nc , [Jm, G

±
n ]=±G±m+n, [G±m, Ln]=

(
m − n

2

)
G±m+n,

[Lm, Jn]=−nJm+n, [G+
m, G

−
n ]=Lm+n+

m − n

2
Jm+n+

C

6

(
m2 − 1

4

)
δm,−n.
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Example 3: The N=2 superconformal vertex algebra VC(K(1 |2)) is
freely generated by an odd superfield H, an even superfield J and an (even)
central charge C, i.e.,

R = H⊗ (CH⊕ CJ)⊕ CC,

with non-zero Λ-brackets [HΛH] = (2T + χS + 3λ) H + χλ2

3 C (as above),

[JΛJ] = −
(
H +

λχ

3
C

)
, [HΛJ] = (2T + 2λ+ χS) J.

Example 4: Let (g, 〈−,−〉) be a finite-dimensional quadratic Lie algebra,
and Πg the same vector superspace with reversed parity.
The superaffine vertex algebra V(gsuper ) is freely generated by the
SUSY Lie conformal algebra

Cur g = H⊗ Πg⊕ CK,
with Λ-bracket

[ΠaΛΠb] = Π[a, b] + χ〈a, b〉K (a, b ∈ g).

Question: How can we embed the N = 2 superconformal vertex algebra?

Vc(K(1 |2)) ⊂ Vk(gsuper ).
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Question: How can we embed the N = 2 superconformal vertex algebra?

Vc(K(1 |2)) ↪−→ Vk(gsuper ).

is substantial work on embeddings

Vc(K(1 |2)) ↪−→ H0(M,Ωch
M ),

on the space of sections of

Ωch
M = chiral de Rham complex on a manifold M.

These constructions do not work ‘over a point’.
Our approach follows the accepted idea that Ωch

M should be viewed as
the Courant-version of the superaffine vertex algebra Vk(gsuper ).
Therefore we will impose conditions on the Lie algebra g inspired by
the geometry of Courant algebroids.
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Main results
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Geometric conditions: the Killing spinor equations

We apply Garcia-Fernandez’s theory of generalized connections (inspired
by SUGRA) to a (real) finite-dimensional quadratic Lie algebra

g, 〈−,−〉 : g⊗ g −→ R,

viewed as a Courant algebroid over a point.
Fix the following data:

a generalized metric V = V+ ⊕ V−,

a ‘divergence’ ε ∈ V+ (viewed as 〈ε, ·〉 ∈ V ∗+),

an irreducible representations S(V+) of Clifford algebra Cl(V+).

Choose a basis {ai} of V+ with dual basis {ai} ⊂ V+ w.r.t. 〈−,−〉.
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Definition (Garcia-Fernandez 2019, but restricted to base mnfld=point)

A non-vanishing spinor η ∈ S(V+) satisfies the Killing spinor equations if

D+
−η :=

1

4

∑
i ,j

〈[π−, ai ], aj〉ajai · η = 0 (gravitino equation),

/D
+
η :=

1

12

∑
i ,j ,k

〈[ak , ai ], aj〉akajai · η −
1

2
ε · η = 0 (dilatino equation).
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Fix a quadratic Lie superalgebra (g, 〈−,−〉) and the following data:

a generalized metric V = V+ ⊕ V−,

a ‘divergence’ ε ∈ V+,

an irreducible representations S(V+) of Clifford algebra Cl(V+).

Proposition (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

A solution (V+, ε, η) of the Killing spinor equations on (g, 〈−,−〉) with
dimV+ = 2n even and η pure is equivalent to an isotropic decomposition

V+ ⊗ C = `⊕ `
(where ` = V 1,0

+ and ` = V 0,1
+ ), such that

[`, `] ⊂ `, [`, `] ⊂ ` (F-term equation),

1

2

n∑
i=1

[εi , ε
i ] = ε` − ε` (D-term equation),

for basis {εi} ⊂ `, {εi} ⊂ ` such that 〈εi , εj〉 = δij .
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Main results

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Fix a generalized metric g = V+ ⊕ V− on (g, 〈−,−〉) with dimV+ = 2n
and an isotropic decomposition V+ ⊗ C = `⊕ `. Suppose that

[`, `] ⊂ `, [`, `] ⊂ `,
n∑

i=1

[εi , ε
i ] ∈ `⊕ `,

and furthermore,

w :=
n∑

i=1

(
[εi , ε

i ]` − [εi , ε
i ]`
)
∈ [`, `]⊥ ∩ [`, `]⊥. (?)

Then there is an embedding Vc(K(1 |2)) ↪−→ Vk(gCsuper ) with central
charge c = 3n., where J, H ∈ Vc(K(1 |2)) map into

J0 =
i

k
:e jej :, H′ =

1

k

(
:ej
(
Se j
)

: + :e j (Sej) :
)

+
1

k
T (Πw)

+
1

k2

(
:ej

(
:ek [e j , ek ] :

)
: + :e j

(
:ek [ej , e

k ] :
)

:

−:ej

(
:ek [e j , ek ] :

)
:− :e j

(
:ek [ej , ek ] :

)
:
)
,

where ei := Πεi ∈ Π` and e i := Πεi ∈ Π`.
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Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Fix a generalized metric g = V+ ⊕ V− on (g, 〈−,−〉) with dimV+ = 2n
and an isotropic decomposition V+ ⊗ C = `⊕ `. Suppose that

[`, `] ⊂ `, [`, `] ⊂ `,
n∑

i=1

[εi , ε
i ] ∈ `⊕ `,

and furthermore,

w :=
n∑

i=1

(
[εi , ε

i ]` − [εi , ε
i ]`
)
∈ [`, `]⊥ ∩ [`, `]⊥. (?)

Then there is an embedding Vc(K(1 |2)) ↪−→ Vk(gCsuper ) with central
charge c = 3n.

Remarks:

1 When V+ = g, we recover a classical construction by Getzler 1995 for

Manin triples gC = `⊕ `, who required precisely the condition (?).

2 The condition (?) is satisfied if w is ‘holomorphic’, i.e., [w , `] ⊂ `.
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Main results

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

A solution (V+ ⊗ C = `⊕ `, ε) of the Killing spinor equations on
(g, 〈−,−〉) such that dimV+ = 2n is even and ε ∈ V+ is holomorphic
(i.e., [ε, `] ⊂ `), induces an embedding

Vc(K(1 |2)) ↪−→ Vk(gCsuper )

with central charge c = 3
(
n + 4

k 〈ε, ε〉
)
., where J, H∈Vc(K(1 |2)) map into

Jg =
i

k
:e jej :− 2

k
S
(
iΠ(ε` − ε`)

)
,

Hg =
1

k

(
:ej(Se

j) : + :e j(Sej) :
)

+
1

k2

(
:ej

(
:ek [e j , ek ] :

)
: + :e j

(
:ek [ej , e

k ] :
)

:

−:ej

(
:ek [e j , ek ] :

)
:− :e j

(
:ek [ej , ek ] :

)
:
)
.
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Geometric applications
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The chiral de Rham complex

We will follow Heluani’s superfield approach, based on Bressler 2007.

Theorem (Heluani 2009)

To each Courant algebroid E , one can attach functorially a sheaf of N = 1
SUSY vertex algebras UE on M, which coincides with the chiral de Rham
complex Ωch

M when E is the standard Courant algebroid TM ⊕ T ∗M.

Sketch: Let RE be the sheaf of H-modules on M freely generated by
C∞(M)⊕ Γ(ΠE ), modulo the relation Df = 2Sf for f ∈ C∞(M). Then
the following formulas induce a structure of sheaf of N = 1 SUSY Lie
conformal algebra on RE , where f , g ∈ C∞(M) and a, b ∈ Γ(ΠE ):

[aΛb] = [a, b] + 2χ〈a, b〉 (level k=2 !),

[aΛf ] = π(a)f , [f Λg ] = 0.

Then UE is constructed as the quotient of the universal enveloping N = 1
vertex algebra of RE modulo the ideal generated by the relations

: fg : = fg , : fa : = fa, 1M = |0〉.
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Twisted Calabi–Yaus

We apply results about canonical metrics on holomorphic Courant algebroids.
Garcia-Fernandez, Rubio, Shahbazi & Tipler, arXiv 2018, Proc. London Math., (to appear)

Fix compact complex manifold X of dim. n with c1(X ) = 0 ∈ H2(X ,Z).

Recall:

Definition: An SU(n)-structure on X is a pair (Ψ, ω) such that

Ψ is a complex (n, 0)-form on X ,

ω ∈ Ω1,1(X ) positive (1, 1)-form, with metric g = ω(·, J·),

‖Ψ‖g = 1.

Lee form: θω = Jd∗ω.

Twisted Calabi–Yau eqn. (Garcia-Fernandez, Rubio, Shahbazi & Tipler):

dΨ− θω ∧Ψ = 0,

dθω = 0,

ddcω = 0.
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Proposition (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Let K be an even-dimensional compact Lie group. Then a left-invariant
solution (Ψ, ω) of the twisted Calabi-Yau equation on K induces a solution
of the Killing spinor equations (with ε = 2θω|V+) on the quadratic Lie
algebra (with H = −dcω)

(g = Γ(TK ⊕ T ∗K )K , [·, ·]H , 〈·, ·〉).
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Definition (Linshaw–Mathai 2015, after Heluani 2009)

For a closed H ∈ Ω3(M), the H-twisted chiral de Rham compex is the
(N = 1 SUSY) vertex algebra attached to the H-twisted standard Courant
algebroid:

Ωch,H
M := UE , with E = (TM ⊕ T ∗M, [·, ·]H).

Proposition (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Let K be an even-dimensional compact Lie group that carries a
left-invariant solution (Ψ, ω) of the twisted Calabi-Yau equation. Consider
the quadratic Lie algebra (with H = −dcω)

(g = Γ(TK ⊕ T ∗K )K , [·, ·]H , 〈·, ·〉).
If θ]ω is holomorphic, then the pair (Ψ, ω) induces a vertex algebra
embedding

Vc(K(1 |2)) V2(gCsuper ) H0(K ,Ωch,H
K ),

J Jg J(Ψ, ω)

H Hg H(Ψ, ω)

in the space of global sections of Ωch,H
K with H = −dcω.
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Example
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Recall:

Twisted Calabi–Yau eqn. (Garcia-Fernandez, Rubio, Shahbazi & Tipler) :

dΨ− θω ∧Ψ = 0,

dθω = 0,

ddcω = 0.

Remarks:

Pluriclosed metric (ddcω=0)=⇒positive Aeppli class [ω] ∈ H1,1
A (X ,R).

Here, H•,•A (X ) =
ker ∂∂̄

Im ∂ + Im ∂̄
.

If [θω] = 0 ∈ H1(X ,R), twisted Calabi–Yau eqn.⇐⇒Kähler Calabi-Yau.

Theorem (Garcia-Fernandez, Rubio, Shahbazi, Tipler)

Let X be a compact complex surface with c1(X ) = 0. Then X admits a solution
if and only if one of the following holds:

X ∼= K3 or T 4; in this case [θω] = 0 ∈ H1(X ,R), [dcω] = 0 ∈ H3(X ,R).

X ∼= C2\{0}/Z is a quaternionic Hopf surface; in this case [θω] 6= 0 and
[dcω] 6= 0.

If this is the case, then X admits a unique solution on each positive Aeppli class.
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Example: S3×S1 viewed as a Lie group K = SU(2)×U(1), with Lie alg.

k = 〈v1, v2, v3, v4〉,
where [v2, v3] = −v1, [v3, v1] = −v2, [v1, v2] = −v3, [v4, ·] = 0.

Fix ` ∈ R>0. For any x ∈ R>0, there is a left-invariant solution (Ψx , ωx)
of the twisted Calabi–Yau equations

dΨ = θω ∧Ψ, dθω = 0, ddcω = 0,

given in terms of the dual left-invariant differential forms v1, v2, v3, v4 by

ωx = `xv41 + `v23,

Ψx = `
2 (iv1 + xv4) ∧ (v2 + iv3),with

Lee form θx = −xv4,

complex structure Ix ∼= x ∈ R>0 given by Ixv4 = xv1, Ixv2 = v3,

H := −dcωx = `v123,

Aeppli class on Xx = (K , Ix): [ωx ] ∼= a := `x ∈ H1,1
A (Xx ,R) ∼= R.

In complex coordinates, Xx
∼= (C2\{0})/{(z1, z2) ∼ (exz1, e

xz2)} (Hopf
surface).
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v1 = 1
2

(
i 0
0 −i

)
, v1 = 1

2

(
0 −1
1 0

)
, v3 = 1

2

(
0 i
i 0

)
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ωx = `xv41 + `v23,

Ψx = `
2 (iv1 + xv4) ∧ (v2 + iv3),with

Lee form θx = −xv4,
complex structure Ix ∼= x ∈ R>0 given by Ixv4 = xv1, Ixv2 = v3,
H := −dcωx = `v123,
Aeppli class on Xx = (K , Ix): [ωx ] ∼= a := `x ∈ H1,1

A (Xx ,R) ∼= R.

In complex coordinates, Xx
∼= (C2\{0})/{(z1, z2) ∼ (exz1, e

xz2)} (Hopf
surface).
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Proof: By the above bijection between left-invariant solutions to the Tw.
CY equations on K and Killing spinors on g, we get a quadratic Lie algebra

g` = k⊕ k∗, 〈v + α, v + α〉 = α(v),

[v + α,w + β]` = [v ,w ]− β([v , ·]) + α([w , ·]) + `iw ivv
123,

with
generalized metric V x

+ =〈v2 + `v2,v3 + `v3,v1 + `v1,v4 + `x2v4〉⊂g`,

isotropic decomposition V x
+ ⊗ C = V x ;1,0

+ ⊕ V x ;0,1
+ , with

V x ;1,0
+ = 〈ε+

1 , ε
+
2 〉, V x ;0,1

+ = 〈ε̄+
1 , ε̄

+
2 〉,

where

ε+
1 =

1√
2

((√
x
a v2 +

√
a
x v

2
)
− i
(√

x
a v3 +

√
a
x v

3
))

, ε+
1 = ε+

1 ,

ε+
2 =

1√
2

((
1√
xa
v4 +

√
xav4

)
− i
(√

x
a v1 +

√
a
x v

1
))

, ε+
1 = ε+

1 .

Ix -holomorphic divergence εx+ = −xv4
+ = −1

2 ( 1
av4 + xv4) (in fact, in

the centre of g`),

With these identifications, the proof follows by direct calculation.
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Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Let K = SU(2)×U(1) and `∈R>0. Consider the family of solutions
(V x

+, ε
x
+, Ix) of the Killing spinor equations on g` = (k⊕ k∗, [−,−]`), for

x ∈R>0. Then εx+ are holomorphic, so we get vertex-algebra embeddings

Vc(K(1 |2)) V2(gC`,super ) H0
(
K ,Ωch,H`

K

)
J Jg Jx := J(V x

+, ε
x
+, Ix)

H Hg Hx := H(V x
+, ε

x
+, Ix)

with central charge c = 6 + 6/`. Furthermore, for all x ∈ R>0, the
solution (V x

+, ε
x
+, Ix) is (0, 2)-mirror to the solution (V x̂

+, ε
x̂
+,−Ix̂), where

x̂ =
1

`x
.

More precisely, there is a vertex algebra automorphism

ψ ∈ Aut
(

(Ωch,H`
K )u(1)

)
,

such that
ψ(Jx) = −Jx̂ , ψ(Hx) = Hx̂ .
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N=4 SUSY

Let K = SU(2)×U(1) and E` = TK ⊕ T ∗K , twisted by H = `v123 for
fixed `∈R>0. For each x ∈ R>0, consider the bi-invariant metric on K

g`,x = `(v1 ⊗ v1 + v2 ⊗ v2 + v3 ⊗ v3 + x2v4 ⊗ v4),

corresponding to the bi-invariant generalized metric on E` given by

V `,x
± = {v ± g`,x(v) | v ∈ k}.

Then gx = ωIx (·, Ix ·) = ωJx (·, Jx ·) = ωKx (·,Kx ·) is compatible with the
left-invariant hyperholomorphic structure (Ix , Jx ,Kx) on K given by

2Ψx = ωJx + iωKx .

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

The triples (V x
+, ε

x
+, Ix), (V x

+, ε
x
+, Jx), (V x

+, ε
x
+,Kx) are left-invariant

solutions of the Killing spinor equations on E`, with fixed Lee form
θ = −xv4. Furthermore, they determine an embedding of the N = 4
superconformal vertex algebra of central charge c = 6:

Vc(K(1 |4)) V2(gCsuper ) H0(K ,Ωch,H
K ),
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Some open problems:

Find invariant Killing spinors on other groups and homogeneous
spaces M and study corresponding embeddings

Vc (K(1 |2)) ↪−→ V2
(
gC`,super

)
↪−→ H0

(
M,Ωch,H`

M

)
.

Cortés–Krusche’s classification of left-invariant generalized
connections on 3-dimensional Lie groups may help here!
Construct examples of (0,2) mirrors.

More generally find when Killing spinors on Courant algebroids E
induce embeddings on arbitrary complex manifolds:

Vc(K(1 |2)) ↪−→ H0
(
M,UE

)
.
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Thank you!


