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Subject of this talk

Interaction between
o Superconformal algebras
o Super current algebras
o Quadratic Lie algebras
o Courant algebroids



The Virasoro algebra

Punctured disc: D! =Spec C[t*]
Lie algebra of vector fields:

Vect(D!) = Derc(C[t1]) = C[til]%

Nice basis of vector fields:

d
L,:= —t”“dt, forncZ

Lie bracket: [Lm,Ls] = (m — n)Lmtn
Virasoro algebra: the central extension
0—+CC— Vir — Vect(]]o)) — 0,
ie., Vir = Vect(}ﬁ)) @ CC as a vector space, with commutators

C

[Lm,Ln] = (M — n)Lomsn + Omen, o(m* — m)—= 12’

[c,~] =0.

Define V¢(Vir) = U(Vir)/(C — c1) (localize the universal enveloping
algebra at central charge ¢ € C).



Affinization of quadratic Lie algebras

Finite-dimensional quadratic Lie C-algebra: (g, (—, —))

Loop algebra: Lg = Map(IﬁDl,g) = g[t*!] (with D! = Spec C[t*1))

Affinization or current algebra: central Lie-algebra extension
0—-CK—g—Lg—0,

i.e., g = Lg® CK as a vector space, with commutators (for a,b € g):
[at™, bt"] = [a,b]t™ " + MEminola, b)K,
[K,at™] = 0.



Affinization and the Sugawara construction

Finite-dimensional quadratic Lie C-algebra: (g, (—, —))
Loop algebra: Lg = Map(IﬁDl,g) = g[t*!] (with D! = Spec C[t*1))
Affinization or current algebra: central Lie-algebra extension
0—+CK—g—Lg—0,
i.e., g = Lg® CK as a vector space, with commutators (for a,b € g):
[at™, bt"] = [a,b]t™ " + MEminola, b)K,
[K,at™] = 0.
Define o V¥(g) = U(g)/(k — K) for ‘level’ k € C,

e Q=(Casimir operator of (g, (—, —)) € U(g) (UEA of g),
e 2hVdimg = Tr(ad(Q): g — ¢g) (‘dual Coxeter number’).

Theorem (1968)
If k + hY # 0, then 3 a canonical embedding V¢(Vir) C VK(g) of central

__ kdimg
charge ¢ = 757+




Superconformal algebras (Fattori-Kac, 2002)
Fix N odd variables 61, ..., 6N,
Punctured superdisc: DN = SpecC[t*1, 01, ..., 6N] (super Spec)
Define the supercontact 1-form on DN
a=de+) e e QDY)
and Lie superalgebra of supercontact vector fields
K(1|N) := {v | 3 function f, s.t. Lya = f,a} C Vect (]13)1“\’) :
e For N <3, K(1| N) admits one non-trivial central extension
K(1|N) = K(1|N) & CC (as a Lie conformal algebra).

@ For N = 4, there are two non-trivial central extensions (for the
derived Lie algebra K(1|N)" € K(1|N)), i.e., two central charges.

@ For N > 5, there are no non-trivial central extensions.




N = 1: The Neveu—Schwarz superconformal algebra

Neveu—Schwarz superconformal algebra NS = K(1|1):
Generated by Ly, Gn, C (m € Z,n € 5 + Z), with commutation relations

C
[Lm,Ln] = (M — n)Lpyp + (Sm-i-n,O(m3 - m)ﬁa
m
[Lm7 Gn] = (5 - n) Gm+n7 [C? _] = 07
1\ C
[Gms G = 2Limsm + S <m2 ~ 4) 5



Neveu-Schwarz and superaffinization of Lie algebras

Neveu—Schwarz superconformal algebra NS = K(1|1):
Generated by Ly, Gn, C (m € Z,n € 5 + Z), with commutation relations

C
[Lm, Lol = (M = MLinin + Smino(m® — m)ﬁ,
m
[Lm7 Gn] = (5 - n) Gm+n7 [C? _] = 07
1\ C
[Gms G = 2Limsm + S <m2 _ 4) 5

Finite-dimensional quadratic Lie superalgebra: (g, (—, —))
N = 1 super loop algebra: L'g = I\/Iap(]ﬁ)m,g) = g[t*1, 0]

Superaffinization or supercurrent algebra: gsper = Ll‘lg @ CK as a
vector space, with commutators (for a,b € g):

[at™ bt"] = [a,b]t" " + MImino(a, b)K, [K,—] =0,
[at™ bt"0] = [a,b]t™ "0, [at™0,bt"6] = Smyn_1(b, a)K.



The Kac—Todorov construction

Define V<(NS) = U(NS)/(C — c1) (localize universal enveloping algebra at
central charge c € C)

Theorem (1985)
If k+ hY # 0, then 3 a canonical embedding V¢(NS) c VA+h" (@super) of

__ kdimg dim
central charge ¢ = 7757 + —5—.




Kac—Todorov and aims of the talk

Define V<(NS) = U(NS)/(C — c1) (localize universal enveloping algebra at
central charge c € C)

Theorem (1985)
If k+ hY # 0, then 3 a canonical embedding V¢(NS) c VA+h" (@super) of

__ kdimg dimg
central charge ¢ = 7757 + —5—.

Algebraic problem: obtain an N=2 SUSY version, i.e., an
embedding of the N=2 superconformal algebra

VE(I(112)) C V¥(gsuper),

where now V¢(K(1]2)) = U(K(1]|2))/(C — c1).
The most natural framework to construct any of these embedding is the
theory of vertex algebras.



Kac—Todorov and aims of the talk

Define V<(NS) = U(NS)/(C — c1) (localize universal enveloping algebra at
central charge c € C)

Theorem (1985)

If k+ hY # 0, then 3 a canonical embedding V¢(NS) c VA+h" (@super) of

__ kdimg dimg
central charge ¢ = 7757 + —5—.

Algebraic problem: obtain an N=2 SUSY version, i.e., an
embedding of the N=2 superconformal algebra

VE(I(112)) C V¥(gsuper),

where now V¢(K(1]2)) = U(K(1]|2))/(C — c1).
The most natural framework to construct any of these embedding is the
theory of vertex algebras.

Geometric problem: apply this embedding in Borisov’s
vertex-algebra approach to (0,2) mirror symmetry.



Vertex algebras: quantization on the punctured disc

Vertex algebras quantize operator-valued distributions on the punctured
disc using the following principles:

o View C[z*!] as the space of test functions. This is a topological
algebra, for the linear topology with a neighbourhood basis of
0 € C[z*] given by the subspaces z=VC[z] c C[z*1] (N € Z).

o Interpret quantum fields as operator-valued ‘distributions’ on D?,
i.e., continuous linear maps into a topological algebra I/ of operators:
a: C[zt] — U.

@ Find a suitable set F of continuous distributions that are ‘local to
each other’, so they can be ‘multiplied’.




Vertex algebras: quantization on the punctured disc

Vertex algebras quantize operator-valued distributions on the punctured
disc using the following principles:

o View C[z*!] as the space of test functions. This is a topological
algebra, for the linear topology with a neighbourhood basis of
0 € C[z*] given by the subspaces z=NC|[z] c C[z*1] (N € Z).

@ Interpret quantum fields as operator-valued ‘distributions’ on ]D>1
i.e., continuous linear maps into a topological algebra I/ of operators:

a: Clz] — U.

e Find a suitable set F of continuous distributions that are ‘local to

each other’, so they can be ‘multiplied’.

We write distributions C[z*] — U as U-valued formal Laurent series

a(z) = Z a(,,)z*”*l € Z/{[[zil]]

neZ
(a(,,):‘Fourier modes') via the pairing

Clz"@uUlz™'] = U, ¢ @ ar Res(p(2)a(2)) = !

. %go(z)a(z)dz.

27



Vertex algebras: locality

Suppose U is a Lie algebra. Two U/-valued formal distributions

a(z) = Z a(,,)z_”_l, b(w) = Z b(n)w_”_1 € Z/l[[zil]],

nez neZ

are mutually local if 3p(z,w) eU[z,w][z=%, wY (z — w)~] such that

[a(2),b(W)] = ¢z 1w P(2,W) = )1~z P(2,w) € UL W™




Vertex algebras: locality

Suppose U is a Lie algebra. Two U-valued formal distributions

a(z) = Z a(,,)z_”_l, b(w) = Z b(n)w_”_1 e U[z*'],

nez nez

are mutually local if 3p(z,w) €U[z,w][z~Y, w%, (z — w) 1] such that

[a(z),b(w)] = L\z\>\w\p(z7w) - L|W‘>‘Z‘p(Z,W) € ullzil7wi1]]'

: U(2) (w)
In the RHS, we use canonical maps

Uz, w][z7L,wL, (z — w)71]

Liw|>|z|

where U(w)) (w))

U((z))={U-valued formal Laurent series Z cnz" (with ¢, € U)}.
n=—N



Vertex algebras: locality

Suppose U is a Lie algebra. Two U-valued formal distributions

a(z) = Z a(,,)z_"_l, b(w) = Z b(,,)W_”_1 € Z/{[[zil]],
n€Z nEZ
are mutually local if 3p(z,w)eU[z,w][z"L, w~L (z — w)~] such that*

[a(2),6(W)] = ¢z | P(2:W) = 11z P(2,w) € U W],

In the RHS, we use canonlcaﬂy (W))
Liz|>|w|

Uz, w][z7L,w Zgi Z/{[[zil, wtl]

, z — W
\
where W))

U((z))={U-valued formal Laurent series Z cnz" (with ¢, € U)}.
n=—N
*. The right-hand side measures the failure of the diagram to commute.

Then [a(z), b(w)] can be multiplied by C((z)) and C((w)).




Vertex algebras: Operator Product Expansion

Two U-valued formal distributions
a(z) = Z a(m)zfmf1 S Z/{[[zil]], b(w) = Z b(,,)Wf”f1 S Uﬂwil]],
meZ neZ
are local to each other iff 3 sequence {c/(w) jN:1 C U[w*1] such that

[a(2), bW £ S [agmys bmlz ™ 1wt = 37 26h,6(z — w) I (w).
m,n€Z j=0

In this case, one usually writes an OPE

and defines the A-bracket
N

[axb] = Z € UIw*™) [N

:0

Reference: V. G. Kac: Vertex algebras for beginners (2nd ed., 1998).



Vertex algebras: Virasoro and affinization

Return to the examples in the Sugawara construction:

Vir = Derc(C[tT]) @ Cc, §= g[t™!] ® CK.

@ The Virasoro vector L(z) = Zan_”_z € Vir[z*!] is continuous as
ne€Z
a linear map C[z*!] — Vir, local with respect to itself, and has OPE

[LAL] = (0 +2\)L + A3%.




Vertex algebras: Virasoro and affinization

Return to the examples in the Sugawara construction:

Vir = Derc(C[tT]) @ Cc, @ = g[t™!] @ CK.

@ The Virasoro vector L(z) = Zan_”_z € Vir[z*!] is continuous as
neZ
a linear map (C[zﬂ] — Vir, local with respect to itself, and has OPE

[LAL] = (0 +2\)L + A3%.

@ The ‘currents’ a(z) = Z(at")z‘”_l € g[z] (for a € g) are
neZ
continous as linear maps C[z*!] — @, local to each other and have
OPEs

[axb] = [a,b] + A(a,b)K (a,b € g).




SUSY Lie conformal algebras

A vertex algebra can be seen as a quantized version of a Poisson
algebra:

@ it has a bracket, called ‘A-bracket’, describing the OPEs,
@ it has a multiplication, called ‘normal ordered product’.
Both operations should satisfy some version of the Leibzniz rule.

Define graded associative algebras (with variables S, x odd and T, \ even)
C(S, T) o C(x, A)

($2=T) (==X

Notation: V = (T,S), A = (), x) and another copy I' = (v, n) of A.

H =



SUSY Lie conformal algebras

Graded associative algebras (with variables S,y odd and T, A even)

C(Ss, T C{x, A
Helgo ET ety

Notation: V = (T,S), A= (X, x) and another copy ' = (y,n) of A.
The most basic piece of a SUSY vertex algebra is the A-bracket:
Definition (Heluani—Kac 2007)
A (N = 1) SUSY Lie conformal algebra is given by

@ an H-module R,

@ a parity-reversing A-bracket [A]: R®R — LR R,

@ axioms (a,b,c € R):

[anb] = (=1)1¥1PI[b_p_val],
[anlbre]] = (=1)*F [[apblagre] + (~1)1HDIPFD[pr[azc]),
[Sanb] = x[anb],  [anSb] = —(=1)1 (S + x) [anb].




SUSY vertex algebras

Definition (Heluani-Kac 2007; cf. Barron 2000)
A (N = 1) SUSY vertex algebra is given by
@ a (SUSY) Lie conformal algebra (V,[-a"]),
@ a normally ordered product V x V— V, (a,b) — :ab:,

@ a vacuum vector |0) € V that is a right unit for the normally ordered
product,

@ axioms (a, b,c € V):

0
ab: — (—1)4lI8l: p- :/ dA[anb],
_v

:(:ab:)c: —:a(ibc:): =: </Ovd/\ a) [bac]: + (—1)l2l1%; (/Ovd/\ b) [anc]:,

A
[an: be:] = :[apb]c: + (—1){2FVIBL: plap ] +/0 dr[[apb]rc].




Remarks

@ Just as a Lie algebra g freely generates the universal enveloping
algebra U(g), a Lie conformal algebra R freely generates a universal
enveloping SUSY vertex algebra V(R), with a universal property with
respect to morphisms into SUSY vertex algebras.

R—Y vy

//7
l =]

V(R)




Remarks
@ Just as a Lie algebra g freely generates the universal enveloping
algebra U(g), a Lie conformal algebra R freely generates a universal
enveloping SUSY vertex algebra V(R), with a universal property with
respect to morphisms into SUSY vertex algebras.

R—Y vy

A
l //3/!
V(R)
@ A SUSY vertex algebra has a canonical state-field correspondence

Y:V = End(V)[z*,6], a— a(z,0) = Zz—"—la(nm + 27" a0
neZ
The Fourier modes a(,1), a(n|0) generate a (non-SUSY) vertex
algebra, whose A-bracket is related to the SUSY A-bracket via

[a/\blzz)\*a (nj0)(b +Z - 2(n[1) (D) = [Saxb] + x[axb].

neN neN




Example 1: The N=1 superconformal vertex algebra is freely
generated by an odd superfield H and an (even) central charge C, i.e.,
R =H®CH® CC,
with non-zero A-bracket )
[HAH] = (2T + xS +3\)H+ %c.
Expanding in components the corresponding superfield
H(z,0) = G(z) + 20L(z),
and the field components in Fourier modes
L) =Y Lz 2" 6z2)= Y Gz " e K11)[z,

nez nel+z

one recovers the usual Virasoro and Neveu—Schwarz commutation

relations
C

[Lm,Ln] = (M= n)Lmin + 5m+n,0(m3 - m)ﬁa

m
[Lma Gn] = (E - n) Gm+n,

1
[Gm, Gl = 2Lmtn + Om+n0 <m2 - 4) 3



Example 2: The chiral de Rham complex Qﬁ',‘,
(Malikov, Schechtman, Vaintrob 1999)

The CDR is a sheaf of vertex algebras over a manifold M that to each
open subset U C M attaches the vertex algebra Q%}(U) generated by

feC®W), aecQl(U), {Lx,tx | X € Vect(U)},
subject to the A-commutators (Song; Linshaw—Mathai 2015)

[Lx\f] = A(XF), [Lxaty] = Axv)s [ExaLly] = AL v
[,CX)\a] = )\(Liex Oz), [LX)\Oé] = )\(ixa), [LX)\Ly] = 0.

and appropriate relations involving normal ordered products (for simplicity,
we forget about the SUSY structure).



Example 3: The N=2 superconformal vertex algebra V°(K(1|2)) is
freely generated by an odd superfield H, an even superfield J and an
(even) central charge C, i.e.,

R =H® (CH® CJ) @ Cc,
with non-zero A-brackets [HAH] = (2T + xS +3\)H+ X%ZC (as above),

[Iad] = — <H + /\3Xc> . [HAJ] = 2T 42X\ +xS)J.



Example 3: The N=2 superconformal vertex algebra V°(K(1|2)) is
freely generated by an odd superfield H, an even superfield J and an
(even) central charge C, i.e.,

R =H® (CHa CJ)a Cc,
with non-zero A-brackets [HAH] = (2T + xS +3\)H+ XTAZC (as above),
[JAd] = — <H + /\3—Xc . [HAJ] = (2T + 22 +xS)J

Expanding in components the corresponding superfields
J(z,0)=—i(3(2)+0 (G (2)—G"(2))), H(z,0)= (G (2)+G (z))+20L(2),
and the field components in Fourier modes

Z 3,z 1n Gi Z Gi

neZ nEs +Z
one obtains from the above A-brackets the commutation relations

m
[JmaJn]:gém,fnCa [vacni]_:tGrj‘;—i-nv [Givtvan]: ( 2>Gi+n’

1
[Lman] nJm+n; [Gm7 n] Lm+n+ 2 Jm+n+6( 2_4>5m,—n-



Example 3: The N=2 superconformal vertex algebra V°(K(1|2)) is
freely generated by an odd superfield H, an even superfield J and an (even)
central charge C, i.e.,

R =H® (CHE& CJ) & Cc,
with non-zero A-brackets [HAH] = (2T + xS + 3\)H+ XTAZC (as above),

[JAd] = — (H—|— )\3XC> , [HAJ] = Q2T +2X+xS5)J.

Example 4: Let (g, (—, —)) be a finite-dimensional quadratic Lie algebra,
and [g the same vector superspace with reversed parity.

The superaffine vertex algebra V(gsuper) is freely generated by the
SUSY Lie conformal algebra

Curg =H ®lNg @ CK,
with A-bracket

[Maalb] = N{a, b] + x(a, b)X (a,b € g).
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Question: How can we embed the N = 2 superconformal vertex algebra?
VE(IC(112)) = V¥(@super)-

Inspired by physics (Zumino 1979, Alvarez-Gaumé & Freedman 1981,
Howe & Papadopoulos 1991...), there is substantial work on embeddings
VE(K(1]2)) = HO(M, Q)

on the space of sections of

QSh = chiral de Rham complex on a manifold M.



Question: How can we embed the N = 2 superconformal vertex algebra?
VE(K(1]2)) — V¥(gsuper)-
There is substantial work on embeddings
VE(K(1]2)) — HO(M. Q).
on the space of sections of
QSE = chiral de Rham complex on a manifold M.
@ for Calabi-Yau (Malikov, Schechtman & Vaintrob 1999),

@ (related) N = 2 embeddings for Kdhler manifolds (Heluani 2009),

@ two N = 2 commuting embeddings, i.e., (2,2) SUSY, for generalized
Calabi-Yau manifolds (Heluani & Zabzine 2011),

@ other SUSY embeddings on manifolds with special holonomies (e.g.,
Ekstrand, Heluani, Killen, Zabzine 2013; Rodriguez Diaz 2018...).
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@ other SUSY embeddings on manifolds with special holonomies (e.g.,
Ekstrand, Heluani, Killen, Zabzine 2013; Rodriguez Diaz 2018...).

These constructions do not work ‘over a point’'.



Question: How can we embed the N = 2 superconformal vertex algebra?
VE(K(1]2)) < V¥(@super)-

There is substantial work on embeddings
VE(K(1]2)) — HY(M, Q43),

on the space of sections of

QSE = chiral de Rham complex on a manifold M.

@ for Calabi-Yau (Malikov, Schechtman & Vaintrob 1999),
@ (related) N = 2 embeddings for Kdhler manifolds (Heluani 2009),

@ two N = 2 commuting embeddings, i.e., (2,2) SUSY, for generalized
Calabi-Yau manifolds (Heluani & Zabzine 2011),

@ other SUSY embeddings on manifolds with special holonomies (e.g.,
Ekstrand, Heluani, Killen, Zabzine 2013; Rodriguez Diaz 2018...).

These constructions do not work ‘over a point’'.

Our approach follows the accepted idea that Q5 should be viewed as the
Courant-version of the superaffine vertex algebra Vk(gsupe,).

Therefore we will impose conditions on the Lie algebra g inspired by the
geometry of Courant algebroids.



Main results

20/36



Geometric conditions: the Killing spinor equations

We apply Garcia-Fernandez's theory of generalized connections (inspired
by SUGRA) to a (real) finite-dimensional quadratic Lie algebra

g (—-)g®g—R,
viewed as a Courant algebroid over a point.
Fix the following data:
@ a generalized metric V =V, & V_,
@ a ‘divergence’ ¢ € V. (viewed as (¢,-) € V),
@ an irreducible representations S(V.) of Clifford algebra CI(V..).
Choose a basis {a;} of V with dual basis {a'} C V; w.rt. (—, —).

I
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Geometric conditions: the Killing spinor equations

We apply the theory of generalized connections to a (real) finite
dimensional quadratic Lie superalgebra

g9, <_7_>:g®g—>R7
viewed as a Courant algebroid over a point.
Fix the following data:
@ a generalized metric V=V, & V_,
o a ‘divergence’ ¢ € V. (viewed as (g,-) € V),
@ an irreducible representations S( V) of Clifford algebra CI(V.).
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Y

Definition (Garcia-Fernandez 2019, but restricted to base mnfld=point)

A non-vanishing spinor n € S(V..) satisfies the Killing spinor equations if

1 o
DTn:= 7 Z<[7T_’ aj],@)a’aj-n =0 (gravitino equation),

i?j

1 ; ; 1
¢+77 — D) Z([ak, a,~], a’>aka’a,- o) = 56 -n =0 (dilatino equation).
ij,k
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We apply the theory of generalized connections to a (real) finite
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viewed as a Courant algebroid over a point.
Fix the following data:
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Definition (Garcia-Fernandez 2019, but restricted to base mnfld=point)

A non-vanishing spinor n € S(V..) satisfies the Killing spinor equations if

1 .
+ _ =
Dy n:= 7 E ([a—,ai],@)daj-n=0 (va_ev.),

i

1 ; ; 1
ern = o Z([ak, a,-], a’)aka’a,- o ff) = 56 -1 =0 (dilatino equation).
ik




Fix a quadratic Lie superalgebra (g, (—, —)) and the following data:
@ a generalized metric V =V, & V_,
@ a ‘divergence' € € V.,

@ an irreducible representations S(V. ) of Clifford algebra CI( V7).



Fix a quadratic Lie superalgebra (g, (—, —)) and the following data:
@ a generalized metric V =V, & V_,
@ a ‘divergence' € € V.,
@ an irreducible representations S(V. ) of Clifford algebra CI( V7).

Proposition (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

A solution (V4,e,n) of the Killing spinor equations on (g, (—, —)) with
dim V. = 2n even and 7 pure is equivalent to an isotropic decomposition

V,@C=(F
(where £ = V% and 7 = V2'1), such that

[,0)ce, [0, ct (F-term equation),
% Z[e,—, €l = €7 — €¢ (D-term equation),
i=1

for basis {€;} C ¢, {¢'} C £ such that (¢;, &) = ;.




Main results

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Fix a generalized metric g = V. ® V_ on (g, (—, —)) with dim V. =2n
and an isotropic decomposition V; ® C = £ @ ¢. Suppose that
n

[t,ace, [ace D ledletal,
i=1
and furthermore, n

W= Z ([er, €'le — [ei, ei]z) e, 0t n[e, . (%)
i=1
Then there is an embedding V<(K(12)) < V*(g,e,) with central
charge ¢ = 3n, where J,H € V¢(K(1]2)) map into

JOZéZGjejZ, H/Z%(iej (Sei);+;ef(5ej);)+%T(l'lw)

N % (:ej <:ek[ej’ ex] ;) e (:ek[ej, ] :) :
—g (:ek[ej, e ] ;) Y (:ek[ej, ex] :) :) )

where e; := lMe; € N¢ and e’ :=MNe' e M.




Main results

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Fix a generalized metric g = V. © V_ on (g, (—, —)) with dim V. = 2n
and an isotropic decomposition V; @ C = £ @ £. Suppose that
n

[, ce, [0,0cCq, D lei el etad,
i=1
and furthermore, n
W= Z ([ei €'le — [ei, €'l7) € [€, atnie, gt (%)
i=1
Then there is an embedding V<(K(1]2)) «— Vk(g(scupe,) with central
charge ¢ = 3n.

Remarks:

@ When V. = g, we recover a classical construction by Getzler 1995 for
Manin triples g© = ¢ @& ¢, who required precisely the condition (x).

@ The condition (x) is satisfied if w is ‘holomorphic’, i.e., [w, £] C £.



Main results

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

A solution (Vy ® C = £ @/, ¢) of the Killing spinor equations on
(g, (—,—)) such that dim V. = 2n is even and € € V/ is holomorphic
(i.e., [,€] C £), induces an embedding

VE(K(112)) — V¥(guper)

with central charge ¢ = 3(n+ % (e,¢)), where J,HE V¢(K(1]|2)) map into
, 2
F==e = ;5 (iN(ee — 7)) ,

H =

x| = x|~

(:6j(Sel): +:€/(Se)):) + %(:ej(:ek[ej, ex] :) o+ :ei<:ek[ej, ek :) :
—:eJ-(:ek[ej, ek :) D— :ej(:ek[ej, ex] :) :) .




Geometric applications



The chiral de Rham complex

We will follow Heluani's superfield approach, based on Bressler 2007.

Theorem (Heluani 2009)

To each Courant algebroid E, one can attach functorially a sheaf of N =1
SUSY vertex algebras £ on M, which coincides with the chiral de Rham
complex Q‘;\}ﬂl when E is the standard Courant algebroid TM & T*M.




The chiral de Rham complex

We will follow Heluani's superfield approach, based on Bressler 2007.

Theorem (Heluani 2009)

To each Courant algebroid E, one can attach functorially a sheaf of N =1
SUSY vertex algebras £ on M, which coincides with the chiral de Rham
complex Q‘;\}ﬂl when E is the standard Courant algebroid TM & T*M.

Sketch: Let RE be the sheaf of #-modules on M freely generated by
C*(M) & T'(NE), modulo the relation Df = 25f for f € C>°(M). Then
the following formulas induce a structure of sheaf of N =1 SUSY Lie
conformal algebra on RE, where f,g € C>°(M) and a, b € [(NE):

[anb] = [a, b] +2x(a, b) (level k=21),
[anf] = =(a)f, [fag] =0.

Then UFE is constructed as the quotient of the universal enveloping N = 1
vertex algebra of RE modulo the ideal generated by the relations

fg:="fg, :fa:=fa, 1y =10).



Twisted Calabi—Yaus

We apply results about canonical metrics on holomorphic Courant algebroids.
@ Garcia-Fernandez, Rubio, Shahbazi & Tipler, arXiv 2018, Proc. London Math., (to appear)

Fix compact complex manifold X of dim. n with c;(X) =0 € H2(X,Z).
Recall:
Definition: An SU(n)-structure on X is a pair (W, w) such that

e VW is a complex (n,0)-form on X,

o w € QM(X) positive (1,1)-form, with metric g = w(-, J),

° Vg =1.

Lee form: 0, = Jd*w.



Twisted Calabi—Yaus

We apply results about canonical metrics on holomorphic Courant algebroids.
@ Garcia-Fernandez, Rubio, Shahbazi & Tipler, arXiv 2018, Proc. London Math., (to appear)

Fix compact complex manifold X of dim. n with c;(X) =0 € H2(X,Z).
Recall:
Definition: An SU(n)-structure on X is a pair (W, w) such that

e VW is a complex (n,0)-form on X,

o w € QM(X) positive (1,1)-form, with metric g = w(-, J),

° Vg =1.

Lee form: 0, = Jd*w.

Twisted Calabi—Yau eqn. (Garcia-Fernandez, Rubio, Shahbazi & Tipler):
dv — 0, ANV =0,
db, =0,
dd“w = 0.




Proposition (AC, De Arriba De La Hera, Garcia-Fernandez 2020)
Let K be an even-dimensional compact Lie group. Then a left-invariant
solution (W, w) of the twisted Calabi-Yau equation on K induces a solution
of the Killing spinor equations (with € = 26,,|y, ) on the quadratic Lie
algebra (with H = —dw)

(0=T(TK® T*K), [, In, (-, ).




Definition (Linshaw—Mathai 2015, after Heluani 2009)

For a closed H € Q3(M), the H-twisted chiral de Rham compex is the
(N =1 SUSY) vertex algebra attached to the H-twisted standard Courant
algebroid:

Q' =uE, with £ = (TM& T*M, [, ]n).

Proposition (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Let K be an even-dimensional compact Lie group that carries a
left-invariant solution (W, w) of the twisted Calabi-Yau equation. Consider
the quadratic Lie algebra (with H = —d‘w)
(g=T(TK & T*K)Kv [ JHs (o))
If 6 is holomorphic, then the pair (W,w) induces a vertex algebra
embedding
VC(K(]' | 2)) — V2(g§uper) — HO(K7 Q?7H)’
J Jo > J(V,w)

H HY > H(V, w)
in the space of global sections of Q‘,f?’H with H = —d‘w.




Example
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Recall:

Twisted Calabi—Yau eqn. (Garcia-Fernandez, Rubio, Shahbazi & Tipler) :

dV — 0, ANV =0,
do, =0,
ddw = 0.
Remarks:
@ Pluriclosed metric (dd“w=0)=positive Aeppli class [w] € H}\’l(X,R).
cer 97
Here, Hy*(X) = La_.
Imo+Imod

o If [f,] = 0 € HY(X,R), twisted Calabi~Yau eqn. <=>Kihler Calabi-Yau.



Twisted Calabi—Yau eqn. (Garcia-Fernandez, Rubio, Shahbazi & Tipler) :
dV — 6, ANV =0,

dé,, = 0,
dd“w = 0.
Remarks:
@ Pluriclosed metric (dd“w=0)= positive Aeppli class [w] € Hj\’l(X,R).
.0 k )
Here, H*(X) = L@_.
Im O + Im 0

e If [0,] = 0 € HY(X,R), twisted Calabi-Yau eqn. <= Kihler Calabi-Yau.

Theorem (Garcia-Fernandez, Rubio, Shahbazi, Tipler)

Let X be a compact complex surface with ¢;(X) = 0. Then X admits a solution
if and only if one of the following holds:

@ X = K3 or T*; in this case [0,] = 0 € H}(X,R), [dw] =0 € H3(X,R).

@ X = (C2\{0}/Z is a quaternionic Hopf surface; in this case [0,,] # 0 and
[d°w] # 0.

If this is the case, then X admits a unique solution on each positive Aeppli class.




Example: $3xS?! viewed as a Lie group K = SU(2) x U(1), with Lie alg.
t=(v1,v2,v3,s),

where [V27 V3] = —Vi, [V37 Vl] = —V, [V17 V2] = —V3, [V47 ] =0.



Example: S3xS? viewed as a Lie group K = SU(2) x U(1), with Lie alg.
P = <V1, Vo, V3, V4>,
where [vo, v3] = —v1, [z, v1] = —wo, [v1,w]=—v3, [ws,:]=0.

i 0 0 -1 0 i
v1:%((l) 7i),v1:%<1 0)7V3:%(I. 6>E5u(2)7V4:16u(1).



Example: $3xS?! viewed as a Lie group K = SU(2) x U(1), with Lie alg.
t=(v1,v2,v3, va),
where [V27 V3] = —Vvi, [V37 Vl] = —V, [V17 V2] = —V3, [V47 ] =0.

Fix £ € R~g. For any x € R, there is a left-invariant solution (W, wy)
of the twisted Calabi—Yau equations

dV =0,AV,  df,=0,  ddw=0,

given in terms of the dual left-invariant differential forms v, v2, v3, v* by

wy = Ixv 4+ v,
with v, = %(iv1 +xv) A (V2 + iv3),
o Lee form 6, = —xv*,
@ complex structure I, = x € Ry given by vy = xv1, Ixyvo = v3,
o H:=—dw, = (v1%3,

@ Aeppli class on X, = (K, Iy): [wx] =2 a:={x € Hi’l(XX,]R)

1%

R.



Example: $3xS?! viewed as a Lie group K = SU(2) x U(1), with Lie alg.
t=(v1,v2,v3, va),
where [V27 V3] = —Vvi, [V37 Vl] = —V, [V17 V2] = —V3, [V47 ] =0.

Fix £ € R~g. For any x € R, there is a left-invariant solution (W, wy)
of the twisted Calabi—Yau equations

dV =0,AV,  df,=0,  ddw=0,

given in terms of the dual left-invariant differential forms v, v2, v3, v* by

wy = Ixv 4+ v,

with v, = %(iv1 +xv) A (V2 + iv3),

x
o Lee form 6, = —xv*,
@ complex structure I, = x € Ry given by vy = xv1, Ixyvo = v3,
o H:=—dw, = (v1%3,

@ Aeppli class on X, = (K, Iy): [wx] =2 a:={x € Hi’l(XX,]R) ~R.

In complex coordinates, X, = (C2\{0})/{(z1,22) ~ (€Xz1, € z)} (Hopf
surface).



Proof: By the above bijection between left-invariant solutions to the Tw.
CY equations on K and Killing spinors on g, we get a quadratic Lie algebra

g=tet, (viovta)=a(v),

[v+a,w+Ble=[v,w] = B([v, ]) + a[w,]) + éiwivvl23v
with
o generalized metric VX = (vo + £v2 v + £v3 v + Ovi vy + €xPv*) C gy,

e isotropic decomposition V¥ ® C = Vfl’o 2 Vfo’l, with

;1,0 ;0,1 —4 -
Vi = <ei~',e;>, V_); = <61",63'>,

where
G (B VB (). -
+ 1 1 4 : x a1l =+ _ +
€l :\ﬁ((ﬁV4+J)av ) —/<\/;v1+ 2y )), € =€ .
@ Iy-holomorphic divergence X = —xv{ = —1(1v; + xv*) (in fact, in

the centre of gy),

With these identifications, the proof follows by direct calculation.



Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Let K = 5U( )x U(1) and £€R~(. Consider the family of solutions
(V. e, L) of the Killing spinor equations on g, = (¢ ® £, [—, —]), for
x€Rsg. Then & are holomorphic, so we get vertex-algebra embeddings

VE(K(1]2)) > VA9 per) — HO (K, 25

Jr > J9 P Jx = J(Viv‘gi(Hlx)

H: > HY + » He :=H(VY, X, k)
with central charge ¢ = 6 + 6/¢. Furthermore, for all x € R+, the
solution (VX,€X, I) is (0,2)-mirror to the solution (V§,eX, —k), where
1
o
More precisely, there is a vertex algebra automorphism

¥ € Aut (@50 ®)),

X =

such that




N=4 SUSY
Let K = SU(2)x U(1) and E, = TK & T*K, twisted by H = (v for
fixed £€R~q. For each x € R, consider the bi-invariant metric on K
gix =tV evi+vie v+ e v xAvievt),
corresponding to the bi-invariant generalized metric on E; given by
VI = (vt g v) | vet)

Then g« = wy (-, k') = wy (-, Jx-) = wk, (-, Kx-) is compatible with the
left-invariant hyperholomorphic structure (/y, Jy, Kx) on K given by
2V, = wy, + iwk, .

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

The triples (V, €%, k), (VI €%, J), (V, €%, K) are left-invariant
solutions of the Killing spinor equations on E,, with fixed Lee form

6 = —xv*. Furthermore, they determine an embedding of the N = 4
superconformal vertex algebra of central charge ¢ = 6:

VE(K(1]4)) = V(g5 per) — HO(K, Q5"1),




Some open problems:

Find invariant Killing spinors on other groups and homogeneous
spaces M and study corresponding embeddings

VE((L12) < V2 (0 super ) > H (M, Q55"

Cortés—Krusche's classification of left-invariant generalized
connections on 3-dimensional Lie groups may help here!
Construct examples of (0,2) mirrors.

More generally find when Killing spinors on Courant algebroids E
induce embeddings on arbitrary complex manifolds:

VE(K(1]2)) — HO (M,uE) :



Thank you!
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