Embedding superconformal vertex algebras from Killing spinors and (0,2) mirror symmetry

Luis Álvarez-Cónsul

ICMAT & CSIC, Madrid

Generalized Geometry in Interaction ICMAT, Madrid, 16 June 2022

Joint with Andoni De Arriba De La Hera & Mario Garcia-Fernandez: arXiv:2012.01851 [math.DG]

Partially supported by I+D+i project CEX2019-000904-S and MTM2016-81048-P funded by MCIN/AEI/10.13039/501100011033

Subject of this talk

Interaction between

- Superconformal algebras
- Super current algebras
- Quadratic Lie algebras
- Courant algebroids

The Virasoro algebra

Punctured disc: $\mathring{\mathbb{D}}^1 = \operatorname{Spec} \mathbb{C}[t^{\pm 1}]$ Lie algebra of vector fields:

$$\operatorname{Vect}(\overset{\circ}{\mathbb{D}}^{1}) = \operatorname{Der}_{\mathbb{C}}(\mathbb{C}[t^{\pm 1}]) = \mathbb{C}[t^{\pm 1}] \frac{\mathrm{d}}{\mathrm{d}t}$$

Nice basis of vector fields:

$$L_n := -t^{n+1} \frac{\mathrm{d}}{\mathrm{d}t}, \quad \text{ for } n \in \mathbb{Z}$$

Lie bracket: $[L_m, L_n] = (m - n)L_{m+n}$

Virasoro algebra: the central extension

$$0 \to \mathbb{C} \mathbb{C} \longrightarrow \mathtt{Vir} \longrightarrow \mathsf{Vect}(\mathring{\mathbb{D}}) \to 0,$$

i.e., $\mathtt{Vir}=\mathsf{Vect}(\mathring{\mathbb{D}})\oplus\mathbb{C}\mathtt{C}$ as a vector space, with commutators

$$[L_m, L_n] = (m - n)L_{m+n} + \delta_{m+n,0}(m^3 - m)\frac{C}{12},$$

[C, -] = 0.

Define $V^{c}(Vir) = U(Vir)/(C - c1)$ (localize the universal enveloping algebra at central charge $c \in \mathbb{C}$).

Affinization of quadratic Lie algebras

Finite-dimensional quadratic Lie \mathbb{C} -algebra: $(\mathfrak{g}, \langle -, - \rangle)$

Loop algebra: L $\mathfrak{g} = \mathsf{Map}(\mathring{\mathbb{D}}^1, \mathfrak{g}) = \mathfrak{g}[t^{\pm 1}]$ (with $\mathring{\mathbb{D}}^1 = \mathsf{Spec}\,\mathbb{C}[t^{\pm 1}]$)

Affinization or current algebra: central Lie-algebra extension

$$0 \to \mathbb{C}K \longrightarrow \widehat{\mathfrak{g}} \longrightarrow L\mathfrak{g} \to 0,$$

i.e., $\widehat{\mathfrak{g}} = L\mathfrak{g} \oplus \mathbb{C}K$ as a vector space, with commutators (for $a, b \in \mathfrak{g}$): $[at^m, bt^n] = [a, b]t^{m+n} + m\delta_{m+n,0}\langle a, b \rangle K,$ $[K, at^m] = 0.$

Affinization and the Sugawara construction

Finite-dimensional quadratic Lie \mathbb{C} -algebra: $(\mathfrak{g}, \langle -, - \rangle)$

Loop algebra: L $\mathfrak{g} = \mathsf{Map}(\mathring{\mathbb{D}}^1, \mathfrak{g}) = \mathfrak{g}[t^{\pm 1}]$ (with $\mathring{\mathbb{D}}^1 = \mathsf{Spec}\,\mathbb{C}[t^{\pm 1}]$)

Affinization or current algebra: central Lie-algebra extension

$$0 \to \mathbb{C}K \longrightarrow \widehat{\mathfrak{g}} \longrightarrow L\mathfrak{g} \to 0,$$

i.e., $\widehat{\mathfrak{g}} = L\mathfrak{g} \oplus \mathbb{C}K$ as a vector space, with commutators (for $a, b \in \mathfrak{g}$): $[at^m, bt^n] = [a, b]t^{m+n} + m\delta_{m+n,0}\langle a, b \rangle K,$ $[K, at^m] = 0.$

Define • $V^k(\mathfrak{g}) = U(\widehat{\mathfrak{g}})/(k - K)$ for 'level' $k \in \mathbb{C}$, • $\Omega = (\text{Casimir operator of } (\mathfrak{g}, \langle -, -\rangle) \in U(\mathfrak{g}) \text{ (UEA of } \mathfrak{g}),$ • $2h^{\vee} \dim \mathfrak{g} = \text{Tr}(ad(\Omega) \colon \mathfrak{g} \to \mathfrak{g}) \text{ ('dual Coxeter number')}.$

Theorem (1968)

If $k + h^{\vee} \neq 0$, then \exists a canonical embedding $V^{c}(Vir) \subset V^{k}(\mathfrak{g})$ of central charge $c = \frac{k \dim \mathfrak{g}}{k + h^{\vee}}$.

Superconformal algebras (Fattori–Kac, 2002)

Fix *N* odd variables $\theta^1, \ldots, \theta^N$.

Punctured superdisc: $\mathring{\mathbb{D}}^{1|N} = \mathbb{S}pec \mathbb{C}[t^{\pm 1}, \theta^1, \dots, \theta^N]$ (super Spec)

Define the supercontact 1-form on $\mathring{\mathbb{D}}^{1|N}$:

$$\alpha := \mathrm{d}t + \sum \theta^i \mathrm{d}\theta^i \in \Omega^1(\mathring{\mathbb{D}}^{1|N})$$

and Lie superalgebra of supercontact vector fields

 $\mathcal{K}(1|N) := \{ v \mid \exists \text{ function } f_v \text{ s.t. } L_v \alpha = f_v \alpha \} \subset \text{Vect} \left(\mathring{\mathbb{D}}^{1|N} \right).$

• For $N \leq 3$, K(1|N) admits one non-trivial central extension $\mathcal{K}(1|N) = K(1|N) \oplus \mathbb{C}\mathbb{C}$ (as a Lie conformal algebra).

 For N = 4, there are two non-trivial central extensions (for the derived Lie algebra K(1|N)' ⊂ K(1|N)), i.e., two central charges.

• For $N \ge 5$, there are no non-trivial central extensions.

N = 1: The Neveu–Schwarz superconformal algebra

Neveq-Schwarz superconformal algebra $NS = \mathcal{K}(1|1)$:

Generated by L_m, G_n, C $(m \in \mathbb{Z}, n \in \frac{1}{2} + \mathbb{Z})$, with commutation relations

$$[L_m, L_n] = (m - n)L_{m+n} + \delta_{m+n,0}(m^3 - m)\frac{C}{12}$$
$$[L_m, G_n] = \left(\frac{m}{2} - n\right)G_{m+n}, \quad [C, -] = 0,$$
$$[G_m, G_n] = 2L_{m+n} + \delta_{m+n,0}\left(m^2 - \frac{1}{4}\right)\frac{C}{3}.$$

Neveu–Schwarz and superaffinization of Lie algebras

Neveu–Schwarz superconformal algebra $NS = \mathcal{K}(1|1)$:

Generated by L_m, G_n, C $(m \in \mathbb{Z}, n \in \frac{1}{2} + \mathbb{Z})$, with commutation relations

$$[L_m, L_n] = (m - n)L_{m+n} + \delta_{m+n,0}(m^3 - m)\frac{C}{12}$$
$$[L_m, G_n] = \left(\frac{m}{2} - n\right)G_{m+n}, \quad [C, -] = 0,$$
$$[G_m, G_n] = 2L_{m+n} + \delta_{m+n,0}\left(m^2 - \frac{1}{4}\right)\frac{C}{3}.$$

Finite-dimensional quadratic Lie superalgebra: $(\mathfrak{g}, \langle -, - \rangle)$

N = 1 super loop algebra: $L^{1|1}\mathfrak{g} = Map(\mathring{\mathbb{D}}^{1|1}, \mathfrak{g}) = \mathfrak{g}[t^{\pm 1}, \theta]$ Superaffinization or supercurrent algebra: $\widehat{\mathfrak{g}}_{super} = L^{1|1}\mathfrak{g} \oplus \mathbb{C}K$ as a vector space, with commutators (for $a, b \in \mathfrak{g}$):

$$[\mathbf{a}t^{m}, \mathbf{b}t^{n}] = [\mathbf{a}, \mathbf{b}]t^{m+n} + m\delta_{m+n,0}\langle \mathbf{a}, \mathbf{b}\rangle \mathbf{K}, \quad [\mathbf{K}, -] = 0,$$
$$[\mathbf{a}t^{m}, \mathbf{b}t^{n}\theta] = [\mathbf{a}, \mathbf{b}]t^{m+n}\theta, \quad [\mathbf{a}t^{m}\theta, \mathbf{b}t^{n}\theta] = \delta_{m+n,-1}\langle \mathbf{b}, \mathbf{a}\rangle \mathbf{K}.$$

The Kac–Todorov construction

Define $V^{c}(NS) = U(NS)/(C - c1)$ (localize universal enveloping algebra at central charge $c \in \mathbb{C}$)

Theorem (1985)

If $k + h^{\vee} \neq 0$, then \exists a canonical embedding $V^{c}(\mathbb{NS}) \subset V^{k+h^{\vee}}(\mathfrak{g}_{super})$ of central charge $c = \frac{k \dim \mathfrak{g}}{k+h^{\vee}} + \frac{\dim \mathfrak{g}}{2}$.

Kac–Todorov and aims of the talk

Define $V^{c}(NS) = U(NS)/(C - c1)$ (localize universal enveloping algebra at central charge $c \in \mathbb{C}$)

Theorem (1985)

If $k + h^{\vee} \neq 0$, then \exists a canonical embedding $V^{c}(NS) \subset V^{k+h^{\vee}}(\mathfrak{g}_{super})$ of central charge $c = \frac{k \dim \mathfrak{g}}{k+h^{\vee}} + \frac{\dim \mathfrak{g}}{2}$.

Algebraic problem: obtain an N=2 SUSY version, i.e., an embedding of the N=2 superconformal algebra

 $\mathbf{V}^{\boldsymbol{c}}(\mathcal{K}(1\,|\,2)) \subset \mathbf{V}^{\boldsymbol{k}}(\boldsymbol{\mathfrak{g}_{super}}),$

where now $V^{c}(\mathcal{K}(1|2)) = U(\mathcal{K}(1|2))/(C-c1)$.

The most natural framework to construct any of these embedding is the theory of **vertex algebras**.

Kac–Todorov and aims of the talk

Define $V^{c}(NS) = U(NS)/(C - c1)$ (localize universal enveloping algebra at central charge $c \in \mathbb{C}$)

Theorem (1985)

If $k + h^{\vee} \neq 0$, then \exists a canonical embedding $V^{c}(NS) \subset V^{k+h^{\vee}}(\mathfrak{g}_{super})$ of central charge $c = \frac{k \dim \mathfrak{g}}{k+h^{\vee}} + \frac{\dim \mathfrak{g}}{2}$.

Algebraic problem: obtain an N=2 SUSY version, i.e., an embedding of the N=2 superconformal algebra

 $\mathbf{V}^{\boldsymbol{c}}(\mathcal{K}(1\,|\,2)) \subset \mathbf{V}^{\boldsymbol{k}}(\boldsymbol{\mathfrak{g}_{super}}),$

where now $V^{c}(\mathcal{K}(1|2)) = U(\mathcal{K}(1|2))/(C-c1)$.

The most natural framework to construct any of these embedding is the theory of **vertex algebras**.

Geometric problem: apply this embedding in Borisov's vertex-algebra approach to (0,2) mirror symmetry.

Vertex algebras: quantization on the punctured disc

Vertex algebras quantize operator-valued distributions on the punctured disc using the following principles:

- View C[z^{±1}] as the space of test functions. This is a topological algebra, for the linear topology with a neighbourhood basis of 0 ∈ C[z[±]] given by the subspaces z^{-N}C[z] ⊂ C[z^{±1}] (N ∈ Z).
- Interpret quantum fields as operator-valued 'distributions' on Ď¹, i.e., continuous linear maps into a topological algebra U of operators:
 a: C[z[±]] → U.
- Find a suitable set \mathcal{F} of continuous distributions that are 'local to each other', so they can be 'multiplied'.

Vertex algebras: quantization on the punctured disc

Vertex algebras quantize operator-valued distributions on the punctured disc using the following principles:

- View C[z^{±1}] as the space of test functions. This is a topological algebra, for the linear topology with a neighbourhood basis of 0 ∈ C[z[±]] given by the subspaces z^{-N}C[z] ⊂ C[z^{±1}] (N ∈ Z).
- Interpret quantum fields as operator-valued 'distributions' on Ď¹,
 i.e., continuous linear maps into a topological algebra U of operators:

$$\mathfrak{a}\colon \mathbb{C}[z^{\pm}]\longrightarrow \mathcal{U}.$$

• Find a suitable set \mathcal{F} of continuous distributions that are 'local to each other', so they can be 'multiplied'.

We write distributions $\mathbb{C}[z^{\pm}] \to \mathcal{U}$ as $\mathcal{U}\text{-valued}$ formal Laurent series

$$\begin{aligned} a(z) &= \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1} \in \mathcal{U}[\![z^{\pm 1}]\!] \\ (a_{(n)} = \text{`Fourier modes'') via the pairing} \\ \mathbb{C}[z^{\pm 1}] \otimes \mathcal{U}[\![z^{\pm 1}]\!] \to \mathcal{U}, \ \varphi \otimes a \mapsto \underset{z=0}{\operatorname{Res}} (\varphi(z)a(z)) = \frac{1}{2\pi i} \oint \varphi(z)a(z) \mathrm{d}z. \end{aligned}$$

Vertex algebras: locality

Suppose ${\mathcal U}$ is a Lie algebra. Two ${\mathcal U}\text{-valued}$ formal distributions

$$a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad b(w) = \sum_{n \in \mathbb{Z}} b_{(n)} w^{-n-1} \in \mathcal{U}\llbracket z^{\pm 1} \rrbracket,$$

are mutually local if $\exists p(z,w) \in \mathcal{U}[\![z,w]\!][z^{-1},w^{-1},(z-w)^{-1}]$ such that

$$[a(z),b(w)] = \boldsymbol{\iota}_{|z| > |w|} p(z,w) - \boldsymbol{\iota}_{|w| > |z|} p(z,w) \in \mathcal{U}[\![z^{\pm 1},w^{\pm 1}]\!].$$

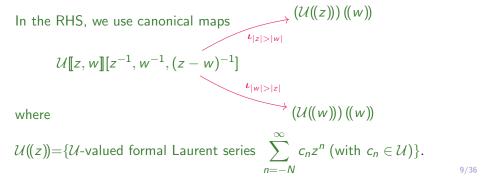
Vertex algebras: locality

Suppose \mathcal{U} is a Lie algebra. Two \mathcal{U} -valued formal distributions

$$a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad b(w) = \sum_{n \in \mathbb{Z}} b_{(n)} w^{-n-1} \in \mathcal{U}\llbracket z^{\pm 1} \rrbracket,$$

are mutually local if $\exists p(z,w) \in \mathcal{U}[\![z,w]\!][z^{-1},w^{-1},(z-w)^{-1}]$ such that

$$[a(z),b(w)] = \boldsymbol{\iota}_{|z| > |w|} p(z,w) - \boldsymbol{\iota}_{|w| > |z|} p(z,w) \in \mathcal{U}\llbracket z^{\pm 1}, w^{\pm 1}\rrbracket$$



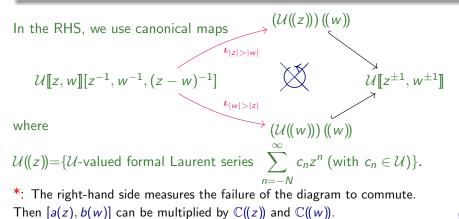
Vertex algebras: locality

are

Suppose \mathcal{U} is a Lie algebra. Two \mathcal{U} -valued formal distributions

$$a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad b(w) = \sum_{n \in \mathbb{Z}} b_{(n)} w^{-n-1} \in \mathcal{U}[\![z^{\pm 1}]\!],$$

mutually local if $\exists p(z,w) \in \mathcal{U}[\![z,w]\!][z^{-1}, w^{-1}, (z-w)^{-1}]$ such that*
 $[a(z), b(w)] = t_{|z| > |w|} p(z,w) - t_{|w| > |z|} p(z,w) \in \mathcal{U}[\![z^{\pm 1}, w^{\pm 1}]\!].$



Vertex algebras: Operator Product Expansion

Two \mathcal{U} -valued formal distributions

$$a(z) = \sum_{m \in \mathbb{Z}} a_{(m)} z^{-m-1} \in \mathcal{U}[\![z^{\pm 1}]\!], \quad b(w) = \sum_{n \in \mathbb{Z}} b_{(n)} w^{-n-1} \in \mathcal{U}[\![w^{\pm 1}]\!],$$

are local to each other iff \exists sequence $\{c^j(w)\}_{j=1}^N \subset \mathcal{U}[\![w^{\pm 1}]\!]$ such that

$$[a(z), b(w)] \stackrel{\text{def}}{=} \sum_{m,n \in \mathbb{Z}} [a_{(m)}, b_{(n)}] z^{-m-1} w^{-n-1} = \sum_{j=0}^{N} \frac{1}{j!} \partial_{w}^{j} \delta(z-w) c^{j}(w).$$

In this case, one usually writes an OPE

$$a(z)b(w)\sim \sum_{j=0}^N rac{c^j(w)}{(z-w)^{j+1}}$$

and defines the λ -bracket

$$[a_{\lambda}b] = \sum_{j=0}^{N} rac{\lambda^{j}}{j!} c^{j} \in \left(\mathcal{U}\llbracket w^{\pm 1}
brace
ight) [\lambda]$$

Reference: V. G. Kac: Vertex algebras for beginners (2nd ed., 1998).

Return to the examples in the Sugawara construction:

$$extsf{Vir} = \mathsf{Der}_{\mathbb{C}}(\mathbb{C}[t^{\pm 1}]) \oplus \mathbb{C}\mathsf{C}, \quad \widehat{\mathfrak{g}} = \mathfrak{g}[t^{\pm 1}] \oplus \mathbb{C}\mathsf{K}.$$

• The Virasoro vector $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \in \text{Vir}[\![z^{\pm 1}]\!]$ is continuous as a linear map $\mathbb{C}[z^{\pm 1}] \to \text{Vir}$, local with respect to itself, and has OPE $[L_{\lambda}L] = (\partial + 2\lambda)L + \lambda^3 \frac{C}{12}.$

Vertex algebras: Virasoro and affinization

Return to the examples in the Sugawara construction:

 $extsf{Vir} = extsf{Der}_{\mathbb{C}}(\mathbb{C}[t^{\pm 1}]) \oplus \mathbb{C} extsf{C}, \quad \widehat{\mathfrak{g}} = \mathfrak{g}[t^{\pm 1}] \oplus \mathbb{C} extsf{K}.$

• The Virasoro vector $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \in \text{Vir}[\![z^{\pm 1}]\!]$ is continuous as a linear map $\mathbb{C}[z^{\pm 1}] \to \text{Vir}$, local with respect to itself, and has OPE $[L_\lambda L] = (\partial + 2\lambda)L + \lambda^3 \frac{C}{12}.$

• The 'currents' $a(z) = \sum_{n \in \mathbb{Z}} (at^n) z^{-n-1} \in \widehat{\mathfrak{g}}\llbracket z^{\pm 1} \rrbracket$ (for $a \in \mathfrak{g}$) are continous as linear maps $\mathbb{C}[z^{\pm 1}] \to \widehat{\mathfrak{g}}$, local to each other and have OPEs

 $[\mathbf{a}_{\lambda}\mathbf{b}] = [\mathbf{a},\mathbf{b}] + \lambda \langle \mathbf{a},\mathbf{b} \rangle \mathbf{K} \quad (\mathbf{a},\mathbf{b} \in \mathfrak{g}).$

SUSY Lie conformal algebras

A vertex algebra can be seen as a **quantized version of a Poisson algebra**:

- it has a bracket, called ' Λ -bracket', describing the OPEs,
- it has a multiplication, called 'normal ordered product'.

Both operations should satisfy some version of the Leibzniz rule.

Define graded associative algebras (with variables S, χ odd and T, λ even)

$$\mathcal{H} = rac{\mathbb{C}\langle S, T \rangle}{(S^2 = T)}, \qquad \mathcal{L} = rac{\mathbb{C}\langle \chi, \lambda \rangle}{(\chi^2 = -\lambda)}$$

Notation: $\nabla = (T, S)$, $\Lambda = (\lambda, \chi)$ and another copy $\Gamma = (\gamma, \eta)$ of Λ .

SUSY Lie conformal algebras

Graded associative algebras (with variables S, χ odd and T, λ even)

$$\mathcal{H} = rac{\mathbb{C}\langle S, T
angle}{(S^2 = T)}, \qquad \mathcal{L} = rac{\mathbb{C}\langle \chi, \lambda
angle}{(\chi^2 = -\lambda)}$$

Notation: $\nabla = (T, S)$, $\Lambda = (\lambda, \chi)$ and another copy $\Gamma = (\gamma, \eta)$ of Λ . The most basic piece of a SUSY vertex algebra is the Λ -bracket:

Definition (Heluani–Kac 2007)

A $(N_{K} = 1)$ SUSY Lie conformal algebra is given by

- an \mathcal{H} -module \mathcal{R} ,
- a parity-reversing A-bracket $[\cdot_{\Lambda} \cdot] \colon \mathcal{R} \otimes \mathcal{R} \longrightarrow \mathcal{L} \otimes \mathcal{R}$,

• axioms
$$(a, b, c \in \mathcal{R})$$
:
 $[a_{\Lambda}b] = (-1)^{|a||b|}[b_{-\Lambda-\nabla}a],$
 $[a_{\Lambda}[b_{\Gamma}c]] = (-1)^{|a|+1}[[a_{\Lambda}b]_{\Lambda+\Gamma}c] + (-1)^{(|a|+1)(|b|+1)}[b_{\Gamma}[a_{\Lambda}c]],$
 $[Sa_{\Lambda}b] = \chi[a_{\Lambda}b], \qquad [a_{\Lambda}Sb] = -(-1)^{|a|}(S + \chi)[a_{\Lambda}b].$

Definition (Heluani-Kac 2007; cf. Barron 2000)

A $(N_{K} = 1)$ SUSY vertex algebra is given by

- a (SUSY) Lie conformal algebra ($V, [\cdot_{\Lambda} \cdot]$),
- a normally ordered product $V \times V \longrightarrow V$, $(a, b) \longmapsto :ab:$,
- a vacuum vector $|0
 angle \in V$ that is a right unit for the normally ordered product,

• axioms
$$(a, b, c \in V)$$
:

$$:ab: - (-1)^{|a||b|}: ba: = \int_{-\nabla}^{0} d\Lambda [a_{\Lambda}b],$$

$$: (:ab:)c: - :a(:bc:): = : \left(\int_{0}^{\nabla} d\Lambda a\right) [b_{\Lambda}c]: + (-1)^{|a||b|}: \left(\int_{0}^{\nabla} d\Lambda b\right) [a_{\Lambda}c]:,$$

$$[a_{\Lambda}:bc:] = : [a_{\Lambda}b]c: + (-1)^{(|a|+1)|b|}: b[a_{\Lambda}c]: + \int_{0}^{\Lambda} d\Gamma[[a_{\Lambda}b]_{\Gamma}c].$$

Remarks

• Just as a Lie algebra \mathfrak{g} freely generates the universal enveloping algebra $U(\mathfrak{g})$, a Lie conformal algebra \mathcal{R} freely generates a universal enveloping SUSY vertex algebra $V(\mathcal{R})$, with a universal property with respect to morphisms into SUSY vertex algebras.

Remarks

• Just as a Lie algebra \mathfrak{g} freely generates the universal enveloping algebra $U(\mathfrak{g})$, a Lie conformal algebra \mathcal{R} freely generates a universal enveloping SUSY vertex algebra $V(\mathcal{R})$, with a universal property with respect to morphisms into SUSY vertex algebras.

- A SUSY vertex algebra has a canonical state-field correspondence
- $Y\colon V\to \mathsf{End}(V)\llbracket z^{\pm 1},\theta\rrbracket, \ a\mapsto a(z,\theta)=\sum_{n\in\mathbb{Z}}z^{-n-1}a_{(n|1)}+z^{-n-1}\theta a_{(n|0)}.$

The Fourier modes $a_{(n|1)}$, $a_{(n|0)}$ generate a (non-SUSY) vertex algebra, whose λ -bracket is related to the SUSY Λ -bracket via

$$[a_{\Lambda}b] = \sum_{n \in \mathbb{N}} \frac{\lambda^n}{n!} a_{(n|0)}(b) + \sum_{n \in \mathbb{N}} \frac{\chi \lambda^n}{n!} a_{(n|1)}(b) = [Sa_{\lambda}b] + \chi[a_{\lambda}b].$$

Example 1: The *N*=1 superconformal vertex algebra is freely generated by an odd superfield H and an (even) central charge C, i.e.,

 $\mathcal{R}=\mathcal{H}\otimes \mathbb{C}\mathtt{H}\oplus \mathbb{C}\mathtt{C},$

0

with non-zero Λ -bracket

$$[\mathrm{H}_{\Lambda}\mathrm{H}] = (2T + \chi S + 3\lambda)\mathrm{H} + \frac{\chi\lambda^2}{3}\mathrm{C}.$$

Expanding in components the corresponding superfield $H(z, \theta) = G(z) + 2\theta L(z),$

and the field components in Fourier modes

$$L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-2-n}, \quad G(z) = \sum_{n \in \frac{1}{2} + \mathbb{Z}} G_n z^{-\frac{3}{2}-n} \in \mathcal{K}(1|1) [\![z^{\pm 1}]\!],$$

one recovers the usual Virasoro and Neveu–Schwarz commutation relations

$$\begin{split} [\mathrm{L}_{m},\mathrm{L}_{n}] &= (m-n)\mathrm{L}_{m+n} + \delta_{m+n,0}(m^{3}-m)\frac{\mathrm{C}}{12}, \\ [\mathrm{L}_{m},\mathrm{G}_{n}] &= \left(\frac{m}{2}-n\right)\mathrm{G}_{m+n}, \\ [\mathrm{G}_{m},\mathrm{G}_{n}] &= 2\mathrm{L}_{m+n} + \delta_{m+n,0}\left(m^{2}-\frac{1}{4}\right)\frac{\mathrm{C}}{3}. \end{split}$$

15/36

Example 2: The chiral de Rham complex Ω_M^{ch} (Malikov, Schechtman, Vaintrob 1999)

The **CDR** is a sheaf of vertex algebras over a manifold M that to each open subset $U \subset M$ attaches the vertex algebra $\Omega_M^{ch}(U)$ generated by

 $f \in C^{\infty}(U), \ \alpha \in \Omega^{1}(U), \ \{\mathcal{L}_{X}, \iota_{X} \mid X \in \operatorname{Vect}(U)\},\$

subject to the λ -commutators (Song; Linshaw–Mathai 2015)

 $\begin{aligned} [\mathcal{L}_{X\lambda}f] &= \lambda(Xf), & [\mathcal{L}_{X\lambda}\iota_Y] &= \lambda\iota_{[X,Y]}, & [\mathcal{L}_{X\lambda}\mathcal{L}_Y] &= \lambda\mathcal{L}_{[X,Y]}, \\ [\mathcal{L}_{X\lambda}\alpha] &= \lambda(\operatorname{Lie}_X\alpha), & [\iota_{X\lambda}\alpha] &= \lambda(i_X\alpha), & [\iota_{X\lambda}\iota_Y] &= 0. \end{aligned}$

and appropriate relations involving normal ordered products (for simplicity, we forget about the SUSY structure).

Example 3: The **N=2 superconformal vertex algebra** $V^{C}(\mathcal{K}(1|2))$ is freely generated by an odd superfield H , an even superfield J and an (even) central charge C, i.e.,

 $\mathcal{R} = \mathcal{H} \otimes (\mathbb{C}H \oplus \mathbb{C}J) \oplus \mathbb{C}C,$

with non-zero A-brackets $[H_AH] = (2T + \chi S + 3\lambda)H + \frac{\chi\lambda^2}{3}C$ (as above),

$$[J_{\Lambda}J] = -\left(H + \frac{\lambda\chi}{3}C\right), \quad [H_{\Lambda}J] = (2T + 2\lambda + \chi S) J.$$

Example 3: The **N=2 superconformal vertex algebra** $V^{C}(\mathcal{K}(1|2))$ is freely generated by an odd superfield H , an even superfield J and an (even) central charge C, i.e.,

 $\mathcal{R} = \mathcal{H} \otimes (\mathbb{C} H \oplus \mathbb{C} J) \oplus \mathbb{C} C,$

with non-zero A-brackets $[H_AH] = (2T + \chi S + 3\lambda)H + \frac{\chi\lambda^2}{3}C$ (as above),

$$[J_{\Lambda}J] = -\left(H + \frac{\lambda\chi}{3}C\right), \quad [H_{\Lambda}J] = (2T + 2\lambda + \chi S) J.$$

Expanding in components the corresponding superfields

 $J(z,\theta) = -i(J(z) + \theta (G^{-}(z) - G^{+}(z))), H(z,\theta) = (G^{+}(z) + G^{-}(z)) + 2\theta L(z),$

and the field components in Fourier modes

$$\mathsf{J}(z) = \sum_{n \in \mathbb{Z}} \mathsf{J}_n z^{-1-n}, \, \mathsf{G}^{\pm}(z) = \sum_{n \in \frac{1}{2} + \mathbb{Z}} \mathsf{G}_n^{\pm} z^{-\frac{3}{2}-n},$$

one obtains from the above Λ -brackets the commutation relations

$$[\mathbf{J}_{m},\mathbf{J}_{n}] = \frac{m}{3}\delta_{m,-n}c, \quad [\mathbf{J}_{m},\mathbf{G}_{n}^{\pm}] = \pm \mathbf{G}_{m+n}^{\pm}, \quad [\mathbf{G}_{m}^{\pm},\mathbf{L}_{n}] = \left(m - \frac{n}{2}\right)\mathbf{G}_{m+n}^{\pm},$$
$$[\mathbf{L}_{m},\mathbf{J}_{n}] = -n\mathbf{J}_{m+n}, \quad [\mathbf{G}_{m}^{+},\mathbf{G}_{n}^{-}] = \mathbf{L}_{m+n} + \frac{m-n}{2}\mathbf{J}_{m+n} + \frac{\mathbf{C}}{6}\left(m^{2} - \frac{1}{4}\right)\delta_{m,-n}.$$

Example 3: The **N=2 superconformal vertex algebra** $V^{C}(\mathcal{K}(1|2))$ is freely generated by an odd superfield H, an even superfield J and an (even) central charge C, i.e.,

 $\mathcal{R} = \mathcal{H} \otimes (\mathbb{C} H \oplus \mathbb{C} J) \oplus \mathbb{C} C,$

with non-zero A-brackets $[H_AH] = (2T + \chi S + 3\lambda)H + \frac{\chi\lambda^2}{3}C$ (as above),

$$[J_{\Lambda}J] = -\left(H + \frac{\lambda\chi}{3}C\right), \quad [H_{\Lambda}J] = (2T + 2\lambda + \chi S) J.$$

Example 4: Let $(\mathfrak{g}, \langle -, - \rangle)$ be a finite-dimensional quadratic Lie algebra, and $\Pi \mathfrak{g}$ the same vector superspace with reversed parity. The **superaffine vertex algebra** $V(\mathfrak{g}_{super})$ is freely generated by the SUSY Lie conformal algebra

 $\mathfrak{Cur}\,\mathfrak{g}=\mathcal{H}\otimes\Pi\mathfrak{g}\oplus\mathbb{C}\mathrm{K},$

with Λ -bracket

 $[\Pi a_{\Lambda} \Pi b] = \Pi[a, b] + \chi \langle a, b \rangle \mathbb{K} \quad (a, b \in \mathfrak{g}).$

Example 3: The **N=2 superconformal vertex algebra** $V^{C}(\mathcal{K}(1|2))$ is freely generated by an odd superfield H, an even superfield J and an (even) central charge C, i.e.,

 $\mathcal{R} = \mathcal{H} \otimes (\mathbb{C} H \oplus \mathbb{C} J) \oplus \mathbb{C} C,$

with non-zero A-brackets $[H_AH] = (2T + \chi S + 3\lambda)H + \frac{\chi\lambda^2}{3}C$ (as above),

$$[J_{\Lambda}J] = -\left(H + \frac{\lambda\chi}{3}C\right), \quad [H_{\Lambda}J] = (2T + 2\lambda + \chi S) J.$$

Example 4: Let $(\mathfrak{g}, \langle -, - \rangle)$ be a finite-dimensional quadratic Lie algebra, and $\Pi \mathfrak{g}$ the same vector superspace with reversed parity. The **superaffine vertex algebra** $V(\mathfrak{g}_{super})$ is freely generated by the SUSY Lie conformal algebra

 $\mathfrak{Cur}\,\mathfrak{g}=\mathcal{H}\otimes\Pi\mathfrak{g}\oplus\mathbb{C}\mathrm{K},$

with Λ -bracket

$$[\Pi a_{\Lambda} \Pi b] = \Pi[a, b] + \chi \langle a, b \rangle \mathbb{K} \quad (a, b \in \mathfrak{g}).$$

Question: How can we embed the N = 2 superconformal vertex algebra?

$$\mathbf{V}^{\boldsymbol{c}}(\mathcal{K}(1|2)) \subset \mathbf{V}^{\boldsymbol{k}}(\boldsymbol{\mathfrak{g}_{super}}).$$

 $\mathbf{V}^{\boldsymbol{c}}(\mathcal{K}(1\,|\,2)) \hookrightarrow \mathbf{V}^{\boldsymbol{k}}(\boldsymbol{\mathfrak{g}_{\textit{super}}}).$

$$\mathbf{V}^{\boldsymbol{c}}(\mathcal{K}(1|2)) \hookrightarrow \mathbf{V}^{\boldsymbol{k}}(\mathfrak{g}_{super}).$$

Inspired by physics (Zumino 1979, Álvarez-Gaumé & Freedman 1981, Howe & Papadopoulos 1991...), there is substantial work on embeddings

 $\mathrm{V}^{c}(\mathcal{K}(1|2)) \longrightarrow H^{0}(M,\Omega_{M}^{\mathrm{ch}}),$

on the space of sections of

 Ω_M^{ch} = chiral de Rham complex on a manifold M.

 $\mathbf{V}^{\boldsymbol{c}}(\mathcal{K}(1|2)) \hookrightarrow \mathbf{V}^{\boldsymbol{k}}(\mathfrak{g}_{\boldsymbol{super}}).$

There is substantial work on embeddings

 $\mathrm{V}^{c}(\mathcal{K}(1|2)) \hookrightarrow H^{0}(M,\Omega_{M}^{\mathrm{ch}}),$

on the space of sections of

 $\Omega_M^{ch} = chiral de Rham complex on a manifold M.$

- for Calabi-Yau (Malikov, Schechtman & Vaintrob 1999),
- (related) N = 2 embeddings for Kähler manifolds (Heluani 2009),
- two N = 2 commuting embeddings, i.e., (2, 2) SUSY, for generalized Calabi-Yau manifolds (Heluani & Zabzine 2011),
- other SUSY embeddings on manifolds with special holonomies (e.g., Ekstrand, Heluani, Källen, Zabzine 2013; Rodríguez Díaz 2018...).

 $\mathbf{V}^{\boldsymbol{c}}(\mathcal{K}(1|2)) \hookrightarrow \mathbf{V}^{\boldsymbol{k}}(\mathfrak{g}_{\boldsymbol{super}}).$

There is substantial work on embeddings

 $\mathrm{V}^{c}(\mathcal{K}(1|2)) \hookrightarrow H^{0}(M,\Omega_{M}^{\mathrm{ch}}),$

on the space of sections of

 $\Omega_M^{ch} = chiral de Rham complex on a manifold M.$

- for Calabi-Yau (Malikov, Schechtman & Vaintrob 1999),
- (related) N = 2 embeddings for Kähler manifolds (Heluani 2009),
- two *N* = 2 commuting embeddings, i.e., (2, 2) SUSY, for generalized Calabi-Yau manifolds (Heluani & Zabzine 2011),
- other SUSY embeddings on manifolds with special holonomies (e.g., Ekstrand, Heluani, Källen, Zabzine 2013; Rodríguez Díaz 2018...).

These constructions do not work 'over a point'.

 $\mathbf{V}^{\boldsymbol{c}}(\mathcal{K}(1|2)) \hookrightarrow \mathbf{V}^{\boldsymbol{k}}(\mathfrak{g}_{\boldsymbol{super}}).$

There is substantial work on embeddings

 $\mathrm{V}^{c}(\mathcal{K}(1|2)) \hookrightarrow H^{0}(M,\Omega_{M}^{\mathrm{ch}}),$

on the space of sections of

 $\Omega_M^{ch} = chiral de Rham complex on a manifold M.$

- for Calabi-Yau (Malikov, Schechtman & Vaintrob 1999),
- (related) N = 2 embeddings for Kähler manifolds (Heluani 2009),
- two N = 2 commuting embeddings, i.e., (2, 2) SUSY, for generalized Calabi-Yau manifolds (Heluani & Zabzine 2011),
- other SUSY embeddings on manifolds with special holonomies (e.g., Ekstrand, Heluani, Källen, Zabzine 2013; Rodríguez Díaz 2018...).

These constructions do not work 'over a point'.

Our approach follows the accepted idea that Ω_M^{ch} should be viewed as the Courant-version of the superaffine vertex algebra $V^k(\mathfrak{g}_{super})$.

Therefore we will impose conditions on the Lie algebra \mathfrak{g} inspired by the geometry of Courant algebroids.

Main results

We apply Garcia-Fernandez's theory of generalized connections (inspired by SUGRA) to a (real) finite-dimensional quadratic Lie algebra

$$\mathfrak{g}, \quad \langle -, - \rangle \colon \mathfrak{g} \otimes \mathfrak{g} \longrightarrow \mathbb{R},$$

viewed as a Courant algebroid over a point. Fix the following data:

- a generalized metric $V = V_+ \oplus V_-$,
- a 'divergence' $\varepsilon \in V_+$ (viewed as $\langle \varepsilon, \cdot \rangle \in V_+^*$),

• an irreducible representations $S(V_+)$ of Clifford algebra $Cl(V_+)$. Choose a basis $\{a_i\}$ of V_+ with dual basis $\{a^i\} \subset V_+$ w.r.t. $\langle -, - \rangle$. We apply the theory of generalized connections to a (real) finite dimensional quadratic Lie superalgebra

$$\mathfrak{g}, \quad \langle -, - \rangle \colon \mathfrak{g} \otimes \mathfrak{g} \longrightarrow \mathbb{R},$$

viewed as a Courant algebroid over a point. Fix the following data:

- a generalized metric $V = V_+ \oplus V_-$,
- a 'divergence' $\varepsilon \in V_+$ (viewed as $\langle \varepsilon, \cdot \rangle \in V_+^*$),

• an irreducible representations $S(V_+)$ of Clifford algebra $Cl(V_+)$. Choose a basis $\{a_i\}$ of V_+ with dual basis $\{a^i\} \subset V_+$ w.r.t. $\langle -, - \rangle$.

Geometric conditions: the Killing spinor equations

We apply the theory of generalized connections to a (real) finite dimensional quadratic Lie superalgebra

 $\mathfrak{g}, \quad \langle -, - \rangle \colon \mathfrak{g} \otimes \mathfrak{g} \longrightarrow \mathbb{R},$

viewed as a Courant algebroid over a point. Fix the following data:

- a generalized metric $V = V_+ \oplus V_-$,
- a 'divergence' $\varepsilon \in V_+$ (viewed as $\langle \varepsilon, \cdot
 angle \in V_+^*$),
- an irreducible representations $S(V_+)$ of Clifford algebra $Cl(V_+)$.

Choose a basis $\{a_i\}$ of V_+ with dual basis $\{a^i\} \subset V_+$ w.r.t. $\langle -, - \rangle$.

Definition (Garcia-Fernandez 2019, but restricted to base mnfld=point)

A non-vanishing spinor $\eta \in S(V_+)$ satisfies the Killing spinor equations if

$$D^+_-\eta := rac{1}{4} \sum_{i,j} \langle [\pi_-,a_i],a^j
angle a^j a_i \cdot \eta = 0$$
 (gravitino equation),

$$otin ^+\eta := rac{1}{12} \sum_{i,j,k} \langle [a_k,a_i],a^j \rangle a^k a^j a_i \cdot \eta - rac{1}{2} \varepsilon \cdot \eta = 0 \quad (ext{dilatino equation}).$$

Geometric conditions: the Killing spinor equations

We apply the theory of generalized connections to a (real) finite dimensional quadratic Lie superalgebra

 $\mathfrak{g}, \quad \langle -, - \rangle \colon \mathfrak{g} \otimes \mathfrak{g} \longrightarrow \mathbb{R},$

viewed as a Courant algebroid over a point. Fix the following data:

- a generalized metric $V = V_+ \oplus V_-$,
- a 'divergence' $\varepsilon \in V_+$ (viewed as $\langle \varepsilon, \cdot
 angle \in V_+^*$),
- an irreducible representations $S(V_+)$ of Clifford algebra $Cl(V_+)$.

Choose a basis $\{a_i\}$ of V_+ with dual basis $\{a^i\} \subset V_+$ w.r.t. $\langle -, - \rangle$.

Definition (Garcia-Fernandez 2019, but restricted to base mnfld=point)

A non-vanishing spinor $\eta \in S(V_+)$ satisfies the Killing spinor equations if

$$D_{a_-}^+\eta := \frac{1}{4} \sum_{i,j} \langle [a_-, a_i], a^j \rangle a^j a_i \cdot \eta = 0 \quad (\forall a_- \in V_-),$$

$$\not D^+\eta := \frac{1}{12} \sum_{i,j,k} \langle [a_k, a_i], a^j \rangle a^k a^j a_i \cdot \eta - \frac{1}{2} \varepsilon \cdot \eta = 0 \quad \text{(dilatino equation)}.$$

Fix a quadratic Lie superalgebra $(\mathfrak{g}, \langle -, - \rangle)$ and the following data:

- a generalized metric $V = V_+ \oplus V_-$,
- a 'divergence' $\varepsilon \in V_+$,
- an irreducible representations $S(V_+)$ of Clifford algebra $Cl(V_+)$.

Fix a quadratic Lie superalgebra $(\mathfrak{g}, \langle -, - \rangle)$ and the following data:

- a generalized metric $V = V_+ \oplus V_-$,
- a 'divergence' $\varepsilon \in V_+$,
- an irreducible representations $S(V_+)$ of Clifford algebra $Cl(V_+)$.

Proposition (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

A solution (V_+, ε, η) of the Killing spinor equations on $(\mathfrak{g}, \langle -, - \rangle)$ with dim $V_{+} = 2n$ even and η pure is equivalent to an isotropic decomposition $V_+ \otimes \mathbb{C} = \ell \oplus \overline{\ell}$ (where $\ell = V^{1,0}_{\perp}$ and $\overline{\ell} = V^{0,1}_{\perp}$), such that $[\ell,\ell] \subset \ell, \quad [\bar{\ell},\bar{\ell}] \subset \bar{\ell} \qquad (\mathsf{F}\text{-term equation}),$ $\frac{1}{2}\sum_{i=1}^{n} [\epsilon_i, \epsilon^i] = \varepsilon_{\overline{\ell}} - \varepsilon_{\ell} \qquad \text{(D-term equation)},$ for basis $\{\epsilon_i\} \subset \ell$, $\{\epsilon^i\} \subset \overline{\ell}$ such that $\langle \epsilon_i, \epsilon^j \rangle = \delta_{ii}$.

Main results

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Fix a generalized metric $\mathfrak{g} = V_+ \oplus V_-$ on $(\mathfrak{g}, \langle -, - \rangle)$ with dim $V_+ = 2n$ and an isotropic decomposition $V_+ \otimes \mathbb{C} = \ell \oplus \overline{\ell}$. Suppose that

$$[\ell,\ell] \subset \ell, \quad [\overline{\ell},\overline{\ell}] \subset \overline{\ell}, \qquad \sum_{i=1} [\epsilon_i,\epsilon^i] \in \ell \oplus \overline{\ell},$$

and furthermore,

$$w := \sum_{i=1} \left([\epsilon_i, \epsilon^i]_{\ell} - [\epsilon_i, \epsilon^i]_{\overline{\ell}} \right) \in [\ell, \ell]^{\perp} \cap [\overline{\ell}, \overline{\ell}]^{\perp}.$$

Then there is an embedding $V^{c}(\mathcal{K}(1|2)) \hookrightarrow V^{k}(\mathfrak{g}_{super}^{\mathbb{C}})$ with central charge c = 3n, where $J, H \in V^{c}(\mathcal{K}(1|2))$ map into

$$\begin{aligned} \mathsf{J}_{0} &= \frac{i}{k} : e^{j} e_{j} :, \qquad \mathsf{H}' = \frac{1}{k} \left(: e_{j} \left(Se^{j} \right) : + : e^{j} \left(Se_{j} \right) : \right) + \frac{1}{k} T(\Pi w) \\ &+ \frac{1}{k^{2}} \left(: e_{j} \left(: e^{k} [e^{j}, e_{k}] : \right) : + : e^{j} \left(: e_{k} [e_{j}, e^{k}] : \right) : \\ &- : e_{j} \left(: e_{k} [e^{j}, e^{k}] : \right) : - : e^{j} \left(: e^{k} [e_{j}, e_{k}] : \right) : \right), \end{aligned}$$

where $e_i := \Pi \epsilon_i \in \Pi \ell$ and $e^i := \Pi \epsilon^i \in \Pi \overline{\ell}$.

n

Main results

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

n

Fix a generalized metric $\mathfrak{g} = V_+ \oplus V_-$ on $(\mathfrak{g}, \langle -, - \rangle)$ with dim $V_+ = 2n$ and an isotropic decomposition $V_+ \otimes \mathbb{C} = \ell \oplus \overline{\ell}$. Suppose that

$$[\ell,\ell] \subset \ell, \quad [\overline{\ell},\overline{\ell}] \subset \overline{\ell}, \qquad \sum_{i=1} [\epsilon_i,\epsilon^i] \in \ell \oplus \overline{\ell},$$

and furthermore,

$$w := \sum_{i=1} \left([\epsilon_i, \epsilon^i]_{\ell} - [\epsilon_i, \epsilon^i]_{\overline{\ell}} \right) \in [\ell, \ell]^{\perp} \cap [\overline{\ell}, \overline{\ell}]^{\perp}.$$

Then there is an embedding $V^{c}(\mathcal{K}(1|2)) \hookrightarrow V^{k}(\mathfrak{g}_{super}^{\mathbb{C}})$ with central charge c = 3n.

Remarks:

- When V₊ = g, we recover a classical construction by Getzler 1995 for Manin triples g^C = ℓ ⊕ ℓ
 , who required precisely the condition (★).
- 2 The condition (\star) is satisfied if w is 'holomorphic', i.e., $[w, \ell] \subset \ell$.

 (\star)

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

A solution $(V_+ \otimes \mathbb{C} = \ell \oplus \overline{\ell}, \varepsilon)$ of the Killing spinor equations on $(\mathfrak{g}, \langle -, -\rangle)$ such that dim $V_+ = 2n$ is even and $\varepsilon \in V_+$ is holomorphic (i.e., $[\varepsilon, \ell] \subset \ell$), induces an embedding

$$\mathrm{V}^{c}(\mathcal{K}(1|2)) \hookrightarrow \mathrm{V}^{k}(\mathfrak{g}_{super}^{\mathbb{C}})$$

with central charge $c = 3(n + \frac{4}{k}\langle \varepsilon, \varepsilon \rangle)$, where $J, H \in V^{c}(\mathcal{K}(1|2))$ map into

$$\begin{aligned} \mathbf{J}^{\mathfrak{g}} &= \frac{i}{k} : e^{j} e_{j} := -\frac{2}{k} S\left(i \Pi(\varepsilon_{\ell} - \varepsilon_{\overline{\ell}})\right), \\ \mathbf{H}^{\mathfrak{g}} &= \frac{1}{k} \left(: e_{j}(Se^{j}) :+ :e^{j}(Se_{j}) :\right) + \frac{1}{k^{2}} \left(:e_{j}\left(:e^{k}[e^{j}, e_{k}] :\right) :+ :e^{j}\left(:e_{k}[e_{j}, e^{k}] :\right) :\\ &- :e_{j}\left(:e_{k}[e^{j}, e^{k}] :\right) :- :e^{j}\left(:e^{k}[e_{j}, e_{k}] :\right) :\right). \end{aligned}$$

Geometric applications

The chiral de Rham complex

We will follow Heluani's superfield approach, based on Bressler 2007.

Theorem (Heluani 2009)

To each Courant algebroid E, one can attach functorially a sheaf of N = 1SUSY vertex algebras \mathcal{U}^E on M, which coincides with the chiral de Rham complex Ω_M^{ch} when E is the standard Courant algebroid $TM \oplus T^*M$.

The chiral de Rham complex

We will follow Heluani's superfield approach, based on Bressler 2007.

Theorem (Heluani 2009)

To each Courant algebroid E, one can attach functorially a sheaf of N = 1SUSY vertex algebras \mathcal{U}^E on M, which coincides with the chiral de Rham complex Ω_M^{ch} when E is the standard Courant algebroid $TM \oplus T^*M$.

Sketch: Let \mathcal{R}^E be the sheaf of \mathcal{H} -modules on M freely generated by $C^{\infty}(M) \oplus \Gamma(\Pi E)$, modulo the relation $\mathcal{D}f = 2Sf$ for $f \in C^{\infty}(M)$. Then the following formulas induce a structure of sheaf of N = 1 SUSY Lie conformal algebra on \mathcal{R}^E , where $f, g \in C^{\infty}(M)$ and $a, b \in \Gamma(\Pi E)$:

$$[a_{\Lambda}b] = [a, b] + 2\chi \langle a, b \rangle \quad (\text{level } k=2 !), \\ [a_{\Lambda}f] = \pi(a)f, \quad [f_{\Lambda}g] = 0.$$

Then \mathcal{U}^{E} is constructed as the quotient of the universal enveloping N = 1 vertex algebra of \mathcal{R}^{E} modulo the ideal generated by the relations

 $: fg := fg, \quad : fa := fa, \quad 1_M = |0\rangle.$

Twisted Calabi–Yaus

We apply results about canonical metrics on holomorphic Courant algebroids.

Garcia-Fernandez, Rubio, Shahbazi & Tipler, arXiv 2018, Proc. London Math., (to appear)

Fix compact complex manifold X of dim. *n* with $c_1(X) = 0 \in H^2(X, \mathbb{Z})$. Recall:

Definition: An SU(n)-structure on X is a pair (Ψ, ω) such that

- Ψ is a complex (n, 0)-form on X,
- $\omega \in \Omega^{1,1}(X)$ positive (1,1)-form, with metric $g = \omega(\cdot, J \cdot)$,
- $\|\Psi\|_g = 1.$

Lee form: $\theta_{\omega} = Jd^*\omega$.

Twisted Calabi–Yaus

We apply results about canonical metrics on holomorphic Courant algebroids.

Garcia-Fernandez, Rubio, Shahbazi & Tipler, arXiv 2018, Proc. London Math., (to appear)

Fix compact complex manifold X of dim. *n* with $c_1(X) = 0 \in H^2(X, \mathbb{Z})$. Recall:

Definition: An SU(n)-structure on X is a pair (Ψ, ω) such that

- Ψ is a complex (n, 0)-form on X,
- $\omega \in \Omega^{1,1}(X)$ positive (1,1)-form, with metric $g = \omega(\cdot, J \cdot)$,
- $\|\Psi\|_g = 1.$

Lee form: $\theta_{\omega} = Jd^*\omega$.

Twisted Calabi-Yau eqn. (Garcia-Fernandez, Rubio, Shahbazi & Tipler):

$$egin{aligned} d\Psi &- heta_\omega \wedge \Psi = 0, \ d heta_\omega &= 0, \ dd^c \omega &= 0. \end{aligned}$$

Proposition (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Let *K* be an even-dimensional compact Lie group. Then a left-invariant solution (Ψ, ω) of the twisted Calabi-Yau equation on *K* induces a solution of the Killing spinor equations (with $\varepsilon = 2\theta_{\omega}|_{V_+}$) on the quadratic Lie algebra (with $H = -d^c \omega$) $(\mathfrak{q} = \Gamma(TK \oplus T^*K)^K, [\cdot, \cdot]_H, \langle \cdot, \cdot \rangle).$

Definition (Linshaw-Mathai 2015, after Heluani 2009)

For a closed $H \in \Omega^3(M)$, the *H*-twisted chiral de Rham compex is the (N = 1 SUSY) vertex algebra attached to the *H*-twisted standard Courant algebroid:

$$\Omega_M^{\mathrm{ch},H} := \mathcal{U}^E, \quad \text{with } E = (TM \oplus T^*M, [\cdot, \cdot]_H).$$

Proposition (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Let K be an even-dimensional compact Lie group that carries a left-invariant solution (Ψ, ω) of the twisted Calabi-Yau equation. Consider the quadratic Lie algebra (with $H = -d^c \omega$)

 $(\mathfrak{g}=\Gamma(TK\oplus T^*K)^K, [\cdot, \cdot]_H, \langle \cdot, \cdot \rangle).$

If θ^{\sharp}_{ω} is holomorphic, then the pair (Ψ, ω) induces a vertex algebra embedding

$$V^{c}(\mathcal{K}(1|2)) \longrightarrow V^{2}(\mathfrak{g}_{super}^{\mathbb{C}}) \longrightarrow H^{0}(\mathcal{K}, \Omega_{\mathcal{K}}^{\mathrm{ch}, \mathcal{H}}),$$

$$J \longmapsto J^{\mathfrak{g}} \longmapsto J(\Psi, \omega)$$

$$H \longmapsto H^{\mathfrak{g}} \longmapsto H(\Psi, \omega)$$
e space of global sections of $\Omega_{\mathcal{K}}^{\mathrm{ch}, \mathcal{H}}$ with $\mathcal{H} = -d^{c}\omega$.

in th

Example

Recall:

Twisted Calabi–Yau eqn. (Garcia-Fernandez, Rubio, Shahbazi & Tipler) : $d\Psi - \theta_{\omega} \wedge \Psi = 0,$ $d\theta_{\omega} = 0,$ $dd^c \omega = 0.$

Remarks:

Pluriclosed metric (dd^cω=0) ⇒ positive Aeppli class [ω] ∈ H^{1,1}_A(X, ℝ). Here, H^{•,•}_A(X) = ker∂∂̄/Im∂ + Im∂̄.
If [θ_ω] = 0 ∈ H¹(X, ℝ), twisted Calabi-Yau eqn. ⇔Kähler Calabi-Yau. Twisted Calabi-Yau eqn. (Garcia-Fernandez, Rubio, Shahbazi & Tipler) : $d\Psi - \theta_{\omega} \wedge \Psi = 0,$ $d\theta_{\omega} = 0,$ $dd^{c}\omega = 0.$

Remarks:

- Pluriclosed metric $(dd^c \omega = 0) \Longrightarrow$ positive Aeppli class $[\omega] \in H^{1,1}_A(X, \mathbb{R})$. Here, $H^{\bullet,\bullet}_A(X) = \frac{\ker \partial \bar{\partial}}{\operatorname{Im} \partial + \operatorname{Im} \bar{\partial}}$.
- If $[\theta_{\omega}] = 0 \in H^1(X, \mathbb{R})$, twisted Calabi–Yau eqn. \iff Kähler Calabi-Yau.

Theorem (Garcia-Fernandez, Rubio, Shahbazi, Tipler)

Let X be a compact complex surface with $c_1(X) = 0$. Then X admits a solution if and only if one of the following holds:

- $X \cong K3$ or T^4 ; in this case $[\theta_{\omega}] = 0 \in H^1(X, \mathbb{R})$, $[d^c \omega] = 0 \in H^3(X, \mathbb{R})$.
- $X \cong \mathbb{C}^2 \setminus \{0\} / \mathbb{Z}$ is a quaternionic Hopf surface; in this case $[\theta_{\omega}] \neq 0$ and $[d^c \omega] \neq 0$.

If this is the case, then X admits a unique solution on each positive Aeppli class.

Example: $S^3 \times S^1$ viewed as a Lie group $K = SU(2) \times U(1)$, with Lie alg. $\mathfrak{k} = \langle v_1, v_2, v_3, v_4 \rangle$,

where $[v_2, v_3] = -v_1$, $[v_3, v_1] = -v_2$, $[v_1, v_2] = -v_3$, $[v_4, \cdot] = 0$.

Example: $S^3 \times S^1$ viewed as a Lie group $K = SU(2) \times U(1)$, with Lie alg. $\mathfrak{k} = \langle v_1, v_2, v_3, v_4 \rangle$, where $[v_2, v_3] = -v_1$, $[v_3, v_1] = -v_2$, $[v_1, v_2] = -v_3$, $[v_4, \cdot] = 0$. $v_1 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $v_1 = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $v_3 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \in \mathfrak{su}(2)$, $v_4 = 1 \in \mathfrak{u}(1)$. **Example:** $S^3 \times S^1$ viewed as a Lie group $K = SU(2) \times U(1)$, with Lie alg. $\mathfrak{k} = \langle v_1, v_2, v_3, v_4 \rangle$,

where $[v_2, v_3] = -v_1$, $[v_3, v_1] = -v_2$, $[v_1, v_2] = -v_3$, $[v_4, \cdot] = 0$. Fix $\ell \in \mathbb{R}_{>0}$. For any $x \in \mathbb{R}_{>0}$, there is a left-invariant solution (Ψ_x, ω_x) of the twisted Calabi–Yau equations

 $d\Psi = heta_\omega \wedge \Psi, \qquad d heta_\omega = 0, \qquad dd^c \omega = 0,$

given in terms of the dual left-invariant differential forms v^1, v^2, v^3, v^4 by

$$\begin{split} \omega_{\mathsf{x}} &= \ell \mathsf{x} \mathsf{v}^{41} + \ell \mathsf{v}^{23}, \\ \Psi_{\mathsf{x}} &= \frac{\ell}{2} (i \mathsf{v}^1 + \mathsf{x} \mathsf{v}^4) \wedge (\mathsf{v}^2 + i \mathsf{v}^3), \end{split}$$

with

- Lee form $\theta_x = -xv^4$,
- complex structure $I_x \cong x \in \mathbb{R}_{>0}$ given by $I_x v_4 = xv_1$, $I_x v_2 = v_3$,
- $H := -d^c \omega_x = \ell v^{123}$,

• Aeppli class on $X_x = (K, I_x)$: $[\omega_x] \cong a := \ell x \in H^{1,1}_A(X_x, \mathbb{R}) \cong \mathbb{R}$.

Example: $S^3 \times S^1$ viewed as a Lie group $K = SU(2) \times U(1)$, with Lie alg. $\mathfrak{k} = \langle v_1, v_2, v_3, v_4 \rangle$,

where $[v_2, v_3] = -v_1$, $[v_3, v_1] = -v_2$, $[v_1, v_2] = -v_3$, $[v_4, \cdot] = 0$. Fix $\ell \in \mathbb{R}_{>0}$. For any $x \in \mathbb{R}_{>0}$, there is a left-invariant solution (Ψ_x, ω_x) of the twisted Calabi–Yau equations

 $d\Psi = heta_\omega \wedge \Psi, \qquad d heta_\omega = 0, \qquad dd^c \omega = 0,$

given in terms of the dual left-invariant differential forms v^1, v^2, v^3, v^4 by

$$\begin{split} \omega_{\mathsf{x}} &= \ell \mathsf{x} \mathsf{v}^{41} + \ell \mathsf{v}^{23}, \\ \Psi_{\mathsf{x}} &= \frac{\ell}{2} (i \mathsf{v}^1 + \mathsf{x} \mathsf{v}^4) \wedge (\mathsf{v}^2 + i \mathsf{v}^3), \end{split}$$

with

- Lee form $\theta_x = -xv^4$,
- complex structure $I_x \cong x \in \mathbb{R}_{>0}$ given by $I_x v_4 = xv_1$, $I_x v_2 = v_3$,
- $H := -d^c \omega_x = \ell v^{123}$,

• Aeppli class on $X_x = (K, I_x)$: $[\omega_x] \cong a := \ell x \in H^{1,1}_A(X_x, \mathbb{R}) \cong \mathbb{R}$.

In complex coordinates, $X_x \cong (\mathbb{C}^2 \setminus \{0\})/\{(z_1, z_2) \sim (e^x z_1, e^x z_2)\}$ (Hopf surface).

Proof: By the above bijection between left-invariant solutions to the Tw. CY equations on K and Killing spinors on g, we get a quadratic Lie algebra

$$\mathfrak{g}_\ell = \mathfrak{k} \oplus \mathfrak{k}^*, \quad \langle \mathbf{v} + lpha, \mathbf{v} + lpha
angle = lpha(\mathbf{v}),$$

$$[\mathbf{v}+\alpha,\mathbf{w}+\beta]_{\ell}=[\mathbf{v},\mathbf{w}]-\beta([\mathbf{v},\cdot])+\alpha([\mathbf{w},\cdot])+\ell i_{\mathbf{w}}i_{\mathbf{v}}\mathbf{v}^{123},$$

with

• generalized metric $V_+^{\times} = \langle v_2 + \ell v^2, v_3 + \ell v^3, v_1 + \ell v^1, v_4 + \ell x^2 v^4 \rangle \subset \mathfrak{g}_\ell$,

• isotropic decomposition $V^x_+\otimes \mathbb{C}=V^{x;1,0}_+\oplus V^{x;0,1}_+$, with

$$V_{+}^{x;1,0} = \langle \epsilon_{1}^{+}, \epsilon_{2}^{+} \rangle, \quad V_{+}^{x;0,1} = \langle \overline{\epsilon}_{1}^{+}, \overline{\epsilon}_{2}^{+} \rangle,$$

where

$$\begin{aligned} \epsilon_1^+ &= \frac{1}{\sqrt{2}} \left(\left(\sqrt{\frac{x}{a}} v_2 + \sqrt{\frac{a}{x}} v^2 \right) - i \left(\sqrt{\frac{x}{a}} v_3 + \sqrt{\frac{a}{x}} v^3 \right) \right), \quad \overline{\epsilon}_1^+ = \overline{\epsilon_1^+}, \\ \epsilon_2^+ &= \frac{1}{\sqrt{2}} \left(\left(\frac{1}{\sqrt{xa}} v_4 + \sqrt{xa} v^4 \right) - i \left(\sqrt{\frac{x}{a}} v_1 + \sqrt{\frac{a}{x}} v^1 \right) \right), \quad \overline{\epsilon}_1^+ = \overline{\epsilon_1^+}. \end{aligned}$$

I_x-holomorphic divergence ε^x₊ = −xv⁴₊ = −¹/₂(¹/_av₄ + xv⁴) (in fact, in the centre of g_ℓ),

With these identifications, the proof follows by direct calculation.

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

Let $K = SU(2) \times U(1)$ and $\ell \in \mathbb{R}_{>0}$. Consider the family of solutions $(V_+^x, \varepsilon_+^x, I_x)$ of the Killing spinor equations on $\mathfrak{g}_\ell = (\mathfrak{k} \oplus \mathfrak{k}^*, [-, -]_\ell)$, for $x \in \mathbb{R}_{>0}$. Then ε_+^x are holomorphic, so we get vertex-algebra embeddings

$$V^{c}(\mathcal{K}(1|2)) \longleftrightarrow V^{2}(\mathfrak{g}_{\ell,super}^{\mathbb{C}}) \longleftrightarrow H^{0}\left(\mathcal{K},\Omega_{\mathcal{K}}^{\mathrm{ch},\mathcal{H}_{\ell}}\right)$$
$$J \longmapsto J^{\mathfrak{g}} \longmapsto J_{x} := J(V_{+}^{x},\varepsilon_{+}^{x},I_{x})$$
$$H \longmapsto H^{\mathfrak{g}} \longmapsto H_{x} := H(V_{+}^{x},\varepsilon_{+}^{x},I_{x})$$

with central charge $c = 6 + 6/\ell$. Furthermore, for all $x \in \mathbb{R}_{>0}$, the solution $(V_+^x, \varepsilon_+^x, I_x)$ is (0, 2)-mirror to the solution $(V_+^{\hat{x}}, \varepsilon_+^{\hat{x}}, -I_{\hat{x}})$, where

$$\hat{x} = \frac{1}{\ell x}$$

More precisely, there is a vertex algebra automorphism

$$\psi \in \operatorname{Aut}\left((\Omega_{\mathcal{K}}^{\operatorname{ch},\mathcal{H}_{\ell}})^{\mathfrak{u}(1)}\right),$$

such that

$$\psi(\mathbf{J}_{\mathbf{x}}) = -\mathbf{J}_{\hat{\mathbf{x}}}, \quad \psi(\mathbf{H}_{\mathbf{x}}) = \mathbf{H}_{\hat{\mathbf{x}}}.$$

N=4 SUSY

Let $K = SU(2) \times U(1)$ and $E_{\ell} = TK \oplus T^*K$, twisted by $H = \ell v^{123}$ for fixed $\ell \in \mathbb{R}_{>0}$. For each $x \in \mathbb{R}_{>0}$, consider the bi-invariant metric on K

$$g_{\ell,x} = \ell(v^1 \otimes v^1 + v^2 \otimes v^2 + v^3 \otimes v^3 + x^2 v^4 \otimes v^4)$$

corresponding to the bi-invariant generalized metric on E_ℓ given by

 $V_{\pm}^{\ell,x} = \{ v \pm g_{\ell,x}(v) \mid v \in \mathfrak{k} \}.$

Then $g_x = \omega_{I_x}(\cdot, I_x \cdot) = \omega_{J_x}(\cdot, J_x \cdot) = \omega_{K_x}(\cdot, K_x \cdot)$ is compatible with the left-invariant hyperholomorphic structure (I_x, J_x, K_x) on K given by $2\Psi_x = \omega_{J_x} + i\omega_{K_x}$.

Theorem (AC, De Arriba De La Hera, Garcia-Fernandez 2020)

The triples $(V_+^x, \varepsilon_+^x, I_x)$, $(V_+^x, \varepsilon_+^x, J_x)$, $(V_+^x, \varepsilon_+^x, K_x)$ are left-invariant solutions of the Killing spinor equations on E_{ℓ} , with fixed Lee form $\theta = -xv^4$. Furthermore, they determine an embedding of the N = 4 superconformal vertex algebra of central charge c = 6:

 $\mathrm{V}^{\mathsf{c}}(\mathcal{K}(1|4)) \longrightarrow \mathrm{V}^{2}(\mathfrak{g}_{super}^{\mathbb{C}}) \longleftrightarrow \mathcal{H}^{0}(\mathcal{K}, \Omega_{\mathcal{K}}^{\mathrm{ch}, \mathcal{H}}),$

Some open problems:

• Find invariant Killing spinors on other groups and homogeneous spaces *M* and study corresponding embeddings

$$\mathrm{V}^{c}\left(\mathcal{K}(1|2)
ight) \longrightarrow \mathrm{V}^{2}\left(\mathfrak{g}_{\ell, super}^{\mathbb{C}}
ight) \longrightarrow \mathcal{H}^{0}\left(\mathcal{M}, \Omega_{\mathcal{M}}^{\mathrm{ch}, \mathcal{H}_{\ell}}
ight).$$

Cortés–Krusche's classification of left-invariant generalized connections on 3-dimensional Lie groups may help here! Construct examples of (0,2) mirrors.

• More generally find when Killing spinors on Courant algebroids *E* induce embeddings on arbitrary complex manifolds:

$$\mathrm{V}^{\mathsf{c}}(\mathcal{K}(1|2)) \hookrightarrow H^{0}\left(M, \mathcal{U}^{\mathsf{E}}\right).$$

Thank you!