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Introduction

The generalized tangent bundle TM := TM @ T*M has a natural nondegenerate symmetric
pairing
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Introduction

The generalized tangent bundle TM := TM @ T*M has a natural nondegenerate symmetric
pairing
1
(X+&Y +n) = S(E(Y) + (X)),

where X +&, Y +neTM
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Introduction

The generalized tangent bundle TM := TM @ T*M has a natural nondegenerate symmetric
pairing
1
(X+&Y +n) = S(E(Y) + (X)),

where X + &£, Y +n € TM and a bracket on I'(TM) defined as
[X+€7 Y+77] = [Xa Y] + Lxn — vy dg,

where X + &, Y 4+ n € T(TM), called the Courant-Dorfman bracket.
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Introduction

The generalized tangent bundle TM := TM @ T*M has a natural nondegenerate symmetric
pairing
1
(X+&Y +n) = S(E(Y) + (X)),

where X + &£, Y +n € TM and a bracket on I'(TM) defined as

X +&Y +n]=[X, Y]+ Lxn — vy ds,
where X + ¢, Y +n € [(TM), called the Courant-Dorfman bracket.
Definition

A Dirac structure is a lagrangian subbundle of TM whose space of sections is closed under the
Courant-Dorfman bracket.
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Introduction

The generalized tangent bundle TM := TM @ T*M has a natural nondegenerate symmetric
pairing
1
(X+&Y +n) = S(E(Y) + (X)),

where X + &£, Y +n € TM and a bracket on I'(TM) defined as

X +&Y +n]=[X, Y]+ Lxn — vy ds,
where X + ¢, Y +n € [(TM), called the Courant-Dorfman bracket.
Definition

A Dirac structure is a lagrangian subbundle of TM whose space of sections is closed under the
Courant-Dorfman bracket. A complex Dirac structure is a Dirac structure on Tc M :=TM ® C.
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Motivation (Dirac structures)

Dirac structures inherit an operation that allow to pullback Poisson bivectors.
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Motivation (Dirac structures)

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let o : M — N be
a map and Ly a Dirac structure on N, the backward of Ly with respect to ¢ is:
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Motivation (Dirac structures)

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let o : M — N be
a map and Ly a Dirac structure on N, the backward of Ly with respect to ¢ is:

Py = {X + ¢"¢| puX + £ € Ly}
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Motivation (Dirac structures)

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let o : M — N be
a map and Ly a Dirac structure on N, the backward of Ly with respect to ¢ is:

Oy = {X+ "¢ puX + £ € Ln}.

'Ly under certain regularity conditions is a Dirac structure.
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Motivation (Dirac structures)

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let o : M — N be
a map and Ly a Dirac structure on N, the backward of Ly with respect to ¢ is:

Oy = {X+ "¢ puX + £ € Ln}.

'Ly under certain regularity conditions is a Dirac structure.

Dirac structures appear in submanifolds of Poisson manifolds:
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Motivation (Dirac structures)

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let o : M — N be
a map and Ly a Dirac structure on N, the backward of Ly with respect to ¢ is:

Oy = {X+ "¢ puX + £ € Ln}.

'Ly under certain regularity conditions is a Dirac structure.

Dirac structures appear in submanifolds of Poisson manifolds: let 7w be a Poisson structure defined
on M with symplectic foliation (O,Qp) and S < M a submanifold.
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Motivation (Dirac structures)

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let o : M — N be
a map and Ly a Dirac structure on N, the backward of Ly with respect to ¢ is:

Oy = {X+ "¢ puX + £ € Ln}.

'Ly under certain regularity conditions is a Dirac structure.

Dirac structures appear in submanifolds of Poisson manifolds: let 7w be a Poisson structure defined

on M with symplectic foliation (O,Qp) and S < M a submanifold. Then, (ONS,1HasQ0) isa
presymplectic foliation not necessarily symplectic.
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Motivation (Dirac structures)

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let o : M — N be
a map and Ly a Dirac structure on N, the backward of Ly with respect to ¢ is:

Oy = {X+ "¢ puX + £ € Ln}.
'Ly under certain regularity conditions is a Dirac structure.

Dirac structures appear in submanifolds of Poisson manifolds: let 7w be a Poisson structure defined

on M with symplectic foliation (O,Qp) and S < M a submanifold. Then, (ONS,15s00) isa
presymplectic foliation not necessarily symplectic. Thus, S does not inherits necessarily a Poisson
bivector from , but (O N S, 1}, ,sQ0) corresponds to the Dirac structure ¢! Graph(w).
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Motivation (complex Dirac structures)

. . . . . .
Given a generalized complex structure L and a submanifold S < M, ¢'L is not necessarily a
generalized complex structure.
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Motivation (complex Dirac structures)

. . . L . .
Given a generalized complex structure L and a submanifold S < M, ¢'L is not necessarily a
generalized complex structure.

Proposition (I. Vaisman [V])
Let N <% M be a submanifold of M and let L be a generalized complex structure on M with

associated bundle map
A g

Then ('L is a generalized complex structure on N if and only if
i) N is a Dirac-Poisson submanifold of (M, ).
i) A(TN) C TN + w(T*M)|y = TN & w(Ann TN).
iii) prryn o A is differentiable, where prry comes from the projection onto TN of the direct sum
of ii).
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However, there are other structures that appear as submanifolds of generalized complex structures
and do not inherit a generalized complex structure, i.e. LN L # 0.
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However, there are other structures that appear as submanifolds of generalized complex structures
and do not inherit a generalized complex structure, i.e. LN L # 0.

a) If (M, J) is a complex manifold and codim S = 1, then S inherits a CR structure.
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However, there are other structures that appear as submanifolds of generalized complex structures
and do not inherit a generalized complex structure, i.e. LN L # 0.

a) If (M, J) is a complex manifold and codim S = 1, then S inherits a CR structure.

b) If (M,w) is a symplectic manifold and codim S = 1, then (S, t*w) is a presymplectic
manifold such that dimker t*w = 1.
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However, there are other structures that appear as submanifolds of generalized complex structures
and do not inherit a generalized complex structure, i.e. LN L # 0.

a) If (M, J) is a complex manifold and codim S = 1, then S inherits a CR structure.

b) If (M,w) is a symplectic manifold and codim S = 1, then (S, t*w) is a presymplectic
manifold such that dimker t*w = 1.

We have the following.
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However, there are other structures that appear as submanifolds of generalized complex structures
and do not inherit a generalized complex structure, i.e. LN L # 0.

a) If (M, J) is a complex manifold and codim S = 1, then S inherits a CR structure.

b) If (M,w) is a symplectic manifold and codim S = 1, then (S, t*w) is a presymplectic
manifold such that dimker t*w = 1.

We have the following.
Proposition
Let L be a generalized complex structure and a codimension-one submanifold S <% M. Then

rank/ LNJL=1.

Workshop in Generalized Geometry in” InteractionJun
Complex Dirac structures: invariants and local descript: (i} /22

Dan Agiiero, UFRJ joint work with R. Rubio



Invariants

Definition

The real index of any lagrangian subbundle L C T¢M is the N-valued function rank(L N L).
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Invariants

Definition

The real index of any lagrangian subbundle L C T¢M is the N-valued function rank(L N L).
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Invariants

Definition

The real index of any lagrangian subbundle L C T¢M is the N-valued function rank(L N L).

Proposition

Let L be any lagrangian subbundle L C TcM. If L has real index r, then there exists a N-valued
function n such that dim M = 2n+ r.
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Invariants

Definition

The real index of any lagrangian subbundle L C T¢M is the N-valued function rank(L N L). )
Proposition

Let L be any lagrangian subbundle L C TcM. If L has real index r, then there exists a N-valued
function n such that dim M = 2n+ r. )

Any lagrangian subbundle L C TcM has associated a isotropic (real) distribution
K=Re(LNL) CTM.
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Invariants

Definition

The real index of any lagrangian subbundle L C T¢M is the N-valued function rank(L N L).

Proposition

Let L be any lagrangian subbundle L C TcM. If L has real index r, then there exists a N-valued
function n such that dim M = 2n +r.

Any lagrangian subbundle L C TcM has associated a isotropic (real) distribution
K =Re(LNL) C TM. KL /K inherits a pairing from TM.

Proposition

A lagrangian subbundle L C TcM with constant real index r, is equivalent to the choice of an
r-dimensional isotropic subbundle K C TM and a bundle map J : K~/K — K /K such that
J?=—1land J*+J =0.
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Invariants

Definition

The real index of any lagrangian subbundle L C T¢M is the N-valued function rank(L N L).

Proposition

Let L be any lagrangian subbundle L C TcM. If L has real index r, then there exists a N-valued
function n such that dim M = 2n +r.

Any lagrangian subbundle L C TcM has associated a isotropic (real) distribution
K =Re(LNL) C TM. KL /K inherits a pairing from TM.

Proposition

A lagrangian subbundle L C TcM with constant real index r, is equivalent to the choice of an
r-dimensional isotropic subbundle K C TM and a bundle map J : K~/K — K /K such that
J?=—1land J*+J =0.
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Consider
E = prrm. L € TMg,

A = Re(ENE),
D =Re(E+E)C TM.
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Consider
E = prrm. L € TMg,

A = Re(ENE),
D =Re(E+E)C TM.

Recall that there exists a skew-symmetric map € : E — E™* such that

L=L(E ) = {X+ &[] = wxe}
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Consider
E = prrm. L € TMg,

A = Re(ENE),
D =Re(E+E)C TM.
Recall that there exists a skew-symmetric map € : E — E™* such that
L=L(E,e) ={X+¢&|&le =txe}

Take
WA = |mE|A c N2A*.
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Consider
E = prrm. L € TMg,

A = Re(ENE),
D =Re(E+E)C TM.
Recall that there exists a skew-symmetric map € : E — E™* such that
L=L(E,e) ={X+¢&|&le =txe}

Take
WA = |mE|A c N2A*.

Proposition (M. Gualtieri [G])

A lagrangian subbundle L C TM has real index zero at a point p € M if and only if D|p, = T,M
and wp |, is nondegenerate.
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Consider
E = prrm. L € TMg,

A = Re(ENE),
D =Re(E+E)C TM.
Recall that there exists a skew-symmetric map € : E — E™* such that
L=L(E,e) ={X+¢&|&le =txe}

Take
WA = |mE|A c N2A*.

Proposition (M. Gualtieri [G])

A lagrangian subbundle L C TM has real index zero at a point p € M if and only if D|, = T,M
and wp |, is nondegenerate.
y
Proposition
Let L be a lagrangian subbundle of TM with real index r at a point p € M. Then
codim D|p + dimkerwa |, = r.
y
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Definition
Let L be a lagrangian subbundle of TM.
i) The order of L is the N-valued function corank D.
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Definition
Let L be a lagrangian subbundle of TM.
i) The order of L is the N-valued function corank D.
i) The type of L is the N-valued function p € M — dim(E + E)|, — dim E|.
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Definition
Let L be a lagrangian subbundle of TM.
i) The order of L is the N-valued function corank D.
ii) The type of L is the N-valued function p € M — dim(E + E)|, — dim E|,..

a) The order is always zero on generalized complex structures.
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Definition
Let L be a lagrangian subbundle of TM.
i) The order of L is the N-valued function corank D.
ii) The type of L is the N-valued function p € M — dim(E + E)|, — dim E|,..

a) The order is always zero on generalized complex structures.

b) This definition of type recovers the type of a generalized complex structure when the real
index is zero.
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Definition
Let L be a lagrangian subbundle of TM.
i) The order of L is the N-valued function corank D.
ii) The type of L is the N-valued function p € M — dim(E + E)|, — dim E|,..

a) The order is always zero on generalized complex structures.

b) This definition of type recovers the type of a generalized complex structure when the real
index is zero.

c) When the real index is r and dimM = 2n+r,

0 <type < n.

Lemma

The real index and the order of a lagrangian subbundle of TcM are upper semi-continuous
functions. Furthermore, the values of the real index have the same parity.
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Proposition
Let L be a lagrangian subbundle of TcM.

i) If L has constant order, then A is smooth.
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Proposition
Let L be a lagrangian subbundle of TcM.
i) If L has constant order, then A is smooth.

ii) If L is a complex Dirac structure with constant real index, then K = Re(LN L) is a Lie
algebroid and ker wp is integrable.
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Proposition
Let L be a lagrangian subbundle of TcM.
i) If L has constant order, then A is smooth.

ii) If L is a complex Dirac structure with constant real index, then K = Re(LN L) is a Lie
algebroid and ker wp is integrable.

We will see that if L has constant order, then (A, wa) is a presymplectic distribution coming from
a (real) Dirac structure.
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Examples

Example (Regular Dirac structures)

Let S C TM be an involutive regular distribution and w € A2S* such that dsw = 0, i.e. L(S,w)
is a regular Dirac structure. Then, L = L(Sg, iwc) is a complex Dirac structure. The real index of
L at p is dimkerw|, + corank S at p € M,

orderp(L) = corank S and type,(L) = 0.
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Examples

Example (Regular Dirac structures)

Let S C TM be an involutive regular distribution and w € A2S* such that dsw = 0, i.e. L(S,w)
is a regular Dirac structure. Then, L = L(Sg, iwc) is a complex Dirac structure. The real index of
L at p is dimkerw|, + corank S at p € M,

orderp(L) = corank S and type,(L) = 0.

Definition

A transverse CR structure is a triple (R, S, J) consisting of two regular distributions
R C S C TM, where R is integrable and a bundle map J : S/R — S/R such that J> = —Id and
1(ker(J(c — ild)) is involutive on TMc.
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Examples

Example (Regular Dirac structures)

Let S C TM be an involutive regular distribution and w € A2S* such that dsw = 0, i.e. L(S,w)
is a regular Dirac structure. Then, L = L(Sg, iwc) is a complex Dirac structure. The real index of
L at p is dimkerw|, + corank S at p € M,

orderp(L) = corank S and type,(L) = 0.

Definition

A transverse CR structure is a triple (R, S, J) consisting of two regular distributions
R C S C TM, where R is integrable and a bundle map J : S/R — S/R such that J> = —Id and
1(ker(J(c — ild)) is involutive on TMc.

CR and transverse holomorphic structures are examples of transverse CR structures.
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Examples

Example (Regular Dirac structures)

Let S C TM be an involutive regular distribution and w € A2S* such that dsw = 0, i.e. L(S,w)
is a regular Dirac structure. Then, L = L(Sg, iwc) is a complex Dirac structure. The real index of
L at p is dimkerw|p + corank S at p € M,

orderp(L) = corank S and type,(L) = 0.

Definition

A transverse CR structure is a triple (R, S, J) consisting of two regular distributions
R C S C TM, where R is integrable and a bundle map J : S/R — S/R such that J> = —Id and
1(ker(J(; — ild)) is involutive on TMc.

CR and transverse holomorphic structures are examples of transverse CR structures.

Example (Transverse CR structure)

Consider the transverse CR structure (R, S, J); E = g~ (ker(Jc — ild)). Since E is involutive in
TMc, the lagrangian subbundle Lg s ;) = L(E,O0) is a complex Dirac structure. The real index of
L(r,s,s) is r = corank S + rank R. Let n be the nonnegative integer such that dim M = 2n + r.
We have that

order(L(r s, ) = corank S and type(L(r,s,s)) = n.
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Classification

Proposition

Let L be a complex Dirac structure with constant real index r over a (2n + r)-dimensional
manifold. We have the following:
a) If L has order s and type 0, then L = eBL(Dc, iwc), where L(Dg, iwc) is the complex Dirac
structure associated to (D,w) where D is a corank-r involutive distribution and w € A2D* is
a presymplectic structure with (r — s)—dimensional kernel on each leaf of D, and B is a not
necessarily closed real two-form such that dpB = 0.
b) If L has order s and type n, then L = eBL(E,0), where L(E,0) is the complex Dirac
structure associated to a transverse CR structure and B € Q%(M,C) is not necessarily closed.J
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Classification

Proposition

Let L be a complex Dirac structure with constant real index r over a (2n + r)-dimensional
manifold. We have the following:
a) If L has order s and type 0, then L = eBL(Dc, iwc), where L(Dg, iwc) is the complex Dirac
structure associated to (D,w) where D is a corank-r involutive distribution and w € A2D* is
a presymplectic structure with (r — s)—dimensional kernel on each leaf of D, and B is a not
necessarily closed real two-form such that dpB = 0.
b) If L has order s and type n, then L = eBL(E,0), where L(E,0) is the complex Dirac
structure associated to a transverse CR structure and B € Q%(M,C) is not necessarily closed.J

At the linear level we obtain a more accurate result.

Workshop in Generalized Geometry in InteractionJun
Complex Dirac structures: invariants and local descript: 12 /22

Dan Agiiero, UFRJ joint work with R. Rubio




Classification

Proposition

Let L be a complex Dirac structure with constant real index r over a (2n + r)-dimensional
manifold. We have the following:
a) If L has order s and type 0, then L = eBL(Dc, iwc), where L(Dg, iwc) is the complex Dirac
structure associated to (D,w) where D is a corank-r involutive distribution and w € A2D* is
a presymplectic structure with (r — s)—dimensional kernel on each leaf of D, and B is a not
necessarily closed real two-form such that dpB = 0.
b) If L has order s and type n, then L = eBL(E,0), where L(E,0) is the complex Dirac
structure associated to a transverse CR structure and B € Q%(M,C) is not necessarily closed.J

At the linear level we obtain a more accurate result.

Proposition

Let L be a complex Dirac structure with real index r and order s. Then L is isomorphic to a
B-transformation of the product of a complex Dirac structure defined by a presymplectic
structure with (r — s)-dimensional kernel with a complex Dirac structure defined by a
codimension-s CR structure.
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Classification

Proposition

Let L be a complex Dirac structure with constant real index r over a (2n + r)-dimensional
manifold. We have the following:

a) If L has order s and type 0, then L = eBL(Dc, iwc), where L(Dg, iwc) is the complex Dirac
structure associated to (D,w) where D is a corank-r involutive distribution and w € A2D* is
a presymplectic structure with (r — s)—dimensional kernel on each leaf of D, and B is a not
necessarily closed real two-form such that dpB = 0.

b) If L has order s and type n, then L = eBL(E,0), where L(E,0) is the complex Dirac
structure associated to a transverse CR structure and B € Q%(M,C) is not necessarily closed.J

At the linear level we obtain a more accurate result.

Proposition

Let L be a complex Dirac structure with real index r and order s. Then L is isomorphic to a
B-transformation of the product of a complex Dirac structure defined by a presymplectic
structure with (r — s)-dimensional kernel with a complex Dirac structure defined by a
codimension-s CR structure.

We recover the classification of generalized complex structures on vector spaces.
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Classification up to B-transformations

order r (A, w) symplectic (D, J) codimension-r CR structure

subspace, codimA = r
order s (A, w) presymplectic (A20=Rtr=s ) x (N2*F5 D, J) (Ao, D, J) transverse CR structure

subspace, codimA = s (A, w) presymplectic space codimD =s,dmAy=r—s

w € N2A*, dimkerw =r —s dimkerw =r—s
(D, J) codimension-s CR structure on N
order 0 (V,w) presymplectic (Ao, V, J) transverse CR structure
space, dimkerw = r dimAg =r
type 0 type k type n
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Associated (real) Dirac structure

Generalized complex structures with bundle map 7 have associated the Poisson bivector

(&) = prrm o J(§).

[} ) = b = = Qv
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Associated (real) Dirac structure

Generalized complex structures with bundle map 7 have associated the Poisson bivector
(&) = prrm o J(€). For a general complex Dirac structure L consider

L=1(A,wa).
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Associated (real) Dirac structure

Generalized complex structures with bundle map 7 have associated the Poisson bivector
(&) = prrm o J(€). For a general complex Dirac structure L consider

L=1(A,wa).

Proposition

If L has constant order, then L is a Dirac structure. If additionally, the real index is to order, then
L is the graph of a Poisson bivector.
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Associated (real) Dirac structure

Generalized complex structures with bundle map 7 have associated the Poisson bivector
(&) = prrm o J(€). For a general complex Dirac structure L consider

L=1(A,wa).

Proposition

If L has constant order, then L is a Dirac structure. If additionally, the real index is to order, then
L is the graph of a Poisson bivector.

Alternatively, R
L= prrmgir=m(LN (TM & T*Mc)).
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Associated (real) Dirac structure

Generalized complex structures with bundle map 7 have associated the Poisson bivector
(&) = prrm o J(€). For a general complex Dirac structure L consider

L=1(A,wa).

Proposition

If L has constant order, then L is a Dirac structure. If additionally, the real index is to order, then
L is the graph of a Poisson bivector.

Alternatively, R
L= prrmgir=m(LN (TM & T*Mc)).

For a regular Dirac structure (D,w), L = L(D,w).
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Associated (real) Dirac structure

Generalized complex structures with bundle map 7 have associated the Poisson bivector
(&) = prrm o J(€). For a general complex Dirac structure L consider

L=1(A,wa).

Proposition

If L has constant order, then L is a Dirac structure. If additionally, the real index is to order, then
L is the graph of a Poisson bivector.

Alternatively, R
L= prrmgir=m(LN (TM & T*Mc)).

For a regular Dirac structure (D,w), L = L(D,w). For a transverse CR structure (R, S, J),
L=R®AnnR.
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Associated (real) Dirac structure

Generalized complex structures with bundle map 7 have associated the Poisson bivector
(&) = prrm o J(€). For a general complex Dirac structure L consider

L=1(A,wa).

Proposition

If L has constant order, then L is a Dirac structure. If additionally, the real index is to order, then
L is the graph of a Poisson bivector.

Alternatively, R
L= prrmgir=m(LN (TM & T*Mc)).

For a regular Dirac structure (D,w), L = L(D,w). For a transverse CR structure (R, S, J),
L = R & Ann R. For the complexification of a Dirac structure we obtain the same Dirac structure
again.
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Associated (real) Dirac structure

Generalized complex structures with bundle map 7 have associated the Poisson bivector
(&) = prrm o J(€). For a general complex Dirac structure L consider

L=1(A,wa).

Proposition

If L has constant order, then L is a Dirac structure. If additionally, the real index is to order, then
L is the graph of a Poisson bivector.

Alternatively, R
L= prrmgir=m(LN (TM & T*Mc)).

For a regular Dirac structure (D,w), L = L(D,w). For a transverse CR structure (R, S, J),

L = R® Ann R. For the complexification of a Dirac structure we obtain the same Dirac structure
again.

Proposition
Let S <% M be a submanifold. Then, J'T = /'L. J
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A foliation with generalized complex leaves

Consider a complex Dirac structure L C T¢ M with constant real index equal to its order.

[} ) = b = = Qv
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A foliation with generalized complex leaves

Consider a complex Dirac structure L C T¢cM with constant real index equal to its order. There
exists a regular distribution D C TM such that K = Ann D.
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A foliation with generalized complex leaves

Consider a complex Dirac structure L C T¢cM with constant real index equal to its order. There
exists a regular distribution D C TM such that K = Ann D. We have that

K- DaeT*M

= =~ D@ D*.
K Ann D @
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A foliation with generalized complex leaves

Consider a complex Dirac structure L C T¢cM with constant real index equal to its order. There
exists a regular distribution D C TM such that K = Ann D. We have that

K- DaeT*M

= =~ D@ D*.
K Ann D @

If D is involutive, then the Dorfman bracket descends to D ¢ D*, obtaining the bracket
X +a,Y +8lp = [X, Y] + LB — 1y dpa,

for X +a, Y + 8 € T(D @ D*),
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A foliation with generalized complex leaves

Consider a complex Dirac structure L C T¢cM with constant real index equal to its order. There
exists a regular distribution D C TM such that K = Ann D. We have that

K- DaeT*M

= =~ D@ D*.
K Ann D @

If D is involutive, then the Dorfman bracket descends to D ¢ D*, obtaining the bracket
[X +a,Y +Blp = [X, Y] + LZB — 1y dpa,
for X + a,Y + B € (D @ D*), where dp is the differential along D and

[,)Eg =xdp + dpux.
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A foliation with generalized complex leaves

Consider a complex Dirac structure L C T¢cM with constant real index equal to its order. There
exists a regular distribution D C TM such that K = Ann D. We have that

K- DaeT*M

= =~ D@ D*.
K Ann D @

If D is involutive, then the Dorfman bracket descends to D ¢ D*, obtaining the bracket
X+, Y +8lp=[X, Y]+ LB —rydpa,
for X + a,Y + B € (D @ D*), where dp is the differential along D and
LY =xdp + dpix.

The bundle D @ D* is a Courant algebroid with the natural pairing, bracket and anchor.

Lemma J
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A foliation with generalized complex leaves

Consider a complex Dirac structure L C T¢cM with constant real index equal to its order. There
exists a regular distribution D C TM such that K = Ann D. We have that

K- DaeT*M

= =~ D@ D*.
K Ann D @

If D is involutive, then the Dorfman bracket descends to D ¢ D*, obtaining the bracket
X+, Y +8lp=[X, Y]+ LB —rydpa,
for X + a,Y + B € (D @ D*), where dp is the differential along D and
LY =xdp + dpix.

The bundle D @ D* is a Courant algebroid with the natural pairing, bracket and anchor.

Lemma J

Consider the quotient map q: (D& T*M)¢c — (D & D*)c.
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A foliation with generalized complex leaves

Consider a complex Dirac structure L C T¢cM with constant real index equal to its order. There
exists a regular distribution D C TM such that K = Ann D. We have that

K- DaeT*M

= =~ D@ D*.
K Ann D @

If D is involutive, then the Dorfman bracket descends to D ¢ D*, obtaining the bracket
X+, Y +8lp=[X, Y]+ LB —rydpa,
for X +a,Y + B € (D ® D*), where dp is the differential along D and
LY =xdp + dpix.

The bundle D @ D* is a Courant algebroid with the natural pairing, bracket and anchor.

Lemma J

Consider the quotient map g : (D & T*M)c — (D & D*)¢. The distribution g(L) is a lagrangian
subbundle of (D @ D*)¢ with real index zero.
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Lemma

Let L be a lagrangian subbundle of TcM such that LN L = (Ann D)¢. If D is involutive, then L is
involutive if and only if q(L) is involutive.

[} ) = b = = Qv
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Lemma

Let L be a lagrangian subbundle of Tc M such that LN L = (Ann D)c. If D is involutive, then L is
involutive if and only if q(L) is involutive.

If S is a leaf of D, then g(L)|s is a lagrangian subbundle of T¢S.
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Lemma

Let L be a lagrangian subbundle of Tc M such that LN L = (Ann D)c. If D is involutive, then L is
involutive if and only if q(L) is involutive.

If S is a leaf of D, then g(L)|s is a lagrangian subbundle of T¢S. Actually we have more.
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Lemma

Let L be a lagrangian subbundle of TcM such that LN L = (Ann D)c. If D is involutive, then L is
involutive if and only if q(L) is involutive.

If S is a leaf of D, then g(L)|s is a lagrangian subbundle of T¢S. Actually we have more.

Proposition

Let L be a complex Dirac structure with constant real index equal to its order such that
LN L= (AnnD)c. If the distribution D is involutive and S is a leaf of D, then q(L)|s is a
generalized complex structure over S.

Workshop in Generalized Geometry in InteractionJun
Complex Dirac structures: invariants and local descript: 1li /22

Dan Agiiero, UFRJ joint work with R. Rubio



Lemma

Let L be a lagrangian subbundle of TcM such that LN L = (Ann D)c. If D is involutive, then L is
involutive if and only if q(L) is involutive.

If S is a leaf of D, then g(L)|s is a lagrangian subbundle of T¢S. Actually we have more.

Proposition

Let L be a complex Dirac structure with constant real index equal to its order such that
LN L= (AnnD)c. If the distribution D is involutive and S is a leaf of D, then q(L)|s is a
generalized complex structure over S.

This example appeared in the work of D. Li-Bland [L] with the name of a generalized CR
structure.
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Splitting theorem

Theorem (Splitting theorem for Dirac structures, C. Blohmann [BI])

Let L be a Dirac structure on M and p € M. Let N < M be a submanifold containing p, such
that T,N is complement to P = prrpL|p. Then, there exist a neighbourhood U of p, a two-form
B € Q2/(P x N) such that

Ly =Bl x L),

where L., is the Dirac structure associated to the presymplectic leaf passing through p and
L' = 'L = Graph(r) for some Poisson structure 7 over N vanishing at p.
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Splitting theorem

Theorem (Splitting theorem for Dirac structures, C. Blohmann [BI])

Let L be a Dirac structure on M and p € M. Let N < M be a submanifold containing p, such
that T,N is complement to P = prrpL|p. Then, there exist a neighbourhood U of p, a two-form
B € Q2/(P x N) such that

Ly =Bl x L),

where L, is the Dirac structure associated to the presymplectic leaf passing through p and
L' = 'L = Graph(r) for some Poisson structure 7 over N vanishing at p.

Theorem (Splitting theorem for generalized complex structures, M. Abouzaid-M.
Boyarchenko [AB])

Let L be a generalized complex structure and let p € M. Then, there exists a neighborhood U, a
closed two-form B, a symplectic structure w and a generalized complex structure L' such that

L‘U = eB(L' X Liw)~

Moreover, the Poisson structure associated to L' vanishes at p.
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Theorem

Let L be a complex Dirac structure of TcM with constant real index r and order s and a point
p € M of type k. Consider a (2k + s)-dimensional submanifold N C U 4 M of complementary
dimension to the presymplectic leaf passing through and transversal to [ at p, i.e.
ToN @ A|p = ToM. Then there exist a neighbourhood U of p and a closed real two-form B
defined on U, such that

Ly = eB('L x Liy,),

where 1'L is a complex Dirac structure with constant real index s and order s and having
associated Poisson bivector vanishing at p, L;,, is the complex Dirac structure associated to the
presymplectic leaf S passing through p.
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Corollary

Let L be a complex Dirac structure with constant real index r and order s and let p be a regular
point of type k. Then there exist a neighbourhood U of p such that

Lly 22 eB(Lp sy X Liwen),

where L, is the graph of the canonical presymplectic structure on R2An=K)+r=s \ith kernel of
dimension r —s, L(p ) is the complex Dirac structure associated to a CR structure of codimension

s over N and B is a real two-form on M which is closed on the directions of R2(n—k)+r—s. y
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