
Complex Dirac structures: invariants and local description
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Introduction

The generalized tangent bundle TM := TM ⊕ T∗M has a natural nondegenerate symmetric
pairing

⟨X + ξ,Y + η⟩ =
1

2
(ξ(Y ) + η(X )),

where X + ξ,Y + η ∈ TM and a bracket on Γ(TM) defined as

[X + ξ,Y + η] = [X ,Y ] + LX η − ιY dξ,

where X + ξ,Y + η ∈ Γ(TM), called the Courant-Dorfman bracket.

Definition

A Dirac structure is a lagrangian subbundle of TM whose space of sections is closed under the
Courant-Dorfman bracket. A complex Dirac structure is a Dirac structure on TCM := TM ⊗ C.
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Motivation (Dirac structures)

Dirac structures inherit an operation that allow to pullback Poisson bivectors.

Let φ : M → N be
a map and LN a Dirac structure on N, the backward of LN with respect to φ is:

φ!LN = {X + φ∗ξ | φ∗X + ξ ∈ LN}.

φ!LN under certain regularity conditions is a Dirac structure.

Dirac structures appear in submanifolds of Poisson manifolds: let π be a Poisson structure defined

on M with symplectic foliation (O,ΩO) and S
ι
↪−→ M a submanifold. Then, (O ∩ S , ι∗O∩SΩO) is a

presymplectic foliation not necessarily symplectic. Thus, S does not inherits necessarily a Poisson
bivector from π, but (O ∩ S , ι∗O∩SΩO) corresponds to the Dirac structure ι!Graph(π).
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Motivation (complex Dirac structures)

Given a generalized complex structure L and a submanifold S
ι
↪−→ M, ι!L is not necessarily a

generalized complex structure.

Proposition (I. Vaisman [V])

Let N
ι
↪−→ M be a submanifold of M and let L be a generalized complex structure on M with

associated bundle map

J =

(
A π
σ −A∗

)
.

Then ι!L is a generalized complex structure on N if and only if

i) N is a Dirac-Poisson submanifold of (M, π).

ii) A(TN) ⊆ TN + π(T∗M)|N = TN ⊕ π(AnnTN).

iii) prTN ◦ A is differentiable, where prTN comes from the projection onto TN of the direct sum
of ii).
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However, there are other structures that appear as submanifolds of generalized complex structures
and do not inherit a generalized complex structure, i.e. L ∩ L ̸= 0.

a) If (M, J) is a complex manifold and codim S = 1, then S inherits a CR structure.

b) If (M, ω) is a symplectic manifold and codim S = 1, then (S, ι∗ω) is a presymplectic
manifold such that dim ker ι∗ω = 1.

We have the following.

Proposition

Let L be a generalized complex structure and a codimension-one submanifold S
ι
↪−→ M. Then

rank ι!L ∩ ι!L = 1.
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Invariants

Definition

The real index of any lagrangian subbundle L ⊆ TCM is the N-valued function rank(L ∩ L).

Proposition

Let L be any lagrangian subbundle L ⊆ TCM. If L has real index r , then there exists a N-valued
function n such that dimM = 2n + r .

Any lagrangian subbundle L ⊆ TCM has associated a isotropic (real) distribution
K = Re(L ∩ L) ⊆ TM. K⊥/K inherits a pairing from TM.

Proposition

A lagrangian subbundle L ⊆ TCM with constant real index r , is equivalent to the choice of an
r-dimensional isotropic subbundle K ⊆ TM and a bundle map J : K⊥/K → K⊥/K such that
J 2 = −1 and J ∗ + J = 0.
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Consider
E = prTMCL ⊆ TMC,

∆ = Re(E ∩ E),

D = Re(E + E) ⊆ TM.

Recall that there exists a skew-symmetric map ε : E → E∗ such that

L = L(E , ε) = {X + ξ | ξ|E = ιX ε}.

Take
ω∆ = Im ε|∆ ∈ ∧2∆∗.

Proposition (M. Gualtieri [G])

A lagrangian subbundle L ⊆ TM has real index zero at a point p ∈ M if and only if D|p = TpM
and ω∆|p is nondegenerate.

Proposition

Let L be a lagrangian subbundle of TM with real index r at a point p ∈ M. Then

codimD|p + dim kerω∆|p = r .
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Definition

Let L be a lagrangian subbundle of TM.

i) The order of L is the N-valued function corankD.

ii) The type of L is the N-valued function p ∈ M → dim(E + E)|p − dimE |p .

a) The order is always zero on generalized complex structures.

b) This definition of type recovers the type of a generalized complex structure when the real
index is zero.

c) When the real index is r and dimM = 2n + r ,

0 ≤ type ≤ n.

Lemma

The real index and the order of a lagrangian subbundle of TCM are upper semi-continuous
functions. Furthermore, the values of the real index have the same parity.
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Dan Agüero, UFRJ joint work with R. Rubio Complex Dirac structures: invariants and local description
Workshop in Generalized Geometry in InteractionJune 2022
9 / 22



Proposition

Let L be a lagrangian subbundle of TCM.

i) If L has constant order, then ∆ is smooth.

ii) If L is a complex Dirac structure with constant real index, then K = Re(L ∩ L) is a Lie
algebroid and kerω∆ is integrable.

We will see that if L has constant order, then (∆, ω∆) is a presymplectic distribution coming from
a (real) Dirac structure.
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Examples

Example (Regular Dirac structures)

Let S ⊆ TM be an involutive regular distribution and ω ∈ ∧2S∗ such that dSω = 0, i.e. L(S, ω)
is a regular Dirac structure. Then, L = L(SC, iωC) is a complex Dirac structure. The real index of
L at p is dim kerω|p + corankS at p ∈ M,

orderp(L) = corankS and typep(L) = 0.

Definition

A transverse CR structure is a triple (R, S , J) consisting of two regular distributions
R ⊆ S ⊆ TM, where R is integrable and a bundle map J : S/R → S/R such that J2 = −Id and
q−1(ker(JC − iId)) is involutive on TMC.

CR and transverse holomorphic structures are examples of transverse CR structures.

Example (Transverse CR structure)

Consider the transverse CR structure (R, S , J); E = q−1(ker(JC − iId)). Since E is involutive in
TMC, the lagrangian subbundle L(R,S,J) = L(E , 0) is a complex Dirac structure. The real index of
L(R,S,J) is r = corankS + rankR. Let n be the nonnegative integer such that dimM = 2n + r .
We have that

order(L(R,S,J)) = corankS and type(L(R,S,J)) = n.
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Classification

Proposition

Let L be a complex Dirac structure with constant real index r over a (2n + r)-dimensional
manifold. We have the following:

a) If L has order s and type 0, then L = eBL(DC, iωC), where L(DC, iωC) is the complex Dirac
structure associated to (D, ω) where D is a corank-r involutive distribution and ω ∈ ∧2D∗ is
a presymplectic structure with (r − s)−dimensional kernel on each leaf of D, and B is a not
necessarily closed real two-form such that dDB = 0.

b) If L has order s and type n, then L = eBL(E , 0), where L(E , 0) is the complex Dirac
structure associated to a transverse CR structure and B ∈ Ω2(M,C) is not necessarily closed.

At the linear level we obtain a more accurate result.

Proposition

Let L be a complex Dirac structure with real index r and order s. Then L is isomorphic to a
B-transformation of the product of a complex Dirac structure defined by a presymplectic
structure with (r − s)-dimensional kernel with a complex Dirac structure defined by a
codimension-s CR structure.

We recover the classification of generalized complex structures on vector spaces.
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Classification up to B-transformations

order r (∆, ω) symplectic (D, J) codimension-r CR structure
subspace, codim∆ = r

order s (∆, ω) presymplectic (∆2(n−k)+r−s , ω)× (N2k+s ,D, J) (∆0,D, J) transverse CR structure
subspace, codim∆ = s (∆, ω) presymplectic space codimD = s, dim∆0 = r − s

ω ∈ ∧2∆∗, dim kerω = r − s dim kerω = r − s
(D, J) codimension-s CR structure on N

order 0 (V , ω) presymplectic (∆0,V , J) transverse CR structure
space, dim kerω = r dim∆0 = r

type 0 type k type n
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Associated (real) Dirac structure

Generalized complex structures with bundle map J have associated the Poisson bivector
π(ξ) = prTM ◦ J (ξ).

For a general complex Dirac structure L consider

L̂ = L(∆, ω∆).

Proposition

If L has constant order, then L̂ is a Dirac structure. If additionally, the real index is to order, then
L̂ is the graph of a Poisson bivector.

Alternatively,
L̂ = prTM⊕iT∗M(L ∩ (TM ⊕ T∗MC)).

For a regular Dirac structure (D, ω), L̂ = L(D, ω). For a transverse CR structure (R, S , J),

L̂ = R ⊕ AnnR. For the complexification of a Dirac structure we obtain the same Dirac structure
again.

Proposition

Let S
ι
↪−→ M be a submanifold. Then, ι!L̂ = ι̂!L.
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A foliation with generalized complex leaves

Consider a complex Dirac structure L ⊂ TCM with constant real index equal to its order.

There
exists a regular distribution D ⊆ TM such that K = AnnD. We have that

K⊥

K
=

D ⊕ T∗M

AnnD
∼= D ⊕ D∗.

If D is involutive, then the Dorfman bracket descends to D ⊕ D∗, obtaining the bracket

[X + α,Y + β]D = [X ,Y ] + LD
Xβ − ıY dDα,

for X + α,Y + β ∈ Γ(D ⊕ D∗), where dD is the differential along D and

LD
X = ıXdD + dD ıX .

Lemma

The bundle D ⊕ D∗ is a Courant algebroid with the natural pairing, bracket and anchor.

Consider the quotient map q : (D ⊕ T∗M)C → (D ⊕ D∗)C. The distribution q(L) is a lagrangian
subbundle of (D ⊕ D∗)C with real index zero.
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Lemma

Let L be a lagrangian subbundle of TCM such that L∩ L = (AnnD)C. If D is involutive, then L is
involutive if and only if q(L) is involutive.

If S is a leaf of D, then q(L)|S is a lagrangian subbundle of TCS . Actually we have more.

Proposition

Let L be a complex Dirac structure with constant real index equal to its order such that
L ∩ L = (AnnD)C. If the distribution D is involutive and S is a leaf of D, then q(L)|S is a
generalized complex structure over S.

This example appeared in the work of D. Li-Bland [L] with the name of a generalized CR
structure.
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Splitting theorem

Theorem (Splitting theorem for Dirac structures, C. Blohmann [Bl])

Let L be a Dirac structure on M and p ∈ M. Let N
ι
↪−→ M be a submanifold containing p, such

that TpN is complement to P = prTML|p . Then, there exist a neighbourhood U of p, a two-form
B ∈ Ω2

cl (P × N) such that

L|U ∼= eB(L′ × Lω),

where Lω is the Dirac structure associated to the presymplectic leaf passing through p and
L′ = ι!L = Graph(π) for some Poisson structure π over N vanishing at p.

Theorem (Splitting theorem for generalized complex structures, M. Abouzaid-M.
Boyarchenko [AB])

Let L be a generalized complex structure and let p ∈ M. Then, there exists a neighborhood U, a
closed two-form B, a symplectic structure ω and a generalized complex structure L′ such that

L|U ∼= eB(L′ × Liω).

Moreover, the Poisson structure associated to L′ vanishes at p.
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Theorem

Let L be a complex Dirac structure of TCM with constant real index r and order s and a point

p ∈ M of type k. Consider a (2k + s)-dimensional submanifold N ⊆ U
ι
↪−→ M of complementary

dimension to the presymplectic leaf passing through and transversal to L̂ at p, i.e.
TpN ⊕∆|p = TpM. Then there exist a neighbourhood U of p and a closed real two-form B
defined on U, such that

L|U ∼= eB(ι!L× Liω),

where ι!L is a complex Dirac structure with constant real index s and order s and having
associated Poisson bivector vanishing at p, Liω is the complex Dirac structure associated to the
presymplectic leaf S passing through p.
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Corollary

Let L be a complex Dirac structure with constant real index r and order s and let p be a regular
point of type k. Then there exist a neighbourhood U of p such that

L|U ∼= eB(L(D,J) × Liωcan ),

where Liωcan is the graph of the canonical presymplectic structure on R2(n−k)+r−s with kernel of
dimension r − s, L(D,J) is the complex Dirac structure associated to a CR structure of codimension

s over N and B is a real two-form on M which is closed on the directions of R2(n−k)+r−s .
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Thanks!
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