### Complex Dirac structures: invariants and local description

Dan Agüero, UFRJ joint work with R. Rubio

# Workshop in Generalized Geometry in Interaction June 2022

Workshop in Generalized Geometry in Interaction Jun

Dan Agüero, UFRJ joint work with R. Rubio Complex Dirac structures: invariants and local descript 1/22

# Outline

Preliminaries



Invariants

Examples

Associated (real) Dirac structure

6 Splitting theorems Bibliography



The generalized tangent bundle  $\mathbb{T}M := TM \oplus T^*M$  has a natural nondegenerate symmetric pairing

The generalized tangent bundle  $\mathbb{T}M := TM \oplus T^*M$  has a natural nondegenerate symmetric pairing

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2}(\xi(Y) + \eta(X)),$$

where  $X + \xi$ ,  $Y + \eta \in \mathbb{T}M$ 

The generalized tangent bundle  $\mathbb{T}M := TM \oplus T^*M$  has a natural nondegenerate symmetric pairing

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2}(\xi(Y) + \eta(X))$$

where  $X + \xi$ ,  $Y + \eta \in \mathbb{T}M$  and a bracket on  $\Gamma(\mathbb{T}M)$  defined as

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \iota_Y d\xi,$$

where  $X + \xi$ ,  $Y + \eta \in \Gamma(\mathbb{T}M)$ , called the Courant-Dorfman bracket.

The generalized tangent bundle  $\mathbb{T}M := TM \oplus T^*M$  has a natural nondegenerate symmetric pairing

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2} (\xi(Y) + \eta(X)),$$

where  $X + \xi$ ,  $Y + \eta \in \mathbb{T}M$  and a bracket on  $\Gamma(\mathbb{T}M)$  defined as

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \iota_Y d\xi,$$

where  $X + \xi$ ,  $Y + \eta \in \Gamma(\mathbb{T}M)$ , called the Courant-Dorfman bracket.

#### Definition

A **Dirac structure** is a lagrangian subbundle of  $\mathbb{T}M$  whose space of sections is closed under the Courant-Dorfman bracket.

The generalized tangent bundle  $\mathbb{T}M := TM \oplus T^*M$  has a natural nondegenerate symmetric pairing

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2} (\xi(Y) + \eta(X)),$$

where  $X + \xi$ ,  $Y + \eta \in \mathbb{T}M$  and a bracket on  $\Gamma(\mathbb{T}M)$  defined as

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \iota_Y d\xi,$$

where  $X + \xi$ ,  $Y + \eta \in \Gamma(\mathbb{T}M)$ , called the Courant-Dorfman bracket.

#### Definition

A **Dirac structure** is a lagrangian subbundle of  $\mathbb{T}M$  whose space of sections is closed under the Courant-Dorfman bracket. A **complex Dirac structure** is a Dirac structure on  $\mathbb{T}_{\mathbb{C}}M := \mathbb{T}M \otimes \mathbb{C}$ .

Dirac structures inherit an operation that allow to pullback Poisson bivectors.

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let  $\varphi : M \to N$  be a map and  $L_N$  a Dirac structure on N, the backward of  $L_N$  with respect to  $\varphi$  is:

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let  $\varphi: M \to N$  be a map and  $L_N$  a Dirac structure on N, the backward of  $L_N$  with respect to  $\varphi$  is:

$$\varphi^! L_N = \{ X + \varphi^* \xi \mid \varphi_* X + \xi \in L_N \}.$$

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let  $\varphi : M \to N$  be a map and  $L_N$  a Dirac structure on N, the backward of  $L_N$  with respect to  $\varphi$  is:

$$\varphi^! L_N = \{ X + \varphi^* \xi \mid \varphi_* X + \xi \in L_N \}.$$

 $\varphi^! L_N$  under certain regularity conditions is a Dirac structure.

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let  $\varphi : M \to N$  be a map and  $L_N$  a Dirac structure on N, the backward of  $L_N$  with respect to  $\varphi$  is:

$$\varphi^! L_N = \{ X + \varphi^* \xi \mid \varphi_* X + \xi \in L_N \}.$$

 $\varphi^! L_N$  under certain regularity conditions is a Dirac structure.

Dirac structures appear in submanifolds of Poisson manifolds:

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let  $\varphi : M \to N$  be a map and  $L_N$  a Dirac structure on N, the backward of  $L_N$  with respect to  $\varphi$  is:

$$\varphi^! L_N = \{ X + \varphi^* \xi \mid \varphi_* X + \xi \in L_N \}.$$

 $\varphi^! L_N$  under certain regularity conditions is a Dirac structure.

Dirac structures appear in submanifolds of Poisson manifolds: let  $\pi$  be a Poisson structure defined on M with symplectic foliation  $(\mathcal{O}, \Omega_{\mathcal{O}})$  and  $S \stackrel{\iota}{\hookrightarrow} M$  a submanifold.

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let  $\varphi : M \to N$  be a map and  $L_N$  a Dirac structure on N, the backward of  $L_N$  with respect to  $\varphi$  is:

$$\varphi^! L_N = \{ X + \varphi^* \xi \mid \varphi_* X + \xi \in L_N \}.$$

 $\varphi^! L_N$  under certain regularity conditions is a Dirac structure.

Dirac structures appear in submanifolds of Poisson manifolds: let  $\pi$  be a Poisson structure defined on M with symplectic foliation  $(\mathcal{O}, \Omega_{\mathcal{O}})$  and  $S \xrightarrow{\iota} M$  a submanifold. Then,  $(\mathcal{O} \cap S, \iota^*_{\mathcal{O} \cap S} \Omega_{\mathcal{O}})$  is a presymplectic foliation not necessarily symplectic.

Dirac structures inherit an operation that allow to pullback Poisson bivectors. Let  $\varphi: M \to N$  be a map and  $L_N$  a Dirac structure on N, the backward of  $L_N$  with respect to  $\varphi$  is:

$$\varphi^! L_N = \{ X + \varphi^* \xi \mid \varphi_* X + \xi \in L_N \}.$$

 $\varphi^! L_N$  under certain regularity conditions is a Dirac structure.

Dirac structures appear in submanifolds of Poisson manifolds: let  $\pi$  be a Poisson structure defined on M with symplectic foliation  $(\mathcal{O}, \Omega_{\mathcal{O}})$  and  $S \stackrel{\iota}{\to} M$  a submanifold. Then,  $(\mathcal{O} \cap S, \iota^*_{\mathcal{O} \cap S} \Omega_{\mathcal{O}})$  is a presymplectic foliation not necessarily symplectic. Thus, S does not inherits necessarily a Poisson bivector from  $\pi$ , but  $(\mathcal{O} \cap S, \iota^*_{\mathcal{O} \cap S} \Omega_{\mathcal{O}})$  corresponds to the Dirac structure  $\iota^! Graph(\pi)$ .

# Motivation (complex Dirac structures)

Given a generalized complex structure L and a submanifold  $S \stackrel{\iota}{\hookrightarrow} M$ ,  $\iota^! L$  is not necessarily a generalized complex structure.

# Motivation (complex Dirac structures)

Given a generalized complex structure L and a submanifold  $S \stackrel{\iota}{\hookrightarrow} M$ ,  $\iota^! L$  is not necessarily a generalized complex structure.

### Proposition (I. Vaisman [V])

Let  $N \stackrel{\iota}{\hookrightarrow} M$  be a submanifold of M and let L be a generalized complex structure on M with associated bundle map

$$\mathcal{J} = \begin{pmatrix} \mathsf{A} & \pi \\ \sigma & -\mathsf{A}^* \end{pmatrix}.$$

Then  $\iota^{!}L$  is a generalized complex structure on N if and only if

- i) N is a Dirac-Poisson submanifold of  $(M, \pi)$ .
- ii)  $A(TN) \subseteq TN + \pi(T^*M)|_N = TN \oplus \pi(Ann TN).$
- iii) pr<sub>TN</sub> o A is differentiable, where pr<sub>TN</sub> comes from the projection onto TN of the direct sum of ii).

a) If (M, J) is a complex manifold and codim S = 1, then S inherits a CR structure.



- a) If (M, J) is a complex manifold and codim S = 1, then S inherits a CR structure.
- b) If  $(M, \omega)$  is a symplectic manifold and codim S = 1, then  $(S, \iota^* \omega)$  is a presymplectic manifold such that dim ker  $\iota^* \omega = 1$ .

- a) If (M, J) is a complex manifold and codim S = 1, then S inherits a CR structure.
- b) If  $(M, \omega)$  is a symplectic manifold and codim S = 1, then  $(S, \iota^* \omega)$  is a presymplectic manifold such that dim ker  $\iota^* \omega = 1$ .

We have the following.

- a) If (M, J) is a complex manifold and codim S = 1, then S inherits a CR structure.
- b) If  $(M, \omega)$  is a symplectic manifold and codim S = 1, then  $(S, \iota^* \omega)$  is a presymplectic manifold such that dim ker  $\iota^* \omega = 1$ .

We have the following.

#### Proposition

Let L be a generalized complex structure and a codimension-one submanifold  $S \stackrel{\iota}{\hookrightarrow} M$ . Then

 $\operatorname{\mathsf{rank}}\iota^!L\cap\overline{\iota^!L}=1.$ 

Workshop in Generalized Geometry in Interaction

Dan Agüero, UFRJ joint work with R. Rubio Complex Dirac structures: invariants and local descript 6/22

### Definition

The real index of any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  is the  $\mathbb{N}$ -valued function rank $(L \cap \overline{L})$ .

### Definition

The real index of any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  is the  $\mathbb{N}$ -valued function rank $(L \cap \overline{L})$ .

### Definition

The real index of any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  is the  $\mathbb{N}$ -valued function rank $(L \cap \overline{L})$ .

#### Proposition

Let L be any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$ . If L has real index r, then there exists a  $\mathbb{N}$ -valued function n such that dim M = 2n + r.

### Definition

The real index of any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  is the  $\mathbb{N}$ -valued function rank $(L \cap \overline{L})$ .

### Proposition

Let L be any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$ . If L has real index r, then there exists a  $\mathbb{N}$ -valued function n such that dim M = 2n + r.

Workshop in Generalized Geometry in Interaction Jun

Any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  has associated a isotropic (real) distribution  $K = \operatorname{Re}(L \cap \overline{L}) \subseteq \mathbb{T}M$ .

### Definition

The real index of any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  is the  $\mathbb{N}$ -valued function rank $(L \cap \overline{L})$ .

#### Proposition

Let L be any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$ . If L has real index r, then there exists a  $\mathbb{N}$ -valued function n such that dim M = 2n + r.

Any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  has associated a isotropic (real) distribution  $K = \operatorname{Re}(L \cap \overline{L}) \subseteq \mathbb{T}M$ .  $K^{\perp}/K$  inherits a pairing from  $\mathbb{T}M$ .

### Proposition

A lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  with constant real index r, is equivalent to the choice of an r-dimensional isotropic subbundle  $K \subseteq \mathbb{T}M$  and a bundle map  $\mathcal{J} : K^{\perp}/K \to K^{\perp}/K$  such that  $\mathcal{J}^2 = -1$  and  $\mathcal{J}^* + \mathcal{J} = 0$ .

### Definition

The real index of any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  is the  $\mathbb{N}$ -valued function rank $(L \cap \overline{L})$ .

#### Proposition

Let L be any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$ . If L has real index r, then there exists a  $\mathbb{N}$ -valued function n such that dim M = 2n + r.

Any lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  has associated a isotropic (real) distribution  $K = \operatorname{Re}(L \cap \overline{L}) \subseteq \mathbb{T}M$ .  $K^{\perp}/K$  inherits a pairing from  $\mathbb{T}M$ .

### Proposition

A lagrangian subbundle  $L \subseteq \mathbb{T}_{\mathbb{C}}M$  with constant real index r, is equivalent to the choice of an r-dimensional isotropic subbundle  $K \subseteq \mathbb{T}M$  and a bundle map  $\mathcal{J} : K^{\perp}/K \to K^{\perp}/K$  such that  $\mathcal{J}^2 = -1$  and  $\mathcal{J}^* + \mathcal{J} = 0$ .

$$E = pr_{TM_{\mathbb{C}}}L \subseteq TM_{\mathbb{C}},$$
$$\Delta = \operatorname{Re}(E \cap \overline{E}),$$
$$D = \operatorname{Re}(E + \overline{E}) \subseteq TM.$$

$$E = pr_{TM_{\mathbb{C}}}L \subseteq TM_{\mathbb{C}},$$
  
 $\Delta = \operatorname{Re}(E \cap \overline{E}),$   
 $D = \operatorname{Re}(E + \overline{E}) \subseteq TM.$ 

Recall that there exists a skew-symmetric map  $\varepsilon: {\it E} \rightarrow {\it E}^*$  such that

$$L = L(E, \varepsilon) = \{X + \xi \mid \xi|_E = \iota_X \varepsilon\}.$$

$$egin{aligned} & \mathcal{E} = \mathit{pr}_{T\mathcal{M}_{\mathbb{C}}} L \subseteq T\mathcal{M}_{\mathbb{C}}, \ & \Delta = \operatorname{Re}(\mathcal{E} \cap \overline{\mathcal{E}}), \ & \mathcal{D} = \operatorname{Re}(\mathcal{E} + \overline{\mathcal{E}}) \subseteq T\mathcal{M}. \end{aligned}$$

Recall that there exists a skew-symmetric map  $\varepsilon: E \to E^*$  such that

$$L = L(E, \varepsilon) = \{X + \xi \mid \xi|_E = \iota_X \varepsilon\}.$$

Take

$$\omega_{\Delta} = \operatorname{Im} \varepsilon|_{\Delta} \in \wedge^2 \Delta^*.$$

$$E = pr_{TM_{\mathbb{C}}}L \subseteq TM_{\mathbb{C}},$$
$$\Delta = \operatorname{Re}(E \cap \overline{E}),$$
$$D = \operatorname{Re}(E + \overline{E}) \subseteq TM.$$

Recall that there exists a skew-symmetric map  $arepsilon: E o E^*$  such that

$$L = L(E,\varepsilon) = \{X + \xi \mid \xi|_E = \iota_X \varepsilon\}.$$

Take

$$\omega_{\Delta} = \operatorname{Im} \varepsilon|_{\Delta} \in \wedge^2 \Delta^*.$$

#### Proposition (M. Gualtieri [G])

A lagrangian subbundle  $L \subseteq \mathbb{T}M$  has real index zero at a point  $p \in M$  if and only if  $D|_p = T_pM$ and  $\omega_{\Delta|p}$  is nondegenerate.

$$E = pr_{TM_{\mathbb{C}}}L \subseteq TM_{\mathbb{C}},$$
$$\Delta = \operatorname{Re}(E \cap \overline{E}),$$
$$D = \operatorname{Re}(E + \overline{E}) \subseteq TM.$$

Recall that there exists a skew-symmetric map  $\varepsilon: E \to E^*$  such that

$$L = L(E,\varepsilon) = \{X + \xi \mid \xi|_E = \iota_X \varepsilon\}.$$

Take

$$\omega_{\Delta} = \operatorname{Im} \varepsilon|_{\Delta} \in \wedge^2 \Delta^*.$$

#### Proposition (M. Gualtieri [G])

A lagrangian subbundle  $L \subseteq \mathbb{T}M$  has real index zero at a point  $p \in M$  if and only if  $D|_p = T_pM$ and  $\omega_{\Delta|p}$  is nondegenerate.

#### Proposition

Let L be a lagrangian subbundle of  $\mathbb{T}M$  with real index r at a point  $p \in M$ . Then

$$\operatorname{codim} D|_{p} + \operatorname{dim} \ker \omega_{\Delta|p} = r.$$

Workshop in Generalized Geometry in Interaction Jur

Dan Agüero, UFRJ joint work with R. Rubio Complex Dirac structures: invariants and local descript 8/22

### Definition

Let L be a lagrangian subbundle of  $\mathbb{T}M$ .

i) The order of L is the  $\mathbb{N}$ -valued function corank D.

Workshop in Generalized Geometry in Interaction Jun

Dan Agüero, UFRJ joint work with R. Rubio Complex Dirac structures: invariants and local descript 9/22

### Definition

Let L be a lagrangian subbundle of  $\mathbb{T}M$ .

- i) The order of L is the  $\mathbb{N}$ -valued function corank D.
- ii) The type of L is the  $\mathbb{N}$ -valued function  $p \in M \to \dim(E + \overline{E})|_p \dim E|_p$ .

### Definition

Let L be a lagrangian subbundle of  $\mathbb{T}M$ .

- i) The order of L is the  $\mathbb{N}$ -valued function corank D.
- ii) The type of L is the  $\mathbb{N}$ -valued function  $p \in M \to \dim(E + \overline{E})|_p \dim E|_p$ .

a) The order is always zero on generalized complex structures.

# Definition

- Let *L* be a lagrangian subbundle of  $\mathbb{T}M$ .
  - i) The order of L is the  $\mathbb{N}$ -valued function corank D.
  - ii) The type of L is the  $\mathbb{N}$ -valued function  $p \in M \to \dim(E + \overline{E})|_p \dim E|_p$ .
  - a) The order is always zero on generalized complex structures.
  - b) This definition of type recovers the type of a generalized complex structure when the real index is zero.

### Definition

- Let L be a lagrangian subbundle of  $\mathbb{T}M$ .
  - i) The order of L is the  $\mathbb{N}$ -valued function corank D.
  - ii) The **type** of *L* is the  $\mathbb{N}$ -valued function  $p \in M \to \dim(E + \overline{E})|_p \dim E|_p$ .
  - a) The order is always zero on generalized complex structures.
  - b) This definition of type recovers the type of a generalized complex structure when the real index is zero.
  - c) When the real index is r and dim M = 2n + r,

 $0 \leq type \leq n.$ 

Workshop in Generalized Geometry in Interaction

#### Lemma

The real index and the order of a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}M$  are upper semi-continuous functions. Furthermore, the values of the real index have the same parity.

# Proposition

Let L be a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}M$ .

i) If L has constant order, then  $\Delta$  is smooth.



### Proposition

- Let L be a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}M$ .
  - i) If L has constant order, then  $\Delta$  is smooth.
  - ii) If L is a complex Dirac structure with constant real index, then  $K = \text{Re}(L \cap \overline{L})$  is a Lie algebroid and ker  $\omega_{\Delta}$  is integrable.

### Proposition

- Let L be a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}M$ .
  - i) If L has constant order, then  $\Delta$  is smooth.
  - ii) If L is a complex Dirac structure with constant real index, then  $K = \text{Re}(L \cap \overline{L})$  is a Lie algebroid and ker  $\omega_{\Delta}$  is integrable.

We will see that if L has constant order, then  $(\Delta, \omega_{\Delta})$  is a presymplectic distribution coming from a (real) Dirac structure.

Workshop in Generalized Geometry in Interaction Jun

Dan Agüero, UFRJ joint work with R. Rubio Complex Dirac structures: invariants and local descript 10/22

# Example (Regular Dirac structures)

Let  $S \subseteq TM$  be an involutive regular distribution and  $\omega \in \wedge^2 S^*$  such that  $d_S \omega = 0$ , i.e.  $L(S, \omega)$  is a regular Dirac structure. Then,  $L = L(S_{\mathbb{C}}, i\omega_{\mathbb{C}})$  is a complex Dirac structure. The real index of L at p is dim ker  $\omega|_p$  + corank S at  $p \in M$ ,

 $\operatorname{order}_p(L) = \operatorname{corank} S$  and  $\operatorname{type}_p(L) = 0.$ 



### Example (Regular Dirac structures)

Let  $S \subseteq TM$  be an involutive regular distribution and  $\omega \in \wedge^2 S^*$  such that  $d_S \omega = 0$ , i.e.  $L(S, \omega)$  is a regular Dirac structure. Then,  $L = L(S_{\mathbb{C}}, i\omega_{\mathbb{C}})$  is a complex Dirac structure. The real index of L at p is dim ker  $\omega|_p$  + corank S at  $p \in M$ ,

 $\operatorname{order}_p(L) = \operatorname{corank} S$  and  $\operatorname{type}_p(L) = 0.$ 

#### Definition

A transverse CR structure is a triple (R, S, J) consisting of two regular distributions  $R \subseteq S \subseteq TM$ , where R is integrable and a bundle map  $J : S/R \to S/R$  such that  $J^2 = -Id$  and  $q^{-1}(\ker(J_{\mathbb{C}} - iId))$  is involutive on  $TM_{\mathbb{C}}$ .

### Example (Regular Dirac structures)

Let  $S \subseteq TM$  be an involutive regular distribution and  $\omega \in \wedge^2 S^*$  such that  $d_S \omega = 0$ , i.e.  $L(S, \omega)$  is a regular Dirac structure. Then,  $L = L(S_{\mathbb{C}}, i\omega_{\mathbb{C}})$  is a complex Dirac structure. The real index of L at p is dim ker  $\omega|_p$  + corank S at  $p \in M$ ,

 $\operatorname{order}_p(L) = \operatorname{corank} S$  and  $\operatorname{type}_p(L) = 0.$ 

#### Definition

A transverse CR structure is a triple (R, S, J) consisting of two regular distributions  $R \subseteq S \subseteq TM$ , where R is integrable and a bundle map  $J : S/R \to S/R$  such that  $J^2 = -Id$  and  $q^{-1}(\ker(J_{\mathbb{C}} - iId))$  is involutive on  $TM_{\mathbb{C}}$ .

Workshop in Generalized Geometry in Interaction

CR and transverse holomorphic structures are examples of transverse CR structures.

# Example (Regular Dirac structures)

Let  $S \subseteq TM$  be an involutive regular distribution and  $\omega \in \wedge^2 S^*$  such that  $d_S \omega = 0$ , i.e.  $L(S, \omega)$  is a regular Dirac structure. Then,  $L = L(S_{\mathbb{C}}, i\omega_{\mathbb{C}})$  is a complex Dirac structure. The real index of L at p is dim ker  $\omega|_p$  + corank S at  $p \in M$ ,

 $\operatorname{order}_p(L) = \operatorname{corank} S$  and  $\operatorname{type}_p(L) = 0.$ 

#### Definition

A transverse CR structure is a triple (R, S, J) consisting of two regular distributions  $R \subseteq S \subseteq TM$ , where R is integrable and a bundle map  $J : S/R \to S/R$  such that  $J^2 = -Id$  and  $q^{-1}(\ker(J_{\mathbb{C}} - ild))$  is involutive on  $TM_{\mathbb{C}}$ .

CR and transverse holomorphic structures are examples of transverse CR structures.

# Example (Transverse CR structure)

Consider the transverse CR structure (R, S, J);  $E = q^{-1}(\ker(J_{\mathbb{C}} - ild))$ . Since E is involutive in  $TM_{\mathbb{C}}$ , the lagrangian subbundle  $L_{(R,S,J)} = L(E,0)$  is a complex Dirac structure. The real index of  $L_{(R,S,J)}$  is  $r = \operatorname{corank} S + \operatorname{rank} R$ . Let n be the nonnegative integer such that dim M = 2n + r. We have that

 $\operatorname{order}(L_{(R,S,J)}) = \operatorname{corank} S$  and  $\operatorname{type}(L_{(R,S,J)}) = n$ .

Workshop in Generalized Geometry in Interaction Jur

Dan Agüero, UFRJ joint work with R. Rubio Complex Dirac structures: invariants and local descript 11/22

### Proposition

Let L be a complex Dirac structure with constant real index r over a (2n + r)-dimensional manifold. We have the following:

- a) If L has order s and type 0, then  $L = e^B L(D_{\mathbb{C}}, i\omega_{\mathbb{C}})$ , where  $L(D_{\mathbb{C}}, i\omega_{\mathbb{C}})$  is the complex Dirac structure associated to  $(D, \omega)$  where D is a corank-r involutive distribution and  $\omega \in \wedge^2 D^*$  is a presymplectic structure with (r s)-dimensional kernel on each leaf of D, and B is a not necessarily closed real two-form such that  $d_D B = 0$ .
- b) If L has order s and type n, then  $L = e^B L(E, 0)$ , where L(E, 0) is the complex Dirac structure associated to a transverse CR structure and  $B \in \Omega^2(M, \mathbb{C})$  is not necessarily closed.

### Proposition

Let L be a complex Dirac structure with constant real index r over a (2n + r)-dimensional manifold. We have the following:

- a) If L has order s and type 0, then  $L = e^B L(D_{\mathbb{C}}, i\omega_{\mathbb{C}})$ , where  $L(D_{\mathbb{C}}, i\omega_{\mathbb{C}})$  is the complex Dirac structure associated to  $(D, \omega)$  where D is a corank-r involutive distribution and  $\omega \in \wedge^2 D^*$  is a presymplectic structure with (r s)-dimensional kernel on each leaf of D, and B is a not necessarily closed real two-form such that  $d_D B = 0$ .
- b) If L has order s and type n, then  $L = e^B L(E, 0)$ , where L(E, 0) is the complex Dirac structure associated to a transverse CR structure and  $B \in \Omega^2(M, \mathbb{C})$  is not necessarily closed.

Workshop in Generalized Geometry in Interaction

At the linear level we obtain a more accurate result.

### Proposition

Let L be a complex Dirac structure with constant real index r over a (2n + r)-dimensional manifold. We have the following:

- a) If L has order s and type 0, then  $L = e^B L(D_{\mathbb{C}}, i\omega_{\mathbb{C}})$ , where  $L(D_{\mathbb{C}}, i\omega_{\mathbb{C}})$  is the complex Dirac structure associated to  $(D, \omega)$  where D is a corank-r involutive distribution and  $\omega \in \wedge^2 D^*$  is a presymplectic structure with (r s)-dimensional kernel on each leaf of D, and B is a not necessarily closed real two-form such that  $d_D B = 0$ .
- b) If L has order s and type n, then  $L = e^B L(E, 0)$ , where L(E, 0) is the complex Dirac structure associated to a transverse CR structure and  $B \in \Omega^2(M, \mathbb{C})$  is not necessarily closed.

At the linear level we obtain a more accurate result.

### Proposition

Let L be a complex Dirac structure with real index r and order s. Then L is isomorphic to a B-transformation of the product of a complex Dirac structure defined by a presymplectic structure with (r - s)-dimensional kernel with a complex Dirac structure defined by a codimension-s CR structure.

# Proposition

Let L be a complex Dirac structure with constant real index r over a (2n + r)-dimensional manifold. We have the following:

- a) If L has order s and type 0, then  $L = e^B L(D_{\mathbb{C}}, i\omega_{\mathbb{C}})$ , where  $L(D_{\mathbb{C}}, i\omega_{\mathbb{C}})$  is the complex Dirac structure associated to  $(D, \omega)$  where D is a corank-r involutive distribution and  $\omega \in \wedge^2 D^*$  is a presymplectic structure with (r s)-dimensional kernel on each leaf of D, and B is a not necessarily closed real two-form such that  $d_D B = 0$ .
- b) If L has order s and type n, then  $L = e^B L(E, 0)$ , where L(E, 0) is the complex Dirac structure associated to a transverse CR structure and  $B \in \Omega^2(M, \mathbb{C})$  is not necessarily closed.

At the linear level we obtain a more accurate result.

### Proposition

Let L be a complex Dirac structure with real index r and order s. Then L is isomorphic to a B-transformation of the product of a complex Dirac structure defined by a presymplectic structure with (r - s)-dimensional kernel with a complex Dirac structure defined by a codimension-s CR structure.

Workshop in Generalized Geometry in Interaction

We recover the classification of generalized complex structures on vector spaces.

# Classification up to *B*-transformations

| order r | $(\Delta, \omega)$ symplectic                             |                                                      | (D, J) codimension-r CR structure                                    |
|---------|-----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
|         | subspace, codim $\Delta = r$                              |                                                      |                                                                      |
| order s | $(\Delta, \omega)$ presymplectic                          | $(\Delta^{2(n-k)+r-s},\omega) \times (N^{2k+s},D,J)$ | $(\Delta_0, D, J)$ transverse CR structure                           |
|         | subspace, codim $\Delta = s$                              | $(\Delta, \omega)$ presymplectic space               | $\operatorname{codim} D = s$ , $\operatorname{dim} \Delta_0 = r - s$ |
|         | $\omega \in \wedge^2 \Delta^*$ , dim ker $\omega = r - s$ | $\dim \ker \omega = r - s$                           |                                                                      |
|         |                                                           | (D, J) codimension-s CR structure on N               |                                                                      |
| order 0 | $(V, \omega)$ presymplectic                               |                                                      | $(\Delta_0, V, J)$ transverse CR structure                           |
|         | space, dim ker $\omega = r$                               |                                                      | $\dim \Delta_0 = r$                                                  |
|         | type 0                                                    | type k                                               | type n                                                               |

Generalized complex structures with bundle map  $\mathcal J$  have associated the Poisson bivector  $\pi(\xi) = \rho r_{TM} \circ \mathcal J(\xi).$ 

Generalized complex structures with bundle map  $\mathcal{J}$  have associated the Poisson bivector  $\pi(\xi) = pr_{TM} \circ \mathcal{J}(\xi)$ . For a general complex Dirac structure *L* consider

$$\widehat{L} = L(\Delta, \omega_{\Delta}).$$

Generalized complex structures with bundle map  $\mathcal{J}$  have associated the Poisson bivector  $\pi(\xi) = pr_{TM} \circ \mathcal{J}(\xi)$ . For a general complex Dirac structure *L* consider

 $\widehat{L} = L(\Delta, \omega_{\Delta}).$ 

Proposition

If L has constant order, then  $\hat{L}$  is a Dirac structure. If additionally, the real index is to order, then  $\hat{L}$  is the graph of a Poisson bivector.

Generalized complex structures with bundle map  $\mathcal{J}$  have associated the Poisson bivector  $\pi(\xi) = pr_{TM} \circ \mathcal{J}(\xi)$ . For a general complex Dirac structure *L* consider

 $\widehat{L} = L(\Delta, \omega_{\Delta}).$ 

#### Proposition

If L has constant order, then  $\hat{L}$  is a Dirac structure. If additionally, the real index is to order, then  $\hat{L}$  is the graph of a Poisson bivector.

Alternatively,

$$\widehat{L} = pr_{TM \oplus iT^*M}(L \cap (TM \oplus T^*M_{\mathbb{C}})).$$

Generalized complex structures with bundle map  $\mathcal{J}$  have associated the Poisson bivector  $\pi(\xi) = pr_{TM} \circ \mathcal{J}(\xi)$ . For a general complex Dirac structure *L* consider

 $\widehat{L} = L(\Delta, \omega_{\Delta}).$ 

#### Proposition

If L has constant order, then  $\hat{L}$  is a Dirac structure. If additionally, the real index is to order, then  $\hat{L}$  is the graph of a Poisson bivector.

Alternatively,

$$\widehat{L} = pr_{TM \oplus iT^*M}(L \cap (TM \oplus T^*M_{\mathbb{C}})).$$

For a regular Dirac structure  $(D, \omega)$ ,  $\widehat{L} = L(D, \omega)$ .

Generalized complex structures with bundle map  $\mathcal{J}$  have associated the Poisson bivector  $\pi(\xi) = pr_{TM} \circ \mathcal{J}(\xi)$ . For a general complex Dirac structure *L* consider

 $\widehat{L} = L(\Delta, \omega_{\Delta}).$ 

#### Proposition

If L has constant order, then  $\hat{L}$  is a Dirac structure. If additionally, the real index is to order, then  $\hat{L}$  is the graph of a Poisson bivector.

Alternatively,

$$\widehat{L} = pr_{TM \oplus iT^*M}(L \cap (TM \oplus T^*M_{\mathbb{C}})).$$

Workshop in Generalized Geometry in Interaction

For a regular Dirac structure  $(D, \omega)$ ,  $\hat{L} = L(D, \omega)$ . For a transverse CR structure (R, S, J),  $\hat{L} = R \oplus \text{Ann } R$ .

Generalized complex structures with bundle map  $\mathcal{J}$  have associated the Poisson bivector  $\pi(\xi) = pr_{TM} \circ \mathcal{J}(\xi)$ . For a general complex Dirac structure *L* consider

 $\widehat{L} = L(\Delta, \omega_{\Delta}).$ 

#### Proposition

If L has constant order, then  $\hat{L}$  is a Dirac structure. If additionally, the real index is to order, then  $\hat{L}$  is the graph of a Poisson bivector.

Alternatively,

$$\widehat{L} = pr_{TM \oplus iT^*M}(L \cap (TM \oplus T^*M_{\mathbb{C}})).$$

For a regular Dirac structure  $(D, \omega)$ ,  $\hat{L} = L(D, \omega)$ . For a transverse CR structure (R, S, J),  $\hat{L} = R \oplus \text{Ann } R$ . For the complexification of a Dirac structure we obtain the same Dirac structure again.

Generalized complex structures with bundle map  $\mathcal{J}$  have associated the Poisson bivector  $\pi(\xi) = pr_{TM} \circ \mathcal{J}(\xi)$ . For a general complex Dirac structure *L* consider

 $\widehat{L} = L(\Delta, \omega_{\Delta}).$ 

#### Proposition

If L has constant order, then  $\hat{L}$  is a Dirac structure. If additionally, the real index is to order, then  $\hat{L}$  is the graph of a Poisson bivector.

Alternatively,

$$\widehat{L} = pr_{TM \oplus iT^*M}(L \cap (TM \oplus T^*M_{\mathbb{C}})).$$

For a regular Dirac structure  $(D, \omega)$ ,  $\hat{L} = L(D, \omega)$ . For a transverse CR structure (R, S, J),  $\hat{L} = R \oplus \text{Ann } R$ . For the complexification of a Dirac structure we obtain the same Dirac structure again.

Workshop in Generalized Geometry in Interaction

#### Proposition

Let 
$$S \stackrel{\iota}{\hookrightarrow} M$$
 be a submanifold. Then,  $\iota^! \widehat{L} = \widehat{\iota}^! \widehat{L}$ 

Consider a complex Dirac structure  $L \subset \mathbb{T}_{\mathbb{C}}M$  with constant real index equal to its order.

Consider a complex Dirac structure  $L \subset \mathbb{T}_{\mathbb{C}}M$  with constant real index equal to its order. There exists a regular distribution  $D \subseteq TM$  such that K = Ann D.

Consider a complex Dirac structure  $L \subset \mathbb{T}_{\mathbb{C}}M$  with constant real index equal to its order. There exists a regular distribution  $D \subseteq TM$  such that K = Ann D. We have that

$$\frac{K^{\perp}}{K} = \frac{D \oplus T^*M}{\operatorname{Ann} D} \cong D \oplus D^*.$$

Consider a complex Dirac structure  $L \subset \mathbb{T}_{\mathbb{C}}M$  with constant real index equal to its order. There exists a regular distribution  $D \subseteq TM$  such that K = Ann D. We have that

$$\frac{K^{\perp}}{K} = \frac{D \oplus T^*M}{\operatorname{Ann} D} \cong D \oplus D^*.$$

If D is involutive, then the Dorfman bracket descends to  $D \oplus D^*$ , obtaining the bracket

$$[X + \alpha, Y + \beta]_D = [X, Y] + \mathcal{L}_X^D \beta - \imath_Y d_D \alpha,$$

for  $X + \alpha$ ,  $Y + \beta \in \Gamma(D \oplus D^*)$ ,

Consider a complex Dirac structure  $L \subset \mathbb{T}_{\mathbb{C}}M$  with constant real index equal to its order. There exists a regular distribution  $D \subseteq TM$  such that K = Ann D. We have that

$$\frac{K^{\perp}}{K} = \frac{D \oplus T^*M}{\operatorname{Ann} D} \cong D \oplus D^*.$$

If D is involutive, then the Dorfman bracket descends to  $D \oplus D^*$ , obtaining the bracket

$$[X + \alpha, Y + \beta]_D = [X, Y] + \mathcal{L}_X^D \beta - \imath_Y d_D \alpha,$$

for  $X + \alpha$ ,  $Y + \beta \in \Gamma(D \oplus D^*)$ , where  $d_D$  is the differential along D and

$$\mathcal{L}_X^D = \imath_X d_D + d_D \imath_X.$$

Dan Agüero, UFRJ joint work with R. Rubio Complex Dirac structures: invariants and local descript 15/22

Consider a complex Dirac structure  $L \subset \mathbb{T}_{\mathbb{C}}M$  with constant real index equal to its order. There exists a regular distribution  $D \subseteq TM$  such that K = Ann D. We have that

$$\frac{K^{\perp}}{K} = \frac{D \oplus T^*M}{\operatorname{Ann} D} \cong D \oplus D^*.$$

If D is involutive, then the Dorfman bracket descends to  $D \oplus D^*$ , obtaining the bracket

$$[X + \alpha, Y + \beta]_D = [X, Y] + \mathcal{L}_X^D \beta - \imath_Y d_D \alpha,$$

for  $X + \alpha$ ,  $Y + \beta \in \Gamma(D \oplus D^*)$ , where  $d_D$  is the differential along D and

$$\mathcal{L}_X^D = \imath_X d_D + d_D \imath_X.$$

Workshop in Generalized Geometry in Interaction.

#### Lemma

The bundle  $D\oplus D^*$  is a Courant algebroid with the natural pairing, bracket and anchor.

Consider a complex Dirac structure  $L \subset \mathbb{T}_{\mathbb{C}}M$  with constant real index equal to its order. There exists a regular distribution  $D \subseteq TM$  such that K = Ann D. We have that

$$\frac{K^{\perp}}{K} = \frac{D \oplus T^*M}{\operatorname{Ann} D} \cong D \oplus D^*.$$

If D is involutive, then the Dorfman bracket descends to  $D \oplus D^*$ , obtaining the bracket

$$[X + \alpha, Y + \beta]_D = [X, Y] + \mathcal{L}_X^D \beta - \imath_Y d_D \alpha,$$

for  $X + \alpha$ ,  $Y + \beta \in \Gamma(D \oplus D^*)$ , where  $d_D$  is the differential along D and

$$\mathcal{L}_X^D = \imath_X d_D + d_D \imath_X.$$

Workshop in Generalized Geometry in Interaction

#### Lemma

The bundle  $D \oplus D^*$  is a Courant algebroid with the natural pairing, bracket and anchor.

Consider the quotient map  $q: (D \oplus T^*M)_{\mathbb{C}} \to (D \oplus D^*)_{\mathbb{C}}$ .

Consider a complex Dirac structure  $L \subset \mathbb{T}_{\mathbb{C}}M$  with constant real index equal to its order. There exists a regular distribution  $D \subseteq TM$  such that K = Ann D. We have that

$$\frac{K^{\perp}}{K} = \frac{D \oplus T^*M}{\operatorname{Ann} D} \cong D \oplus D^*.$$

If D is involutive, then the Dorfman bracket descends to  $D \oplus D^*$ , obtaining the bracket

$$[X + \alpha, Y + \beta]_D = [X, Y] + \mathcal{L}_X^D \beta - \imath_Y d_D \alpha,$$

for  $X + \alpha$ ,  $Y + \beta \in \Gamma(D \oplus D^*)$ , where  $d_D$  is the differential along D and

$$\mathcal{L}_X^D = \imath_X d_D + d_D \imath_X.$$

#### Lemma

The bundle  $D \oplus D^*$  is a Courant algebroid with the natural pairing, bracket and anchor.

Consider the quotient map  $q : (D \oplus T^*M)_{\mathbb{C}} \to (D \oplus D^*)_{\mathbb{C}}$ . The distribution q(L) is a lagrangian subbundle of  $(D \oplus D^*)_{\mathbb{C}}$  with real index zero.

Let L be a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}M$  such that  $L \cap \overline{L} = (\operatorname{Ann} D)_{\mathbb{C}}$ . If D is involutive, then L is involutive if and only if q(L) is involutive.

Let L be a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}M$  such that  $L \cap \overline{L} = (\operatorname{Ann} D)_{\mathbb{C}}$ . If D is involutive, then L is involutive if and only if q(L) is involutive.

If S is a leaf of D, then  $q(L)|_S$  is a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}S$ .



Let L be a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}M$  such that  $L \cap \overline{L} = (\operatorname{Ann} D)_{\mathbb{C}}$ . If D is involutive, then L is involutive if and only if q(L) is involutive.

If S is a leaf of D, then  $q(L)|_S$  is a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}S$ . Actually we have more.



Let L be a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}M$  such that  $L \cap \overline{L} = (\operatorname{Ann} D)_{\mathbb{C}}$ . If D is involutive, then L is involutive if and only if q(L) is involutive.

If S is a leaf of D, then  $q(L)|_S$  is a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}S$ . Actually we have more.

### Proposition

Let *L* be a complex Dirac structure with constant real index equal to its order such that  $L \cap \overline{L} = (\text{Ann } D)_{\mathbb{C}}$ . If the distribution *D* is involutive and *S* is a leaf of *D*, then  $q(L)|_S$  is a generalized complex structure over *S*.

Let L be a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}M$  such that  $L \cap \overline{L} = (\operatorname{Ann} D)_{\mathbb{C}}$ . If D is involutive, then L is involutive if and only if q(L) is involutive.

If S is a leaf of D, then  $q(L)|_S$  is a lagrangian subbundle of  $\mathbb{T}_{\mathbb{C}}S$ . Actually we have more.

### Proposition

Let *L* be a complex Dirac structure with constant real index equal to its order such that  $L \cap \overline{L} = (\text{Ann } D)_{\mathbb{C}}$ . If the distribution *D* is involutive and *S* is a leaf of *D*, then  $q(L)|_S$  is a generalized complex structure over *S*.

This example appeared in the work of D. Li-Bland [L] with the name of a generalized CR structure.

# Splitting theorem

### Theorem (Splitting theorem for Dirac structures, C. Blohmann [BI])

Let L be a Dirac structure on M and  $p \in M$ . Let  $N \stackrel{\iota}{\hookrightarrow} M$  be a submanifold containing p, such that  $T_pN$  is complement to  $P = pr_{TM}L|_p$ . Then, there exist a neighbourhood U of p, a two-form  $B \in \Omega^2_{cl}(P \times N)$  such that

$$L|_U \cong e^B(L' \times L_\omega),$$

where  $L_{\omega}$  is the Dirac structure associated to the presymplectic leaf passing through p and  $L' = \iota^{!}L = \text{Graph}(\pi)$  for some Poisson structure  $\pi$  over N vanishing at p.

# Splitting theorem

### Theorem (Splitting theorem for Dirac structures, C. Blohmann [BI])

Let L be a Dirac structure on M and  $p \in M$ . Let  $N \stackrel{\iota}{\hookrightarrow} M$  be a submanifold containing p, such that  $T_pN$  is complement to  $P = pr_{TM}L|_p$ . Then, there exist a neighbourhood U of p, a two-form  $B \in \Omega^2_{cl}(P \times N)$  such that

$$L|_U \cong e^B(L' \times L_\omega),$$

where  $L_{\omega}$  is the Dirac structure associated to the presymplectic leaf passing through p and  $L' = \iota^{!}L = \text{Graph}(\pi)$  for some Poisson structure  $\pi$  over N vanishing at p.

Theorem (Splitting theorem for generalized complex structures, M. Abouzaid-M. Boyarchenko [AB])

Let L be a generalized complex structure and let  $p \in M$ . Then, there exists a neighborhood U, a closed two-form B, a symplectic structure  $\omega$  and a generalized complex structure L' such that

$$L|_U \cong e^B(L' \times L_{i\omega}).$$

Workshop in Generalized Geometry in Interaction

Moreover, the Poisson structure associated to L' vanishes at p.

### Theorem

Let L be a complex Dirac structure of  $\mathbb{T}_{\mathbb{C}}M$  with constant real index r and order s and a point  $p \in M$  of type k. Consider a (2k + s)-dimensional submanifold  $N \subseteq U \stackrel{\iota}{\hookrightarrow} M$  of complementary dimension to the presymplectic leaf passing through and transversal to  $\hat{L}$  at p, i.e.  $T_pN \oplus \Delta|_p = T_pM$ . Then there exist a neighbourhood U of p and a closed real two-form B defined on U, such that

$$L|_U \cong e^B(\iota^! L \times L_{i\omega}),$$

where  $\iota^!L$  is a complex Dirac structure with constant real index s and order s and having associated Poisson bivector vanishing at p,  $L_{i\omega}$  is the complex Dirac structure associated to the presymplectic leaf S passing through p.

### Corollary

Let L be a complex Dirac structure with constant real index r and order s and let p be a regular point of type k. Then there exist a neighbourhood U of p such that

$$L|_U \cong e^B(L_{(D,J)} \times L_{i\omega_{can}}),$$

where  $L_{i\omega_{can}}$  is the graph of the canonical presymplectic structure on  $\mathbb{R}^{2(n-k)+r-s}$  with kernel of dimension r-s,  $L_{(D,J)}$  is the complex Dirac structure associated to a CR structure of codimension s over N and B is a real two-form on M which is closed on the directions of  $\mathbb{R}^{2(n-k)+r-s}$ .

# References I

#### [AB] M. Abouzaid, M. Boyarchenko Local structure of generalized complex manifolds. Journal of Symplectic Geometry 4.1 (2006): 43-62.

[Ba] M. Bailey Local classification of generalized complex structures Journal of Differential Geometry 95.1 (2013): 1-37.

#### [BI] C. Blohmann

Removable presymplectic singularities and the local splitting of Dirac structures. Int. Math. Res. Notices 2017.23 (2017), 7344-7374.

#### [BLM] H. Bursztyn, H. Lima, E. Meinrenken Splitting theorems for Poisson and related structures. Journal für die reine und angewandte Mathematik (Crelles Journal) 2019.754 (2019): 281-312.

Workshop in Generalized Geometry in Interaction

#### [C] T. Courant Dirac manifolds. Trans. Amer. Math. Soc. 319 (1990), 631-661.

 [G] M. Gualtieri Generalized complex geometry. PhD thesis, Oxford university.

# References II

 [H] N. Hitchin *Generalized Calabi-Yau*.
 Q. J. Math. 54 (2003), no. 3, 281–308.

[L] D. Li-Bland

AV-courant algebroids and generalized CR struc-tures. Canadian Journal of Mathematics, 63(4):938–960, 2011

[V] I. Vaisman

Reduction and submanifolds of generalized complex manifolds. Diff. Geom. Appl., 25 (2007), 147-166.

[W] A. Weinstein

The local structure of Poisson manifolds. Journal of differential geometry 18.3 (1983): 523-557.

# Thanks!

Workshop in Generalized Geometry in Interaction Jun

Dan Agüero, UFRJ joint work with R. Rubio Complex Dirac structures: invariants and local descript 22/22