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Outline

Based on joint works with with Diaconescu and Donagi, and with
Chuang, Diaconescu, Donagi, and Nawata.

Review of wild character varieties.

Topology - weighted Poincaré polynomials.

Calabi-Yau enumerative geometry.

Refined Chern-Simons theory of torus knots and calculations.
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Wild character varieties
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Character varieties (i)

Character varieties = special moduli spaces of matrices.
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Character varieties (i)

Parametrize monodromy data for meromorphic systems of linear ODE on
compact Riemann surfaces. Historically come in three flavors

unramified,

tame,

wild.
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Character varieties (i)

Parametrize monodromy data for meromorphic systems of linear ODE on
compact Riemann surfaces. Historically come in three flavors
corresponding to meromorphic flat connections d + Γ(z)dz with

unramified, ← no poles

tame, ← logarithmic poles

wild. ← higher order poles
X

A1 A2

B1
B2

∏g
i=1 [Ai ,Bi ] = 1
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Character varieties (i)

Parametrize monodromy data for meromorphic systems of linear ODE on
compact Riemann surfaces. Historically come in three flavors
corresponding to meromorphic flat connections d + Γ(z)dz with

unramified, ← no poles

tame, ← logarithmic poles

wild. ← higher order poles

X

A1 A2

B1
B2

C

∏g
i=1 [Ai ,Bi ] · C1 · · ·Ck = 1
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Character varieties (ii)

Depend on:

Background data: • X - a smoooth projective curve/C.
• D = {x1, x2, . . . , xk} - distinct points.
• G - a complex reductive group, g = Lie(G ).

Invariants: • Q = {Q1, . . . ,Qk} - irregular type at D.
• Fixed conjugacy classes of formal monodromy.
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Character varieties (ii)

Depend on:

Background data: • X - a smoooth projective curve/C.
• D = {x1, x2, . . . , xk} - distinct points.
• G - a complex reductive group, g = Lie(G ).

Study monodromies of (V ,∇) with V a principal G -bundle and ∇
meromorphic flat connection with poles at most at D.

Invariants: • Q = {Q1, . . . ,Qk} - irregular type at D.
• Fixed conjugacy classes of formal monodromy.

Study monodromies of (V ,∇) when ∇ has polar parts Qi at xi and formal
monodromy in the given conjugacy classes.
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Irregular type (i)

Definition

A G-valued irregular type is a Laurent polynomial

Q =
An−1

zn−1
+ · · ·+ A1

z
, Ai ∈ t,

where t ⊂ g is a Cartan subalgebra.

(V ,∇) has irregular type Q at xi ∈ D if locally near xi

∇ = d + dQ mod z−1g{z}dz

in an analytic local trivialization of V near xi and for some finite root z of
a local coordinate on X centered at xi

Note: Up to a Puiseux gauge transformation the ≤ −2 polar part of ∇
always has coefficients in t ⊂ g.
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Irregular type (ii)

Consider X̂ - the real oriented blow up of X at D
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Irregular type (ii)

Consider X̂ - the real oriented blow up of X at D

• each xi is replaced by a circle ∂i parametrizing real
oriented directions emanating from xi ;

• X̂ is a surface with boundary ∂X̂ = ∂1 ⊔ . . . ⊔ ∂k .
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Irregular type (ii)

Consider X̂ - the real oriented blow up of X at D

Boalch: An irregular type Q on (X ,D) decorates X̂ with:

A connected reductive group Li ⊂ G , the centralizer of Qi in G .

A finite set Ai ⊂ ∂i of singular/anti-Stokes directions for all
i = 1, . . . , k .

For each d ∈ Ai a unipotent group Stod ⊂ G , normalized by Li .
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Irregular type (ii)

Consider X̂ - the real oriented blow up of X at D

Boalch: An irregular type Q on (X ,D) decorates X̂ with:

A connected reductive group Li ⊂ G , the centralizer of Qi in G .

A finite set Ai ⊂ ∂i of singular/anti-Stokes directions for all
i = 1, . . . , k .

For each d ∈ Ai a unipotent group Stod ⊂ G , normalized by Li .

Note: These give rise to a new punctured surface surface X̃ defined by
puncturing X = X− D once near each singular direction..
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Irregular type (iii)

Concretely:
• Glue an annulus Hi = (0, 1] × ∂i to each boundary circle ∂i ⊂ X̂ to
obtain a new surface X+.
• Puncture X+ at each singular direction d ∈ Ai ⊂ ∂i to obtain X̃ :

X̃

H1

∂1d

The surface X̃
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Stokes local systems

The analytic covariantly constant local sections in a flat meromorphic
G -bundle of irregular type Q on (X,D) form a locally constant sheaf on X̃
of a special type:

Definition

A Stokes G -local system of irregular type Q on (X,D) is a locally constant
principal G bundle on X̃ with a locally constant reduction of the structure
group to Li on a finite etale cover of Hi , so that the local monodromy
around each d ∈ Ai ⊂ ∂i is in Stod for any choice of a base point in Hi .
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Riemann-Hilbert correspondence

The irregular Riemann-Hilbert correspondence (Stokes,
Malgrange-Sibuya, Deligne-Malgrange, Boalch) can now be
formulated as the following

Theorem

The category of flat meromorphic G-bundles of irregular type Q on (X,D)
is equivalent to the category of Stokes G-local systems of irregular type Q
on (X,D).

This leads to our main object of interest: the wild character varieties.
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Wild character varieties

Fix (X,D), a group G , an irrequalr type Q, and a collection
C = {C1, . . . ,Ck}, where Ci ⊂ Li is a conjugacy class in Li .

Definition

The wild character variety of irregular type Q on (X,D) is the coarse
moduli space MG (Q) of Stokes G-local systems of irregular type Q on
(X,D).
The C-restricted wild character variety is the locally closed subvariety
MG (Q,C) ⊂ MG (Q) consisting of Stokes local systems whose formal
monodromy around ∂i (for a base point in Hi) is in Ci ⊂ Li .
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Topology
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Prelude: counting G -covers (i)

G - a finite group, X a smoooth compact surface of genus g .

Problem: [Riemann,Hurwitz, . . . ] Count all unramified G -Galois covers
of X up to isomorphism.
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Prelude: counting G -covers (i)

G - a finite group, X a smoooth compact surface of genus g .

Problem: [Riemann,Hurwitz, . . . ] Count all unramified G -Galois covers
of X up to isomorphism.

Reformulation: Find
(

orbifold Euler characteristic
of the moduli stack MG (X )
of flat G bundles on X

)
=

(
orbifold partition function of
a 2d Dijkgraaf-Witten the-
ory with gauge group G

)
.
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Prelude: counting G -covers (i)

G - a finite group, X a smoooth compact surface of genus g .

Problem: [Riemann,Hurwitz, . . . ] Count all unramified G -Galois covers
of X up to isomorphism.

Reformulation: MG (X ) ∼= [Hom(π1(X ),G )/G ], so find

χorb(MG (X )) =
∑

[ρ]∈Hom(π1(X ),G)/G

1

|Aut(ρ)| =
|Hom(π1(X ),G )|

|G | .
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Prelude: counting G -covers (ii)

Formulas:

Frobenius’1896 If g = 1, then

χorb(MG (X )) =
|Hom(π1(X ),G )|

|G | = | Irrep(G )|
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Prelude: counting G -covers (ii)

Formulas:

Frobenius’1896 If g = 1, then

χorb(MG (X )) =
|Hom(π1(X ),G )|

|G | = | Irrep(G )|

Mednyh’1978 For any g ≥ 0 we have

χorb(MG (X )) =
|Hom(π1(X ),G )|

|G | =
∑

µ∈Irrep(G)

(
dimµ

|G |

)2−2g

.
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Prelude: counting G -covers (ii)

Formulas:

Frobenius’1896 If g = 1, then

χorb(MG (X )) =
|Hom(π1(X ),G )|

|G | = | Irrep(G )|

Mednyh’1978 For any g ≥ 0 we have

χorb(MG (X )) =
|Hom(π1(X ),G )|

|G | =
∑

µ∈Irrep(G)

(
dimµ

|G |

)2−2g

.

Goal: FInd analogous formulas for χ(MG (Q,C)).
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There are two stories . . .
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First story: topology of character varieties

Fix a genus g curve C and a positive integer N. Consider the character
variety

M
N,d
B :=

{

A1,B1, . . . ,Ag ,Bg ∈ GLN

∣

∣

∣

∣

∣

g
∏

i=1

A
−1
i B

−1
i AiBi = e

2π
√

−1d
N ld

}//

GLN

of (projective) representations of π1(C ) into GLN(C)

Note:

MN,d
B

is an affine scheme, nonempty, of dimension,
dN = N2(2g − 2), and smooth when gcd(d ,N) = 1;

Hk
c (MN,d

B ;Q) carries a mixed Hodge structure with a weight filtration

W0 ⊂ · · · ⊂Wi ⊂ · · · ⊂W2k = Hk
c (MN,d

B ;Q).
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First story:

Weighted Poincaré polynomial:

WP
(
MN,d

B
; u, v

)
=
∑

i ,j

ui/2v jdimGrWi H j
c

(
MN,d

B

)

Note:

WP(MN,d
B

; u, v) is a polynomial in u and v , i.e. W2iH
j
c = W2i+1H

j
c .

using Poincaré duality WP(MN,d
B

; u, v) can be expressed in terms of

hp,q for the MHS on H•(MN,d
B

;Q) instead.
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First story:

Conjecture (Hausel,Rodriguez-Villegas)

∑

λ

∏

�∈λ

(z2l(�)+1−w2a(�)+1)
2g

(z2l(�)+2−w2a(�))(z2l(�)−w2a(�)+2)
x |λ|

= exp


∑

n,k

WP
(

MN,d
B

;w2k ,−(zw)−2k
)

(z2k−1)(1−w2k)(zw)−dN

xNk

k




Partial extensions:

C with tame ramifications [Hausel,Letellier,Rodriguez-Villegas]

C with wild ramifications [Hausel,Mereb,Wong]
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A different tack:

Consider the moduli space of Higgs bundles

MN,d
Dol

:=

{
semistable rank N degree d Higgs bundles (E , φ)

φ ∈ H0(C ,End(E ) ⊗ K ) Higgs field

}

Non-Abelian Hodge correspondence: Hyper-Kähler rotation gives a
homeomorphism MN,d

B
∼=MN,d

Dol
.

Filtrations:

weight filtration W0 ⊂ · · · ⊂Wi ⊂ · · · ⊂W2k = Hk
c (MN,d

B ;Q)

perverse Leray filtration P0 ⊂ · · · ⊂ Pi ⊂ · · · ⊂ Pk = Hk
c (MN,d

Dol ;Q)
for the Hitchin map (E , φ) 7→ (tr(φ), tr(φ2), . . . , tr(φN)).

These match according to the P = W conjecture of de Cataldo, Hausel,
and Migliorini.
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A different tack:

Conjecture (de Cataldo, Hausel, Migliorini)

GrW2i H
j
c

(
MN,d

B

)
= GrPi H

j
c

(
MN,d

Dol

)

Using the P = W conjecture can rewrite the weighted Poincaré
polynomial ofMN,d

B as the perverse Poincaré polynomial

PP
(
MN,d

Dol ; u, v
)
=
∑

i ,j

uiv j dimGrPi H
j
c

(
MN,d

Dol

)
.
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Second story: polynomial knot invariants

Suppose Σ ⊂ A2 is a reduced rational plane curve with a single singular
point ν and let π : A2 → A1 be the projection onto one of the coordinate
axes.

Then Σ ≃ affine part of a spectral curve for a meromorphic Hitchin system
on P1 with a pole at ∞.

The wild non-abelian Hodge correspondence identifies the (symplectic leaf
containing) the compactified Jacobian of the projective completion of Σ
with a wild character variety SΣ on P1 parametrizing Stokes data at ∞.
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Second story

L ⊂ S3 - the link of the singular point ν ∈ Σ

PL(a, q) ∈ Z
(
q1/2

)
[a±] - the HOMFLY-PT polynomial of L

P
(0)
L (q) - the a0 term in

(
aq−1/2

)m(ν)
PL(a, q), where m(ν) is the

Milnor number of ν ∈ Σ

Conjecture (Shende,Treumann,Zaslow)

P
(0)
L (q) = (1− q)b(ν)WP (SΣ; q,−1)

where b(ν) = number of branches of Σ at ν.

Refined and colored extensions have been studied in
[Oblomkov,Rasmussen,Shende] and [Diaconescu,Hua,Soibelman]
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Strategy

Note: Knot invariants are very handy because their computation boils
down to simple combinatorics.

Goal: Relate Betti numbers of twisted wild character varieties and torus
knot invariants.

Strategy: Use the spectral correspondence, Gopakumar-Vafa expansions,
and refined Chern-Simons theory.
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Steps in the strategy

Twisted wild character variety Sn,ℓ,r

Moduli space Hn,ℓ,r of twisted
irregular Higgs bundles

Moduli space of pure sheaves F of di-
mension one on a symplectic surface S

Refined stable pairs OY
s−→ F of CY3

Refined Chern-Simons
theory of torus knot

NAH, and P = W

Spectral correspondence

Gopakumar-Vafa expansion

Large N duality

Weighted Poincaré polynomials

Perverse Poincaré polynomials

Refined PT invariants

Refined Chern-Simons invariants
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Steps in the strategy

Twisted wild character variety Sn,ℓ,r

Moduli space Hn,ℓ,r of twisted
irregular Higgs bundles

Moduli space of pure sheaves F of di-
mension one on a symplectic surface S

Refined stable pairs OY
s−→ F of CY3

Refined Chern-Simons
theory of torus knot

NAH, and P = W

Spectral correspondence

Gopakumar-Vafa expansion

Large N duality

Weighted Poincaré polynomials

Perverse Poincaré polynomials

Refined PT invariants

Refined Chern-Simons invariants
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Moduli space of twisted irregular flat connections

Main object of study: Moduli space of flat connections with twisted
irregular singularity at p on a curve C .

Data:

(C , p) smooth projective curve with a marked point.

For any triple (n, ℓ, r) consider the moduli space Cn,ℓ,r of pairs (V ,A)
◮ V is a rank N = rℓ, degree 0 vector bundle on C
◮ A is a meromorphic connection on V subject to the following

conditions:
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Moduli space of twisted irregular flat connections

Conditions on (V ,A):

Any proper nontrivial sub-bundle V ′ ⊂ V preserved by A has degree
deg(V ′) < 0. (stability condition)

A has a simple pole at ∞ with residue 1N/2
√
−1πN.

(deg=1 in Higgs side)

A has a pole of order n at the marked point p and there exists a local
trivialization of V at p which identifies it to An,ℓ,r up to holomorphic
terms where

An,ℓ,r = −2dQn,ℓ,r − ℓ−1R
dz

z

is a gl(N,C)-valued one-form with

Qn,ℓ,r (z) =
z1−n

1− n
Jℓ,r +

z2−n

2− n
Eℓ,r
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Moduli space of twisted irregular flat connections

the word, “twisted”, refers to the fact that the Laurent tail at p does not
have coefficients in a Cartan subalgebra of gl(N,C)

Jℓ,r =




0 0 · · · 0 0
1r 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1r 0


 , Eℓ,r =




0 0 · · · 0 1r
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0




The residue R is the diagonal block-matrix

R =




0 0 · · · 0 0
0 1r · · · 0 0
...

...
...

...
...

0 0 · · · 0 (ℓ− 1)1r


 .
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Twisted wild character varieties
The Betti version of Cn,ℓ,r was constructed by [Boalch,Yamakawa] as a
variety parametrizing twisted Stokes data

let ρ : ∆̃→ ∆ be the ℓ : 1 cover z = w ℓ;

ρ∗dQn,ℓ,r can be diagonalized and the Stokes transformations can be
studied via this covering map;
there are two types of anti-Stokes directions for twisted wild
ramification:

◮ complete half-periods: the Stokes groups U0, U1, . . .U2n−4 are
unipotent radicals of parabolic subgroup with Levi H - the group of
invertible block diagonal matrices




∗ 0 · · · 0 0
0 ∗ · · · 0 0
...

...
...

...
...

0 0 · · · 0 ∗




with arbitrary r × r blocks on the diagonal.
◮ incomplete half-period: the Stokes group U2n−3 is a smaller unipotent

subgroup.
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Twisted wild character varieties

Let H(∂),H(∂) ⊂ GLN be the subsets of matrices of block form

h =




0 ∗ · · · 0 0
...

...
...

...
...

0 0 · · · 0 ∗
∗ 0 · · · 0 0


 , h =




0 0 · · · 0 ∗
∗ 0 · · · 0 0
...

...
...

...
...

0 0 · · · ∗ 0


 ,

respectively.

Note:

H acts by conjugation on H(∂) and H(∂);

The map h 7→ h−1 is an H-equivariant isomorphism H(∂)→̃H(∂).
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Twisted wild character varieties
For α = (Ai ,Bi ,C, h,Sj ) ∈ A = GL×2g+1

N ×H(∂) ×
∏2n−3

j=0 Uj we define a

moment map µ : A → GLN ×H(∂) by setting

µ(α) =


[A1,B1] · · · [Ag,Bg]C

−1h

2n−3∏

j=0

Sj C, h
−1




with [Ai ,Bi ] = AiBiA
−1
i B−1

i .
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Twisted wild character varieties

Then the variety of Stokes data for the flat connections parameterized by
Cn,ℓ,r is given by the quasi-Hamiltonian reduction

Sn,ℓ,r = µ−1
(
e−2π

√
−1/N1N , CM−1

)
/GLN ×H

where M is the formal monodromy

M =




0 1r · · · 0 0
...

...
...

...
...

0 0 · · · 0 1r
1r 0 · · · 0 0


 .

Note: dimSn,ℓ,r = 2 + r2
(
nℓ(ℓ− 1) + 2(g − 1)ℓ2

)
.
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Twisted wild character varieties

We are interested in weighted Poincaré polynomial

WPn,ℓ,r (u, v) =
∑

i ,j

ui/2v jdimGrWi H j (Sn,ℓ,r )

where WkH
j is the weight filtration for the mixed Hodge structure on

the cohomology of Sn,ℓ,r .
The weight filtration on cohomology is expected to satisfy the
condition W2kH

j (Sn,ℓ,r ) = W2k+1H
j (Sn,ℓ,r ) for all k , j
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Steps in the strategy

Twisted wild character variety Sn,ℓ,r

Moduli space Hn,ℓ,r of twisted
irregular Higgs bundles

Moduli space of pure sheaves F of di-
mension one on a symplectic surface S

Refined stable pairs OY
s−→ F of CY3

Refined Chern-Simons
theory of torus knot

NAH, and P = W

Spectral correspondence

Gopakumar-Vafa expansion

Large N duality

Weighted Poincaré polynomials

Perverse Poincaré polynomials

Refined PT invariants

Refined Chern-Simons invariants
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Twisted irregular Higgs bundles

(C , p) a curve with marked point

D = np n ≥ 1

M = KC (D)

a twisted irregular Higgs bundle (E , φ) of rank N = rℓ,
φ : E → E ⊗ KC (D), D = np is subject to the condition that the
restriction φ|np is equivalent to dQn,ℓ,r (z)

Qn,ℓ,r (z) =
z1−n

1− n
Jℓ,r +

z2−n

2− n
Eℓ,r

with

Jℓ,r =




0 0 · · · 0 0
1r 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1r 0


 , Eℓ,r =




0 0 · · · 0 1r
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
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Twisted irregular Higgs bundles

moduli space Hn,ℓ,r of semistable meromorphic Higgs bundles of rank
N = rℓ, degree 1

(twisted) wild non-abelian Hodge correspondence [Biquard-Boalch,
Sabbah, Mochizuki] [Witten]

Sn,ℓ,r ∼= Hn,ℓ,r

Hn,ℓ,r admits perverse Leray filtration PkH
j arising from the Hitchin

map

Conjecture (Twisted wild version of P = W )

GrW2k H
j (Sn,ℓ,r ) = GrPk H

j (Hn,ℓ,r )
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Steps in the strategy

Twisted wild character variety Sn,ℓ,r

Moduli space Hn,ℓ,r of twisted
irregular Higgs bundles

Moduli space of pure sheaves F of di-
mension one on a symplectic surface S

Refined stable pairs OY
s−→ F of CY3

Refined Chern-Simons
theory of torus knot

NAH, and P = W

Spectral correspondence

Gopakumar-Vafa expansion

Large N duality

Weighted Poincaré polynomials

Perverse Poincaré polynomials

Refined PT invariants

Refined Chern-Simons invariants
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Spectral (cover) correspondence

Classical version [Hitchin] [Beauville,Narasimhan,Ramanan]
The characteristic polynomial det(y1− φ) = 0 of a Higgs field
φ : E → E ⊗ KC defines an N-sheeted spectral cover

Σ

π ""❊
❊

❊

❊

❊

❊

�

�

// T∨C

��

C

which is embedded in the symplectic surface T∨C .

If Σ is an irreducible spectral curve, there is a bijection between
isomorphism classes of

Pairs (E , φ) with spectral curve Σ

Rank one torsion free sheaves L on Σ
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Spectral correspondence

Goal: construct a holomorphic symplectic surface S in such a way that

Hn,ℓ,r
∼=
(
moduli space of stable pure dimension
one sheaves on a symplectic surface S

)

Construction: [Kontsevich,Soibelman] [Diaconescu,Donagi,P]

(C , p) a curve with marked point

D = np

M = KC (D)

M = M0 ← M1 ← · · · ← Mnℓ is a sequence of nℓ successive blow-ups
of M with exceptional divisors

Ξ1,Ξ2, . . . ,Ξℓ,Ξℓ+1 . . . ,Ξnℓ ⊂ Mnℓ.
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Spectral correspondence

Construction:

The blow-ups are governed by two mechanisms:

untwisting perform first a sequence of ℓ− 1 blow-ups to resolve the
ℓ-th order tangency between Mp and the spectral curve
of type (n, ℓ, 1) in M;

order of pole reduction perform a sequence of (n − 1)ℓ+ 1 blow-ups
to resolve the eigenvalues of the untwisted Laurent tail.

The canonical class of Mnℓ is given by

KMnℓ
=− nfnℓ − (n − 1)Ξ1 − 2(n − 1)Ξ2 − · · · − ℓ(n − 1)Ξℓ

− (ℓ(n − 1)− 1)Ξℓ+1 − · · · − Ξnℓ−1 − 0 · Ξnℓ.
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Spectral correspondence
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Spectral correspondence

Construction:

S = Mnℓ\(the support of anti-canonical divisor = fnℓ ∪
⋃nℓ−1

i=1 Ξi)

S is a holomorphic symplectic surface

there is a unique compact curve Σnℓ ⊂ S of degree 1 over C . Every
compact curve in S is linearly equivalent to rΣnℓ for some r ≥ 1.

moduli spaceMn,ℓ,r (S) of pure dimension one sheaves F with

ch1(F ) = r [Σnℓ] , χ(F ) = c = 1− N(g − 1)

(with respect to a suitably chosen Bridgeland β-stability)

Theorem (Twisted spectral correspondence)

Hn,ℓ,r
∼=Mn,ℓ,r (S)
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Steps in the strategy

Twisted wild character variety Sn,ℓ,r

Moduli space Hn,ℓ,r of twisted
irregular Higgs bundles

Moduli space of pure sheaves F of
dimension one on spectral surface S

Refined stable pairs OY
s−→ F of CY3

Refined Chern-Simons
theory of torus knot

NAH, and P = W

Spectral correspondence

Gopakumar-Vafa expansion

Large N duality

Weighted Poincaré polynomials

Perverse Poincaré polynomials

Refined PT invariants

Refined Chern-Simons invariants
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CY3 and refined invariants

Y = KS = S × C1

Mn,ℓ,r (Y ) ≃ Hn,ℓ,r × C1

Stable pair theory [Pandharipande,Thomas]
PTY (r , c) = virtual number of pairs s : OY → F generically
surjective with compact support F and

ch1(F ) = r [Σnℓ], χ(F ) = c = 1− N(g − 1)

Refined stable pair theory [Kontsevich,Soibelman]
Z ref
PT (Y ; q, y , x) = virtual Poincaré polynomial of moduli space of such

pairs.
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CY3 and refined invariants

Generating functions

Z ref
PT (Y ; q, y , x) = 1 +

∑

r≥1, c∈Z
PT ref

Y (r , c ; y)qcxr

Goal: compute the generating function.

Specialize C = P1 with one marked point σnℓ ∈ C

Torus action C× × S → S

Refined virtual localization [Nekrasov,Okounokov][Maulik]

Stable pair theory localizes on a single rational curve Σnℓ in S
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Stable pairs conjecture

Conjecture (Spectral correspondence and Gopakumar-Vafa expansion)

lnZ ref
PT (Y ; q, y , x) = −

∑

s≥1

∑

r≥1

xsr

s

y sr#(qy−1)s#PPn,ℓ,r (q
−sy−s , y s)

(1− q−sy−s)(1− qsy−s)

where PPn,ℓ,r are perverse Poincaré polynomials

PPn,ℓ,r (u, v) =
∑

j ,k

uiv jdimGrPi H
j(Hn,ℓ,r ) .

Note: Direct localization computations of PT ref
Y (r , c ; y) are possible in

principle but are hard
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Steps in the strategy

Twisted wild character variety Sn,ℓ,r

Moduli space Hn,ℓ,r of twisted
irregular Higgs bundles

Moduli space of pure sheaves F of
dimension one on spectral surface S

Refined stable pairs OY
s−→ F of CY3

Refined Chern-Simons
theory of torus knot

NAH, and P = W

Spectral correspondence

Gopakumar-Vafa expansion

Large N duality

Weighted Poincaré polynomials

Perverse Poincaré polynomials

Refined PT invariants

Refined Chern-Simons invariants
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Compact curve Σnℓ on S

Tony Pantev (University of Pennsylvania) Wild character varieties Moduli spaces and geometric structures Conference



Refined invariants and refined Chern-Simons theory

Local equation of the torus invariant curve Σnℓ at σnℓ. The curve has
a unique singular point of the form

v ℓ = w (n−2)ℓ−1.

We can use large N duality [Oblomkov,Shende,Rasmussen]
[Diaconescu,Hua,Soibelman]

(
Refined PT invariants of
the singular plane curves Σnℓ

)
↔
(

Refined CS invariants of
Tℓ,(n−2)ℓ−1 torus knots

)

In refined Chern-Simons theory [Aganagic,Shakirov], torus knot
invariants can be evaluated by modular matrices

Sλµ = Pλ(t
ρsµ)Pµ(t

ρ) , Tλµ = δλµs
1
2

∑

i λi (λi−1)t
∑

i λi (i−1)
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Refined invariants and refined Chern-Simons theory

Topological vertex formalism tells us that the contributions are localized at
σnℓ and qnℓ of Σnℓ

Conjecture (Large N duality)

The generating function of refined stable pairs in Y is expressed as

Z ref
PT (Y ; q, y , x) = 1+

∑

|λ|>0

T#
λλW

ref
λ (©)W ref

λ (Tℓ,(n−2)ℓ−1)x
|λ|
∣∣∣
s=qy , t=qy−1

.
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Epilogue

Definition: the HMW partition function is the function

ZHMW (z ,w) = 1 +
∑

|λ|>0

Ωg ,n
λ (z ,w)H̃λ(x; z

2,w2)

the sum over all Young diagrams λ

for each such λ

Ωg ,n
λ =

∏

�∈λ

(−z2a(�)w2l(�))m(n−2)(z2a(�)+1 − w2l(�)+1)2g

(z2a(�)+2 − w2l(�))(z2a(�) − w2l(�)+2)
,

the infinite set of variables x = (x1, x2, . . .).

H̃λ(x; z
2,w2) is the modified Macdonald polynomial
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Epilogue

Next let Hg ,m,n(z ,w ; x(1), . . . , x(m)) be defined by

lnZHMW (z ,w) =
∑

k≥1

(−1)(mn−1)|µ|Hg ,m,n(z
k ,wk ; xk))

(1− z2k)(w2k − 1)
.

For each Young diagram ρ, let hρ(x) and pρ(x) be the complete and power
sum symmetric functions respectively.

Conjecture

WPg ,m,n,ℓ(u,−1)

= u#
〈
Hg ,m,n(u

1
2 , u−

1
2 ; x(1), . . . , x(m)) ,

m⊗

a=1

h(ℓ−1,1)(x(2a−1))⊗ p(ℓ)(x(2a))

〉

where 〈 , 〉 is the natural pairing on symmetric functions.
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