Geometry and topology of wild character varieties

Tony Pantev

University of Pennsylvania

Moduli spaces and geometric structures Conference in honour of Oscar Garcia-Prada on the occasion of his 60th birthday ICMAT (Madrid), 12-16 September 2022

Outline

- Based on joint works with with Diaconescu and Donagi, and with Chuang, Diaconescu, Donagi, and Nawata.
- Review of wild character varieties.
- Topology weighted Poincaré polynomials.
- Calabi-Yau enumerative geometry.
- Refined Chern-Simons theory of torus knots and calculations.

Wild character varieties

Character varieties = special moduli spaces of matrices.

Parametrize monodromy data for meromorphic systems of linear ODE on compact Riemann surfaces. Historically come in three flavors

- unramified,
- tame,
- wild.

Parametrize monodromy data for meromorphic systems of linear ODE on compact Riemann surfaces. Historically come in three flavors corresponding to meromorphic flat connections $d + \Gamma(z)dz$ with

- \bullet unramified, \leftarrow no poles
- tame, ← logarithmic poles
- wild. ← higher order poles

Parametrize monodromy data for meromorphic systems of linear ODE on compact Riemann surfaces. Historically come in three flavors corresponding to meromorphic flat connections $d + \Gamma(z)dz$ with

- \bullet unramified, \leftarrow no poles
- tame, ← logarithmic poles
- wild. ← higher order poles

Depend on:

Background data: • \mathfrak{X} - a smoooth projective curve/ \mathbb{C} .

- $D = \{x_1, x_2, \dots, x_k\}$ distinct points.
- G a complex reductive group, $\mathfrak{g} = Lie(G)$.

Invariants:

- $Q = \{Q_1, \dots, Q_k\}$ irregular type at D.
- Fixed conjugacy classes of formal monodromy.

Depend on:

Background data: • \mathfrak{X} - a smoooth projective curve/ \mathbb{C} .

- $D = \{x_1, x_2, \dots, x_k\}$ distinct points.
- G a complex reductive group, $\mathfrak{g} = \text{Lie}(G)$.

Study monodromies of (V, ∇) with V a principal G-bundle and ∇ meromorphic flat connection with poles at most at D.

- **Invariants:** Q = $\{Q_1, \ldots, Q_k\}$ irregular type at D.
 - Fixed conjugacy classes of formal monodromy.

Study monodromies of (V, ∇) when ∇ has polar parts Q_i at x_i and formal monodromy in the given conjugacy classes.

Definition

A G-valued irregular type is a Laurent polynomial

$$Q = \frac{A_{n-1}}{z^{n-1}} + \cdots + \frac{A_1}{z}, \ A_i \in \mathfrak{t},$$

where $\mathfrak{t} \subset \mathfrak{g}$ is a Cartan subalgebra.

 (V, ∇) has irregular type Q at $x_i \in D$ if locally near x_i

$$\nabla = d + dQ \mod z^{-1} \mathfrak{g}\{z\} dz$$

in an analytic local trivialization of V near x_i and for some finite root z of a local coordinate on $\mathfrak X$ centered at x_i

Note: Up to a Puiseux gauge transformation the ≤ -2 polar part of ∇ always has coefficients in $\mathfrak{t} \subset \mathfrak{g}$.

Consider $\widehat{\mathfrak{X}}$ - the **real oriented blow up** of ${\mathfrak{X}}$ at D

Consider $\widehat{\mathfrak{X}}$ - the **real oriented blow up** of ${\mathfrak{X}}$ at D

- each x_i is replaced by a circle ∂_i parametrizing real oriented directions emanating from x_i ;
- $\widehat{\mathfrak{X}}$ is a surface with boundary $\partial \widehat{X} = \partial_1 \sqcup \ldots \sqcup \partial_k$.

Consider $\widehat{\mathfrak{X}}$ - the **real oriented blow up** of ${\mathfrak{X}}$ at D

Boalch: An irregular type Q on (X, D) decorates $\widehat{\mathfrak{X}}$ with:

- A connected reductive group $L_i \subset G$, the centralizer of Q_i in G.
- A finite set $A_i \subset \partial_i$ of singular/anti-Stokes directions for all i = 1, ..., k.
- For each $d \in A_i$ a unipotent group $Sto_d \subset G$, normalized by L_i .

Consider $\widehat{\mathfrak{X}}$ - the **real oriented blow up** of ${\mathfrak{X}}$ at D

Boalch: An irregular type Q on (X, D) decorates $\widehat{\mathfrak{X}}$ with:

- A connected reductive group $L_i \subset G$, the centralizer of Q_i in G.
- A finite set $A_i \subset \partial_i$ of singular/anti-Stokes directions for all i = 1, ..., k.
- For each $d \in A_i$ a unipotent group $Sto_d \subset G$, normalized by L_i .

Note: These give rise to a new punctured surface surface X defined by puncturing $X = \mathfrak{X} - D$ once near each singular direction..

Concretely:

- Glue an annulus $\mathbb{H}_i = (0,1] \times \partial_i$ to each boundary circle $\partial_i \subset \widehat{\mathfrak{X}}$ to obtain a new surface X^+ .
- Puncture X^+ at each singular direction $d \in A_i \subset \partial_i$ to obtain \widetilde{X} :

The surface \widetilde{X}

Stokes local systems

The analytic covariantly constant local sections in a flat meromorphic G-bundle of irregular type Q on (\mathfrak{X},D) form a locally constant sheaf on \widetilde{X} of a special type:

Definition

A Stokes G-local system of irregular type Q on (\mathfrak{X},D) is a locally constant principal G bundle on \widetilde{X} with a locally constant reduction of the structure group to L_i on a finite etale cover of \mathbb{H}_i , so that the local monodromy around each $d \in A_i \subset \partial_i$ is in Sto_d for any choice of a base point in \mathbb{H}_i .

Riemann-Hilbert correspondence

The irregular Riemann-Hilbert correspondence (Stokes, Malgrange-Sibuya, Deligne-Malgrange, Boalch) can now be formulated as the following

Theorem

The category of flat meromorphic G-bundles of irregular type Q on (\mathfrak{X},D) is equivalent to the category of Stokes G-local systems of irregular type Q on (\mathfrak{X},D) .

This leads to our main object of interest: the wild character varieties.

Wild character varieties

Fix (\mathfrak{X}, D) , a group G, an irrequalr type Q, and a collection $C = \{C_1, \ldots, C_k\}$, where $C_i \subset L_i$ is a conjugacy class in L_i .

Definition

The wild character variety of irregular type Q on (\mathfrak{X}, D) is the coarse moduli space $M_G(Q)$ of Stokes G-local systems of irregular type Q on (\mathfrak{X}, D) .

The C-restricted wild character variety is the locally closed subvariety $M_G(Q, C) \subset M_G(Q)$ consisting of Stokes local systems whose formal monodromy around ∂_i (for a base point in \mathbb{H}_i) is in $C_i \subset L_i$.

Topology

Prelude: counting G-covers (i)

G - a finite group, X a smooth compact surface of genus g.

Problem: [Riemann, Hurwitz, ...] Count all unramified G-Galois covers of X up to isomorphism.

Prelude: counting G-covers (i)

G - a finite group, X a smooth compact surface of genus g.

Problem: [Riemann, Hurwitz, ...] Count all unramified G-Galois covers of X up to isomorphism.

Reformulation: Find

$$\left(\begin{array}{l} \text{orbifold Euler characteristic} \\ \text{of the moduli stack } M_G(X) \\ \text{of flat } G \text{ bundles on } X \end{array} \right) = \left(\begin{array}{l} \text{orbifold partition function of} \\ \text{a } 2d \text{ Dijkgraaf-Witten the-} \\ \text{ory with gauge group } G \end{array} \right).$$

Prelude: counting G-covers (i)

G - a finite group, X a smooth compact surface of genus g.

Problem: [Riemann, Hurwitz, ...] Count all unramified G-Galois covers of X up to isomorphism.

Reformulation: $M_G(X) \cong [\text{Hom}(\pi_1(X), G)/G]$, so find

$$\chi^{\operatorname{orb}}(M_G(X)) = \sum_{[\rho] \in \operatorname{Hom}(\pi_1(X), G)/G} \frac{1}{|\operatorname{Aut}(\rho)|} = \frac{|\operatorname{Hom}(\pi_1(X), G)|}{|G|}.$$

Prelude: counting *G*-covers (ii)

Formulas:

Frobenius' 1896 If g = 1, then

$$\chi^{\mathsf{orb}}(M_G(X)) = \frac{|\operatorname{\mathsf{Hom}}(\pi_1(X),G)|}{|G|} = |\operatorname{\mathsf{Irrep}}(G)|$$

Prelude: counting G-covers (ii)

Formulas:

Frobenius' 1896 If g = 1, then

$$\chi^{\mathsf{orb}}(M_G(X)) = rac{|\operatorname{\mathsf{Hom}}(\pi_1(X),\,G)|}{|G|} = |\operatorname{\mathsf{Irrep}}(G)|$$

Mednyh'1978 For any $g \ge 0$ we have

$$\chi^{\operatorname{orb}}(M_G(X)) = \frac{|\operatorname{Hom}(\pi_1(X),G)|}{|G|} = \sum_{\mu \in \operatorname{Irrep}(G)} \left(\frac{\dim \mu}{|G|}\right)^{2-2g}.$$

Prelude: counting G-covers (ii)

Formulas:

Frobenius' 1896 If g = 1, then

$$\chi^{\mathsf{orb}}(M_G(X)) = \frac{|\operatorname{\mathsf{Hom}}(\pi_1(X),\,G)|}{|G|} = |\operatorname{\mathsf{Irrep}}(G)|$$

Mednyh'1978 For any $g \ge 0$ we have

$$\chi^{\mathsf{orb}}(M_G(X)) = \frac{|\operatorname{\mathsf{Hom}}(\pi_1(X),G)|}{|G|} = \sum_{\mu \in \mathsf{Irrep}(G)} \left(\frac{\dim \mu}{|G|}\right)^{2-2g}.$$

Goal: Find analogous formulas for $\chi(M_G(Q,C))$.

There are two stories ...

First story: topology of character varieties

Fix a genus g curve C and a positive integer N. Consider the character variety

$$\mathcal{M}_{\mathrm{B}}^{N,d} := \ \left\{ A_1, B_1, \dots, A_g, B_g \in \mathsf{GL}_N \ \left| \ \prod_{i=1}^g A_i^{-1} B_i^{-1} A_i B_i = e^{\frac{2\pi \sqrt{-1}d}{N}} \, \mathsf{Id} \right. \right\} \right| \!\!\!/ \mathsf{GL}_N$$

of (projective) representations of $\pi_1(C)$ into $\mathsf{GL}_{\mathcal{N}}(\mathbb{C})$

Note:

- $\mathcal{M}_{\mathrm{B}}^{N,d}$ is an affine scheme, nonempty, of dimension, $d_N = N^2(2g-2)$, and smooth when $\gcd(d,N) = 1$;
- $H_c^k(\mathcal{M}_B^{N,d};\mathbb{Q})$ carries a mixed Hodge structure with a weight filtration $W_0 \subset \cdots \subset W_i \subset \cdots \subset W_{2k} = H_c^k(\mathcal{M}_B^{N,d};\mathbb{Q}).$

First story:

Weighted Poincaré polynomial:

$$WP\left(\mathcal{M}_{\mathrm{B}}^{N,d};u,v\right)=\sum_{i,j}u^{i/2}v^{j}\mathrm{dim}\;\mathsf{Gr}_{i}^{W}\mathsf{H}_{c}^{j}\left(\mathcal{M}_{\mathrm{B}}^{N,d}\right)$$

Note:

- $WP(\mathcal{M}_{\mathrm{B}}^{N,d};u,v)$ is a polynomial in u and v, i.e. $W_{2i}H_{c}^{j}=W_{2i+1}H_{c}^{j}$.
- using Poincaré duality $WP(\mathcal{M}_{\mathrm{B}}^{N,d};u,v)$ can be expressed in terms of $h^{p,q}$ for the MHS on $H^{\bullet}(\mathcal{M}_{\mathrm{B}}^{N,d};\mathbb{Q})$ instead.

First story:

Conjecture (Hausel, Rodriguez-Villegas)

$$\sum_{\lambda} \prod_{\square \in \lambda} \frac{\left(z^{2l(\square)+1} - w^{2s(\square)+1}\right)^{2g}}{\left(z^{2l(\square)+2} - w^{2s(\square)}\right)\left(z^{2l(\square)} - w^{2s(\square)+2}\right)} x^{|\lambda|}$$

$$= \exp\left(\sum_{n,k} \frac{WP\left(\mathcal{M}_{B}^{N,d}; w^{2k}, -(zw)^{-2k}\right)}{\left(z^{2k}-1\right)\left(1-w^{2k}\right)(zw)^{-d_N}} \frac{x^{Nk}}{k}\right)$$

Partial extensions:

- C with tame ramifications [Hausel, Letellier, Rodriguez-Villegas]
- C with wild ramifications [Hausel, Mereb, Wong]

A different tack:

Consider the moduli space of Higgs bundles

$$\mathcal{M}_{\mathrm{Dol}}^{\mathit{N},\mathit{d}} := \left\{ egin{array}{l} \mathsf{semistable\ rank\ } \mathit{N}\ \mathsf{degree}\ \mathit{d}\ \mathsf{Higgs\ bundles}\ (\mathit{E},\phi) \\ \phi \in \mathit{H}^0(\mathit{C},\mathit{End}(\mathit{E}) \otimes \mathit{K})\ \mathsf{Higgs\ field} \end{array}
ight.$$

Non-Abelian Hodge correspondence: Hyper-Kähler rotation gives a homeomorphism $\mathcal{M}_{\mathrm{B}}^{N,d}\cong\mathcal{M}_{\mathrm{Dol}}^{N,d}$.

Filtrations:

- weight filtration $W_0 \subset \cdots \subset W_i \subset \cdots \subset W_{2k} = H_c^k(\mathcal{M}_B^{N,d};\mathbb{Q})$
- perverse Leray filtration $P_0 \subset \cdots \subset P_i \subset \cdots \subset P_k = H_c^k(\mathcal{M}_{Dol}^{N,d};\mathbb{Q})$ for the Hitchin map $(E,\phi) \mapsto (\operatorname{tr}(\phi),\operatorname{tr}(\phi^2),\ldots,\operatorname{tr}(\phi^N))$.

These match according to the P=W conjecture of de Cataldo, Hausel, and Migliorini.

A different tack:

Conjecture (de Cataldo, Hausel, Migliorini)

$$Gr_{2i}^{W}H_{c}^{j}\left(\mathcal{M}_{B}^{N,d}\right)=Gr_{i}^{P}H_{c}^{j}\left(\mathcal{M}_{Dol}^{N,d}\right)$$

Using the P=W conjecture can rewrite the weighted Poincaré polynomial of $\mathcal{M}_B^{N,d}$ as the perverse Poincaré polynomial

$$PP\left(\mathcal{M}_{\mathsf{Dol}}^{N,d}; u, v\right) = \sum_{i,j} u^i v^j \dim Gr_i^P H_c^j\left(\mathcal{M}_{\mathsf{Dol}}^{N,d}\right).$$

Second story: polynomial knot invariants

Suppose $\Sigma \subset \mathbb{A}^2$ is a reduced rational plane curve with a single singular point ν and let $\pi: \mathbb{A}^2 \to \mathbb{A}^1$ be the projection onto one of the coordinate axes.

Then $\Sigma \simeq$ affine part of a spectral curve for a meromorphic Hitchin system on \mathbb{P}^1 with a pole at ∞ .

The wild non-abelian Hodge correspondence identifies the (symplectic leaf containing) the compactified Jacobian of the projective completion of Σ with a wild character variety \mathcal{S}_{Σ} on \mathbb{P}^1 parametrizing Stokes data at ∞ .

Second story

- $L \subset S^3$ the link of the singular point $\nu \in \Sigma$
- ullet $P_L(a,q)\in\mathbb{Z}\left(q^{1/2}
 ight)[a^\pm]$ the HOMFLY-PT polynomial of L
- $P_L^{(0)}(q)$ the a^0 term in $\left(aq^{-1/2}\right)^{m(\nu)}P_L(a,q)$, where $m(\nu)$ is the Milnor number of $\nu\in\Sigma$

Conjecture (Shende, Treumann, Zaslow)

$$P_L^{(0)}(q) = (1-q)^{b(\nu)} WP(\mathcal{S}_{\Sigma}; q, -1)$$

where $b(\nu) = number$ of branches of Σ at ν .

Refined and colored extensions have been studied in [Oblomkov,Rasmussen,Shende] and [Diaconescu,Hua,Soibelman]

Strategy

Note: Knot invariants are very handy because their computation boils down to simple combinatorics.

Goal: Relate Betti numbers of twisted wild character varieties and torus knot invariants.

Strategy: Use the spectral correspondence, Gopakumar-Vafa expansions, and refined Chern-Simons theory.

Steps in the strategy

Twisted wild character variety $\mathcal{S}_{n,\ell,r}$

Weighted Poincaré polynomials

NAH, and P = W

Moduli space $\mathcal{H}_{n,\ell,r}$ of twisted irregular Higgs bundles

Perverse Poincaré polynomials

Spectral correspondence

Moduli space of pure sheaves F of dimension one on a symplectic surface S

Gopakumar-Vafa expansion

Refined stable pairs $\mathcal{O}_Y \xrightarrow{s} F$ of CY3

Refined PT invariants

Large *N* duality

Refined Chern-Simons theory of torus knot

Refined Chern-Simons invariants

Steps in the strategy

Twisted wild character variety $\mathcal{S}_{n,\ell,r}$

Weighted Poincaré polynomials

NAH, and P = W

Moduli space $\mathcal{H}_{n,\ell,r}$ of twisted irregular Higgs bundles

Perverse Poincaré polynomials

Spectral correspondence

Moduli space of pure sheaves F of dimension one on a symplectic surface S

Gopakumar-Vafa expansion

Refined stable pairs $\mathcal{O}_Y \xrightarrow{s} F$ of CY3

Refined PT invariants

Large *N* duality

Refined Chern-Simons theory of torus knot

Refined Chern-Simons invariants

Moduli space of twisted irregular flat connections

Main object of study: Moduli space of flat connections with twisted irregular singularity at p on a curve C.

Data:

- \bullet (C, p) smooth projective curve with a marked point.
- For any triple (n, ℓ, r) consider the moduli space $C_{n,\ell,r}$ of pairs (V, A)
 - ▶ V is a rank $N = r\ell$, degree 0 vector bundle on C
 - ► *A* is a meromorphic connection on *V* subject to the following conditions:

Moduli space of twisted irregular flat connections

Conditions on (V, A):

- Any proper nontrivial sub-bundle $V' \subset V$ preserved by A has degree $\deg(V') < 0$. (stability condition)
- A has a simple pole at ∞ with residue $\mathbf{1}_N/2\sqrt{-1}\pi N$. (deg=1 in Higgs side)
- A has a pole of order n at the marked point p and there exists a local trivialization of V at p which identifies it to $A_{n,\ell,r}$ up to holomorphic terms where

$$A_{n,\ell,r} = -2dQ_{n,\ell,r} - \ell^{-1}R\frac{dz}{z}$$

is a $\mathfrak{gl}(N,\mathbb{C})$ -valued one-form with

$$Q_{n,\ell,r}(z) = \frac{z^{1-n}}{1-n} J_{\ell,r} + \frac{z^{2-n}}{2-n} E_{\ell,r}$$

Moduli space of twisted irregular flat connections

the word, "twisted", refers to the fact that the Laurent tail at p does not have coefficients in a Cartan subalgebra of $\mathfrak{gl}(N,\mathbb{C})$

$$J_{\ell,r} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ \mathbf{1}_r & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \mathbf{1}_r & 0 \end{pmatrix}, \qquad E_{\ell,r} = \begin{pmatrix} 0 & 0 & \cdots & 0 & \mathbf{1}_r \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

The residue R is the diagonal block-matrix

$$R = \left(\begin{array}{cccc} 0 & 0 & \cdots & 0 & 0 \\ 0 & \mathbf{1}_r & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & (\ell-1)\mathbf{1}_r \end{array}\right).$$

The Betti version of $C_{n,\ell,r}$ was constructed by [Boalch, Yamakawa] as a variety parametrizing twisted Stokes data

- let $\rho:\widetilde{\Delta}\to\Delta$ be the $\ell:1$ cover $z=w^\ell;$
- $\rho^*dQ_{n,\ell,r}$ can be diagonalized and the Stokes transformations can be studied via this covering map;
- there are two types of anti-Stokes directions for twisted wild ramification:
 - ▶ complete half-periods: the Stokes groups U_0 , U_1 , ... U_{2n-4} are unipotent radicals of parabolic subgroup with Levi H the group of invertible block diagonal matrices

$$\begin{pmatrix} * & 0 & \cdots & 0 & 0 \\ 0 & * & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & * \end{pmatrix}$$

with arbitrary $r \times r$ blocks on the diagonal.

▶ incomplete half-period: the Stokes group U_{2n-3} is a smaller unipotent subgroup.

Let $H(\partial), H(\overline{\partial}) \subset GL_N$ be the subsets of matrices of block form

$$h = \begin{pmatrix} 0 & * & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & * \\ * & 0 & \cdots & 0 & 0 \end{pmatrix}, \qquad \overline{h} = \begin{pmatrix} 0 & 0 & \cdots & 0 & * \\ * & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & * & 0 \end{pmatrix},$$

respectively.

Note:

- H acts by conjugation on $H(\partial)$ and $H(\overline{\partial})$;
- The map $h \mapsto h^{-1}$ is an H-equivariant isomorphism $H(\partial) \widetilde{\to} H(\overline{\partial})$.

For $\alpha = (A_i, B_i, C, h, S_i) \in \mathcal{A} = GL_N^{\times 2g+1} \times H(\partial) \times \prod_{i=0}^{2n-3} U_i$ we define a moment map $\mu: \mathcal{A} \to \mathsf{GL}_N \times \mathcal{H}(\overline{\partial})$ by setting

$$\mu(\alpha) = \left([\mathsf{A}_1, \mathsf{B}_1] \cdots [\mathsf{A}_\mathsf{g}, \mathsf{B}_\mathsf{g}] \mathsf{C}^{-1} h \prod_{j=0}^{2n-3} \frac{\mathsf{S}_j}{\mathsf{S}_j} \mathsf{C}, \ h^{-1} \right)$$

with $[A_i, B_i] = A_i B_i A_i^{-1} B_i^{-1}$.

Then the variety of Stokes data for the flat connections parameterized by $\mathcal{C}_{n,\ell,r}$ is given by the quasi-Hamiltonian reduction

$$\mathcal{S}_{\textit{n},\ell,\textit{r}} = \mu^{-1} \left(e^{-2\pi \sqrt{-1}/\textit{N}} \mathbf{1}_{\textit{N}}, \mathcal{C}_{\mathsf{M}^{-1}} \right) / \, \mathsf{GL}_{\textit{N}} \times \textit{H}$$

where M is the formal monodromy

$$M = \begin{pmatrix} 0 & \mathbf{1}_r & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \mathbf{1}_r \\ \mathbf{1}_r & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

Note: dim $S_{n,\ell,r} = 2 + r^2 (n\ell(\ell-1) + 2(g-1)\ell^2)$.

We are interested in weighted Poincaré polynomial

$$WP_{n,\ell,r}(u,v) = \sum_{i,j} u^{i/2} v^j \dim Gr_i^W H^j(S_{n,\ell,r})$$

where $W_k H^j$ is the weight filtration for the mixed Hodge structure on the **cohomology** of $S_{n,\ell,r}$.

• The weight filtration on cohomology is expected to satisfy the condition $W_{2k}H^{j}(\mathcal{S}_{n,\ell,r})=W_{2k+1}H^{j}(\mathcal{S}_{n,\ell,r})$ for all k,j

Steps in the strategy

Twisted wild character variety $\mathcal{S}_{n,\ell,r}$

Weighted Poincaré polynomials

NAH, and P = W

Moduli space $\mathcal{H}_{n,\ell,r}$ of twisted irregular Higgs bundles

Perverse Poincaré polynomials

Spectral correspondence

Moduli space of pure sheaves F of dimension one on a symplectic surface S

Gopakumar-Vafa expansion

Refined stable pairs $\mathcal{O}_Y \xrightarrow{s} F$ of CY3

Refined PT invariants

Large *N* duality

Refined Chern-Simons theory of torus knot

Refined Chern-Simons invariants

Twisted irregular Higgs bundles

- \bullet (C, p) a curve with marked point
- $D = np \ n \geq 1$
- $M = K_C(D)$

a twisted irregular Higgs bundle (E,ϕ) of rank $N=r\ell$, $\phi:E\to E\otimes K_C(D),\ D=np$ is subject to the condition that the restriction $\phi|_{np}$ is equivalent to $dQ_{n,\ell,r}(z)$

$$Q_{n,\ell,r}(z) = \frac{z^{1-n}}{1-n} J_{\ell,r} + \frac{z^{2-n}}{2-n} E_{\ell,r}$$

with

$$J_{\ell,r} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ \mathbf{1}_r & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \mathbf{1}_r & 0 \end{pmatrix}, \qquad E_{\ell,r} = \begin{pmatrix} 0 & 0 & \cdots & 0 & \mathbf{1}_r \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Twisted irregular Higgs bundles

- moduli space $\mathcal{H}_{n,\ell,r}$ of semistable meromorphic Higgs bundles of rank $N=r\ell$, degree 1
- (twisted) wild non-abelian Hodge correspondence [Biquard-Boalch, Sabbah, Mochizuki] [Witten]

$$S_{n,\ell,r} \cong \mathcal{H}_{n,\ell,r}$$

ullet $\mathcal{H}_{n,\ell,r}$ admits perverse Leray filtration $P_k H^j$ arising from the Hitchin map

Conjecture (Twisted wild version of P = W)

$$Gr_{2k}^W H^j(\mathcal{S}_{n,\ell,r}) = Gr_k^P H^j(\mathcal{H}_{n,\ell,r})$$

Steps in the strategy

Twisted wild character variety $\mathcal{S}_{n,\ell,r}$

Weighted Poincaré polynomials

NAH, and P = W

Moduli space $\mathcal{H}_{n,\ell,r}$ of twisted irregular Higgs bundles

Perverse Poincaré polynomials

Spectral correspondence

Moduli space of pure sheaves F of dimension one on a symplectic surface S

Gopakumar-Vafa expansion

Refined stable pairs $\mathcal{O}_Y \xrightarrow{s} F$ of CY3

Refined PT invariants

Large *N* duality

Refined Chern-Simons theory of torus knot

Refined Chern-Simons invariants

Spectral (cover) correspondence

Classical version [Hitchin] [Beauville, Narasimhan, Ramanan]

The characteristic polynomial $\det(y\mathbf{1} - \phi) = 0$ of a Higgs field $\phi: E \to E \otimes K_C$ defines an *N*-sheeted spectral cover

$$\Sigma \hookrightarrow T^{\vee}C$$

$$\downarrow \qquad \qquad \downarrow$$

$$C$$

which is embedded in the symplectic surface $T^{\vee}C$.

If Σ is an irreducible spectral curve, there is a bijection between isomorphism classes of

- Pairs (E, ϕ) with spectral curve Σ
- Rank one torsion free sheaves L on Σ

Goal: construct a holomorphic symplectic surface S in such a way that

$$\mathcal{H}_{n,\ell,r}\cong \left(egin{matrix} \mathsf{moduli} \ \mathsf{space} \ \mathsf{of} \ \mathsf{stable} \ \mathsf{pure} \ \mathsf{dimension} \ \mathsf{one} \ \mathsf{sheaves} \ \mathsf{on} \ \mathsf{a} \ \mathsf{symplectic} \ \mathsf{surface} \ \mathcal{S} \end{array}
ight)$$

Construction: [Kontsevich, Soibelman] [Diaconescu, Donagi, P]

- \bullet (C,p) a curve with marked point
- D = np
- $\bullet \ M = K_C(D)$
- $M = M_0 \leftarrow M_1 \leftarrow \cdots \leftarrow M_{n\ell}$ is a sequence of $n\ell$ successive blow-ups of M with exceptional divisors

$$\Xi_1, \Xi_2, \ldots, \Xi_\ell, \Xi_{\ell+1}, \ldots, \Xi_{n\ell} \subset M_{n\ell}.$$

Construction:

- The blow-ups are governed by two mechanisms:
 - untwisting perform first a sequence of $\ell-1$ blow-ups to resolve the ℓ -th order tangency between M_p and the spectral curve of type $(n,\ell,1)$ in M;
 - order of pole reduction perform a sequence of $(n-1)\ell+1$ blow-ups to resolve the eigenvalues of the untwisted Laurent tail.
- The canonical class of $M_{n\ell}$ is given by

$$K_{M_{n\ell}} = -nf_{n\ell} - (n-1)\Xi_1 - 2(n-1)\Xi_2 - \dots - \ell(n-1)\Xi_\ell - (\ell(n-1)-1)\Xi_{\ell+1} - \dots - \Xi_{n\ell-1} - 0 \cdot \Xi_{n\ell}.$$

Construction:

- $S = M_{n\ell} \setminus (\text{the support of anti-canonical divisor} = f_{n\ell} \cup \bigcup_{i=1}^{n\ell-1} \Xi_i)$
- *S* is a holomorphic symplectic surface
- there is a unique compact curve $\Sigma_{n\ell} \subset S$ of degree 1 over C. Every compact curve in S is linearly equivalent to $r\Sigma_{n\ell}$ for some $r \geq 1$.
- moduli space $\mathcal{M}_{n,\ell,r}(S)$ of pure dimension one sheaves F with

$$\mathrm{ch}_{1}(F) = r[\Sigma_{n\ell}] \; , \quad \chi(F) = c = 1 - N(g-1)$$

(with respect to a suitably chosen Bridgeland β -stability)

Theorem (Twisted spectral correspondence)

$$\mathcal{H}_{n,\ell,r}\cong\mathcal{M}_{n,\ell,r}(S)$$

Steps in the strategy

Twisted wild character variety $\mathcal{S}_{n,\ell,r}$

Weighted Poincaré polynomials

NAH, and P = W

Moduli space $\mathcal{H}_{n,\ell,r}$ of twisted irregular Higgs bundles

Perverse Poincaré polynomials

Spectral correspondence

Moduli space of pure sheaves F of dimension one on spectral surface S

Gopakumar-Vafa expansion

Refined stable pairs $\mathcal{O}_Y \xrightarrow{s} F$ of CY3

Refined PT invariants

Large N duality

Refined Chern-Simons theory of torus knot

Refined Chern-Simons invariants

CY3 and refined invariants

• $Y = K_S = S \times \mathbb{C}^1$

$$\mathcal{M}_{n,\ell,r}(Y) \simeq \mathcal{H}_{n,\ell,r} \times \mathbb{C}^1$$

• Stable pair theory [Pandharipande,Thomas] $PT_Y(r,c) = \text{virtual number of pairs } s: \mathcal{O}_Y \to F \text{ generically surjective with compact support } F \text{ and}$

$$\mathrm{ch}_1(F) = r[\Sigma_{n\ell}], \qquad \chi(F) = c = 1 - N(g-1)$$

• Refined stable pair theory [Kontsevich, Soibelman] $Z_{PT}^{\text{ref}}(Y;q,y,\mathbf{x}) = \text{virtual Poincar\'e polynomial of moduli space of such pairs.}$

CY3 and refined invariants

Generating functions

$$Z_{PT}^{\mathrm{ref}}(Y;q,y,\mathsf{x}) = 1 + \sum_{r \geq 1,\, c \in \mathbb{Z}} PT_Y^{\mathrm{ref}}(r,c\,;y)q^c\mathsf{x}^r$$

Goal: compute the generating function.

- Specialize $C = \mathbb{P}^1$ with one marked point $\sigma_{n\ell} \in C$
- Torus action $\mathbb{C}^{\times} \times S \to S$
- Refined virtual localization [Nekrasov,Okounokov][Maulik]
- ullet Stable pair theory localizes on a single rational curve $\Sigma_{n\ell}$ in S

Stable pairs conjecture

Conjecture (Spectral correspondence and Gopakumar-Vafa expansion)

$$\ln Z_{PT}^{\text{ref}}(Y;q,y,x) = -\sum_{s\geq 1} \sum_{r\geq 1} \frac{x^{sr}}{s} \frac{y^{sr\#}(qy^{-1})^{s\#} PP_{n,\ell,r}(q^{-s}y^{-s},y^s)}{(1-q^{-s}y^{-s})(1-q^{s}y^{-s})}$$

where $PP_{n,\ell,r}$ are perverse Poincaré polynomials

$$PP_{n,\ell,r}(u,v) = \sum_{j,k} u^i v^j \text{dim } Gr_i^P H^j(\mathcal{H}_{n,\ell,r}) .$$

Note: Direct localization computations of $PT_{V}^{ref}(r, c; y)$ are possible in principle but are hard

Steps in the strategy

Twisted wild character variety $\mathcal{S}_{n,\ell,r}$

Weighted Poincaré polynomials

NAH, and P = W

Moduli space $\mathcal{H}_{n,\ell,r}$ of twisted irregular Higgs bundles

Perverse Poincaré polynomials

Spectral correspondence

Moduli space of pure sheaves F of dimension one on spectral surface S

Gopakumar-Vafa expansion

Refined stable pairs $\mathcal{O}_Y \xrightarrow{s} F$ of CY3

Refined PT invariants

Large *N* duality

Refined Chern-Simons theory of torus knot

Refined Chern-Simons invariants

Compact curve $\Sigma_{n\ell}$ on S

Refined invariants and refined Chern-Simons theory

• Local equation of the torus invariant curve $\Sigma_{n\ell}$ at $\sigma_{n\ell}$. The curve has a unique singular point of the form

$$v^{\ell} = w^{(n-2)\ell-1}.$$

We can use large N duality [Oblomkov,Shende,Rasmussen]
 [Diaconescu,Hua,Soibelman]

$$\left(\begin{array}{c} \text{Refined PT invariants of} \\ \text{the singular plane curves } \Sigma_{n\ell} \end{array}\right) \leftrightarrow \left(\begin{array}{c} \text{Refined CS invariants of} \\ T_{\ell,(n-2)\ell-1} \text{ torus knots} \end{array}\right)$$

 In refined Chern-Simons theory [Aganagic, Shakirov], torus knot invariants can be evaluated by modular matrices

$$S_{\lambda\mu} = P_{\lambda}(t^{
ho}s^{\mu})P_{\mu}(t^{
ho}) \;, \qquad T_{\lambda\mu} = \delta_{\lambda\mu}s^{rac{1}{2}\sum_{i}\lambda_{i}(\lambda_{i}-1)}t^{\sum_{i}\lambda_{i}(i-1)}$$

Refined invariants and refined Chern-Simons theory

Topological vertex formalism tells us that the contributions are localized at $\sigma_{n\ell}$ and $q_{n\ell}$ of $\Sigma_{n\ell}$

Conjecture (Large N duality)

The generating function of refined stable pairs in Y is expressed as

$$Z_{PT}^{\mathsf{ref}}\big(Y;q,y,\mathsf{x}\big) = 1 + \sum_{|\lambda| > 0} T_{\lambda\lambda}^{\#} W_{\lambda}^{\mathsf{ref}}\big(\bigcirc \big) W_{\lambda}^{\mathsf{ref}}\big(T_{\ell,(\mathsf{n}-2)\ell-1})\mathsf{x}^{|\lambda|} \Big|_{s = qy, \ t = qy^{-1}}.$$

Epilogue

Definition: the HMW partition function is the function

$$Z_{HMW}(z, w) = 1 + \sum_{|\lambda| > 0} \Omega_{\lambda}^{g,n}(z, w) \widetilde{H}_{\lambda}(x; z^2, w^2)$$

- ullet the sum over all Young diagrams λ
- ullet for each such λ

$$\Omega_{\lambda}^{g,n} = \prod_{\square \in \lambda} \frac{\left(-z^{2a(\square)}w^{2l(\square)}\right)^{m(n-2)} \left(z^{2a(\square)+1} - w^{2l(\square)+1}\right)^{2g}}{\left(z^{2a(\square)+2} - w^{2l(\square)}\right)\left(z^{2a(\square)} - w^{2l(\square)+2}\right)},$$

- the infinite set of variables $x = (x_1, x_2, ...)$.
- $\widetilde{H}_{\lambda}(x; z^2, w^2)$ is the modified Macdonald polynomial

Epilogue

Next let $\mathbb{H}_{g,m,n}(z,w;\mathsf{x}_{(1)},\ldots,\mathsf{x}_{(m)})$ be defined by

$$\ln Z_{HMW}(z,w) = \sum_{k \geq 1} \frac{(-1)^{(mn-1)|\mu|} \mathbb{H}_{g,m,n}(z^k,w^k;x^k))}{(1-z^{2k})(w^{2k}-1)}.$$

For each Young diagram ρ , let $h_{\rho}(x)$ and $p_{\rho}(x)$ be the complete and power sum symmetric functions respectively.

Conjecture

$$WP_{g,m,n,\ell}(u,-1)$$

$$= u^{\#} \left\langle \mathbb{H}_{g,m,n}(u^{\frac{1}{2}},u^{-\frac{1}{2}};\mathsf{x}_{(1)},\ldots,\mathsf{x}_{(m)}), \bigotimes_{a=1}^{m} h_{(\ell-1,1)}(\mathsf{x}_{(2a-1)}) \otimes p_{(\ell)}(\mathsf{x}_{(2a)}) \right\rangle$$

where $\langle \ , \ \rangle$ is the natural pairing on symmetric functions.

