Fourier analysis with non commutative groups

11th International Conference on Harmonic Analysis and Partial Differential Equations El Escorial, Madrid

Mikael de la Salle

June 6 2022

CNRS, Université de Lyon

1. Fourier synthesis

2. CB Fourier multipliers

3. On the proofs : Hörmander-Mikhlin

4. On the proofs : Harmonic analysis on the sphere and Lafforgue's rank o reduction

Fourier synthesis

Very classical theorem

If $1 and <math>f \in L_p(\mathbf{R}/\mathbf{Z})$. Define $S_N f(t) = \sum_{n=-N}^N \hat{f}(n) e^{2i\pi nt}$. Then

$$\lim_{N} \|f - S_N f\|_p = 0.$$
(1)

Very classical theorem

If $1 and <math>f \in L_p(\mathbf{R}/\mathbf{Z})$. Define $S_N f(t) = \sum_{n=-N}^N \hat{f}(n) e^{2i\pi nt}$. Then

$$\lim_{N} \|f - S_N f\|_p = 0.$$
(1)

Formally equivalent to the boundedness of the Hilbert transform :

- $HT \implies (1) : ||S_N||_{p \to p} \le ||H||_{p \to p}^2 + \text{density of trigonometric polynomials.}$
- (1) \implies HT : by Banach–Steinhaus, $\sup_n ||S_N||_{p \to p} < \infty$.

The convergence $\lim_{N} \|f - S_N f\|_p = 0$ is false for $p = 1, \infty$: if

$$W_N(t) = \sum_{-N}^N \left(1 - \frac{|n|}{N}\right) e^{2i\pi nt},$$

then $W_N \ge 0$ (so $||W_N||_1 = 1$), but $||HW_N||_1 \simeq \log n$.

Fourier synthesis in L^1 or L^∞

Theorem (Fejér)

If $1 \le p \le \infty$ and $f \in L_p(\mathbf{R}/\mathbf{Z})$ (with f continuous if $p = \infty$), then

$$\lim_{N} \|f - W_N * f\|_p = 0.$$

$$W_N * f(t) = \sum_{-N}^N \left(1 - \frac{|n|}{N}\right) \hat{f}(n) e^{2i\pi nt}.$$

Fourier synthesis in L^1 or L^∞

Theorem (Fejér)

If $1 \le p \le \infty$ and $f \in L_p(\mathbf{R}/\mathbf{Z})$ (with f continuous if $p = \infty$), then

$$\lim_{N} \|f - W_N * f\|_p = 0.$$

$$W_N * f(t) = \sum_{-N}^N \left(1 - \frac{|n|}{N}\right) \hat{f}(n) e^{2i\pi nt}.$$

More generally, for every (countable) abelian group Γ , consider its Pontryagin dual $\hat{\Gamma}$ (group of homomorphisms $\Gamma \rightarrow \{z \in \mathbf{C} : |z| = 1\}$). This is a compact group, with Haar probability measure.

There is a sequence of $\varphi_N : \Gamma \to \mathbf{C}$ finitely supported such that, for every $f \in L_p(\hat{\Gamma})$ (with $f \in C^{\circ}$ if $p = \infty$),

$$\|f - \sum_{\gamma} \varphi_N(\gamma) \hat{f}(\gamma) \gamma\|_p = 0.$$

There is a sequence of $\varphi_N : \Gamma \to \mathbf{C}$ finitely supported such that, for every $f \in L_p(\hat{\Gamma})$ (with $f \in C^\circ$ if $p = \infty$),

$$\|f - \sum_{\gamma} \varphi_{\mathsf{N}}(\gamma) \hat{f}(\gamma) \gamma\|_{\mathsf{P}} = \mathsf{O}_{\mathsf{P}}$$

There is a sequence of $\varphi_N : \Gamma \to \mathbf{C}$ finitely supported such that, for every $f \in L_p(\hat{\Gamma})$ (with $f \in C^\circ$ if $p = \infty$),

$$\|f - \sum_{\gamma} \varphi_N(\gamma) \hat{f}(\gamma) \gamma\|_p = 0.$$

What does it possibly mean? There are two groups here, Γ and $\hat{\Gamma}...$

There is a sequence of $\varphi_N : \Gamma \to \mathbf{C}$ finitely supported such that, for every $f \in L_p(\hat{\Gamma})$ (with $f \in C^\circ$ if $p = \infty$),

$$\|f - \sum_{\gamma} \varphi_{\mathsf{N}}(\gamma) \hat{f}(\gamma) \gamma\|_{\mathsf{P}} = \mathsf{O}.$$

What does it possibly mean? There are two groups here, Γ and $\hat{\Gamma}...$

Here we replace Γ . But then what is $L_p(\hat{\Gamma})$? We need to define a norm on the vector space with basis Γ (the trigonometric polynomials), $\mathbf{C}[\Gamma]$. Then define $L_p(\hat{\Gamma})$ as the completion of $\mathbf{C}[\Gamma]$ for this norm.

Let $a = \sum_{\gamma} a_{\gamma} \gamma$ (a formal sum in the space **C**[Γ]).

Let $a = \sum_{\gamma} a_{\gamma} \gamma$ (a formal sum in the space **C**[Γ]).

Combinatorial definition : if p = 2m is an even integer, we can define

$$\|a\|_p^p := \sum_{\gamma_1,\ldots,\gamma_{2m},\gamma_1\gamma_2\ldots\gamma_{2m}=1} a_{\gamma_1}\overline{a_{\gamma_2^{-1}}}\ldots\overline{a_{\gamma_{2m}^{-1}}}.$$

Then use complex interpolation.

Let $a = \sum_{\gamma} a_{\gamma} \gamma$ (a formal sum in the space **C**[Γ]).

Combinatorial definition : if p = 2m is an even integer, we can define

$$\|a\|_p^p := \sum_{\gamma_1,\ldots,\gamma_{2m},\gamma_1\gamma_2\ldots\gamma_{2m}=1} a_{\gamma_1}\overline{a_{\gamma_2^{-1}}}\ldots\overline{a_{\gamma_{2m}^{-1}}}$$

Then use complex interpolation.

Operator algebraic definition : if $\lambda(a) \in B(\ell_2(\Gamma))$ is the operator by left-convolution by $a : \lambda(a)f(\gamma_0) = \sum_{\gamma} a_{\gamma}f(\gamma^{-1}\gamma)$, then define

 $\|a\|_p^p := \langle |\lambda(a)|^p \delta_e, \delta_e \rangle.$

Let $a = \sum_{\gamma} a_{\gamma} \gamma$ (a formal sum in the space **C**[Γ]).

Combinatorial definition : if p = 2m is an even integer, we can define

$$\|a\|_p^p := \sum_{\gamma_1,\ldots,\gamma_{2m},\gamma_1\gamma_2\ldots\gamma_{2m}=1} a_{\gamma_1}\overline{a_{\gamma_2^{-1}}}\ldots\overline{a_{\gamma_{2m}^{-1}}}$$

Then use complex interpolation.

Operator algebraic definition : if $\lambda(a) \in B(\ell_2(\Gamma))$ is the operator by left-convolution by $a : \lambda(a)f(\gamma_0) = \sum_{\gamma} a_{\gamma}f(\gamma^{-1}\gamma)$, then define

 $\|a\|_p^p := \langle |\lambda(a)|^p \delta_e, \delta_e \rangle.$

Fact : these two formulas define the same quantity, which is a norm (the L_p space of the von Neumann algebra of Γ).

It satisfies $(L_p)^* = L_{p'}$ and Hölder $|\sum_{\gamma} a_{\gamma} b_{\gamma}| \le ||a||_p ||b||_{p'}$.

Fourier synthesis

Every $f \in L_p(\hat{\Gamma})$ has Fourier coefficients $f = "\sum_{\gamma} \hat{f}(\gamma) \gamma''$.

We say that Γ satisfies L_p -**Fourier synthesis** if there is a sequence of finitely supported functions $\varphi_N : \Gamma \to \mathbf{C}$ such that

$$\lim_{N} \|f - \sum_{\gamma} \varphi_{N}(\gamma) \hat{f}(\gamma) \gamma\|_{p} = \mathsf{o}.$$

Many (most) groups satisfy L_p -Fourier synthesis for all $1 \le p \le \infty$.

Fourier synthesis

Every $f \in L_p(\hat{\Gamma})$ has Fourier coefficients $f = "\sum_{\gamma} \hat{f}(\gamma) \gamma''$.

We say that Γ satisfies L_p -**Fourier synthesis** if there is a sequence of finitely supported functions $\varphi_N : \Gamma \to \mathbf{C}$ such that

$$\lim_{N} \|f - \sum_{\gamma} \varphi_{N}(\gamma) \hat{f}(\gamma) \gamma\|_{p} = \mathsf{0}.$$

Many (most) groups satisfy L_p -Fourier synthesis for all $1 \le p \le \infty$.

Conjecture

 $SL_{d>3}(\mathbf{Z})$ does not satisfy L_p -Fourier synthesis for any p > 4.

Equivalently for $p < \frac{4}{3}$. Perhaps even $p \neq 2$?

For $p = \infty$ or p = 1 (weakest form), this is a consequence of the (conjectured) fact that the Banach space $C^*_{red}(\mathrm{SL}_{d\geq 3}(\mathbf{Z}))$ does not have **Grothendieck's approximation property**.

CB Fourier multipliers

A technical but important variant : operator coefficients

Let S_p denote the Schatten *p*-class : the space of $T \in B(\ell_2)$ such that $Tr(|T|^p) < \infty$.

If $a = \sum_{\gamma} a_{\gamma} \gamma$ with $a_{\gamma} \in S_p$, we can make sense of the norm $||a||_p$. For example, if p = 2m,

$$\|a\|_p^p := \sum_{\gamma_1,\ldots,\gamma_{2m},\gamma_1\gamma_2\ldots\gamma_{2m}=1} Tr(a_{\gamma_1}\overline{a_{\gamma_2^{-1}}}\ldots\overline{a_{\gamma_{2m}^{-1}}}).$$

The completion is denoted $L_p(\hat{\Gamma}; S_p)$.

Notation (Fourier multiplier) : If $\varphi : \Gamma \to \mathbf{C}$, write $T_{\varphi} : f \mapsto \sum_{\gamma} \varphi(\gamma) \hat{f}(\gamma) \gamma$, $\|T_{\varphi}\|_{p-cb}$ its norm on $L_p(\hat{\Gamma}; S_p)$ the completely bounded norm of the Fourier multiplier T_{φ} .

A technical but important variant : operator coefficients

Let S_p denote the Schatten *p*-class : the space of $T \in B(\ell_2)$ such that $Tr(|T|^p) < \infty$.

If $a = \sum_{\gamma} a_{\gamma} \gamma$ with $a_{\gamma} \in S_p$, we can make sense of the norm $||a||_p$. For example, if p = 2m,

$$\|a\|_p^p := \sum_{\gamma_1,\ldots,\gamma_{2m},\gamma_1\gamma_2\ldots\gamma_{2m}=1} Tr(a_{\gamma_1}\overline{a_{\gamma_2^{-1}}}\ldots\overline{a_{\gamma_{2m}^{-1}}}).$$

The completion is denoted $L_p(\hat{\Gamma}; S_p)$.

Notation (Fourier multiplier) : If $\varphi : \Gamma \to C$, write $T_{\varphi} : f \mapsto \sum_{\gamma} \varphi(\gamma) \hat{f}(\gamma) \gamma$, $\|T_{\varphi}\|_{p-cb}$ its norm on $L_p(\hat{\Gamma}; S_p)$ the completely bounded norm of the Fourier multiplier T_{φ} .

In the same way as for Fourier transform vs Fourier series, all this makes sense for locally compact groups.

Theorem (Lafforgue-dlS 11, de Laat-dlS 16)

Let $\Gamma = \operatorname{SL}_3(\mathbf{Z})$. For every $4 or <math>1 \le p < \frac{4}{3}$, there is $f \in L_p(\hat{\Gamma}; S_p)$ such that, for every finitely supported $W : \Gamma \to \mathbf{C}$,

$$\|f-\sum_{\gamma} W(\gamma) \hat{f}(\gamma) \lambda(\gamma)\|_p \geq 1.$$

If $\Gamma = \operatorname{SL}_{d \ge 3}(\mathbf{Z})$, the same holds for $|\frac{1}{p} - \frac{1}{2}| > \frac{c}{d-2}$.

Fundamental inequalities for $G = SL_d(\mathbf{R})$:

There is $\varepsilon > 0$ such that if $\varphi \colon G \to \mathbf{C}$ is $\mathrm{SO}(d)$ -biinvariant and a completely bounded L_p Fourier multiplier, then φ has a limit at infinity and

$$|arphi(\boldsymbol{g}) - arphi_{\infty}| \lesssim \| \boldsymbol{T}_{arphi} \|_{p-cb} \| \boldsymbol{g} \|^{-arepsilon}.$$

Open question : what about for $\left|\frac{1}{p} - \frac{1}{2}\right| \leq \frac{c}{d-2}$?

Denote $G = SL_d(\mathbf{R})$ and K = SO(d).

Local Hörmander-Mikhlin theorem (PRdlS 22)

Let $\varphi \colon G \to \mathbf{R}$ be a compactly supported function with $\frac{d^2}{2} + 1$ derivatives such that $\sup_g d(g, 1)^k |D^k \varphi(x)| < \infty$. Then T_{φ} is completely bounded on $L_p(\widehat{G})$ for every 1 .

Results with Javier Parcet and Éric Ricard

On the necessity of the hypotheses. ((G, K) = (SL_d(\mathbf{R}), SO(d)).

Theorem (PRdlS 22)

Let p > 2 and $d \ge 3$ such that $\alpha := \frac{d-2}{2} - \frac{d-1}{p} > 0$. If $\varphi : (1, \infty) \to \mathbb{C}$ is a function such that $m(g) = \varphi(||g||)$ is a multiplier on $L_p(VNG)$, then φ is of class $C^{\alpha-}$. Moreover, there are C and $c_k > 0$ such that

• φ has a limit φ_{∞} such that

$$|\varphi(\mathbf{x}) - \varphi_{\infty}| \leq ||\mathbf{T}_m||_{cb} \frac{C}{\mathbf{x}^{c_0}}$$

• For every integer 1 \leq *k* $< \alpha$ and *x* \in (1, ∞)

$$|\varphi^{(k)}(x)| \leq \|T_m\|_{cb} \frac{C}{(x-1)^k x^{c_k}}$$

Analogous results in rank 1.

Let G = SO(d, 1) (\simeq isometry group of real hyperbolic space of dimension d + 1). K = O(d) maximal compact subgroup.

Theorem (PRdlS 22)

Same d, p, α . Then *K*-biinvariant cb multipliers of $L_p(\hat{G})$ are of class $C^{\alpha-}$, and similar estimates **without the** c_k 's.

In particular,

Theorem (PRdlS 22)

Every *K*-finite matrix coefficient of **every** representation of SO(*d*, 1) on a Hilbert space is of class $C^{\frac{d}{2}-1-}$.

On the proofs : Hörmander–Mikhlin

 $G = \operatorname{SL}_d(\mathbf{R}), K = \operatorname{SO}(d).$

[PRdlS] Local Hörmander-Mikhlin theorem

Let $m: G \to \mathbf{R}$ be a compactly supported function with $\frac{d^2}{2} + 1$ derivatives such that $\sup_g d(g, 1)^k |D^k m(x)| < \infty$. Then T_m is completely bounded on $L_p(\widehat{G})$ for every 1 . If $m: G \to \mathbf{C}$ is a continuous function. The associated Herz-Schur multiplier is the map $S_m : (a_{g,h})_{g,h\in G} \mapsto (m(gh^{-1})a_{g,h})_{g,h\in G}$. Classical Bozejko-Fendler theorem : for $p = \infty$, $\|T_m\|_{CB(VN(G))} = \|S_m\|_{CB(B(L_2G))}$. For 1 , $<math>\|S_m\|_{CB(S_p(L_2G))} \le \|T_m\|_{CB(L_p(\widehat{G}))}$, with equality if *G* amenable (Neuwirth-Ricard, Caspers-dlS).

Example ($G = \mathbf{Z}$) triangular truncation and Hilbert transform.

Fourier and Schur multipliers, 2

Non-amenable G : wide open! But

Theorem (PRdlS 22)

Let $1 . If <math>\Omega \subset G$ is compact, then there is a compact subset $\Sigma = \Sigma(\Omega, p) \subset G$ and $C = C(\Omega, p)$ such that

 $\|T_m\|_{CB(L_p(\hat{G}))} \leq C \|S_m\|_{CB(S_p(L_2\Sigma))}.$

So the Theorem follows from

Theorem (Conde-Alonso-González-Pérez-Parcet-Tablate 22+)

Let Σ be a compact manifold of dimension d, and $\varphi \colon \Sigma \times \Sigma \to \mathbf{C}$ be a function of class $C^{\frac{d}{2}+1}$ outside of the diagonal, with a controlled explosion on the diagonal. Then the map $(a_{x,y}) \mapsto (m(x,y)a_{x,y})_{x,y}$ is bounded on $S_p(L_2\Sigma)$. On the proofs : Harmonic analysis on the sphere and Lafforgue's rank \circ reduction

$$G = \operatorname{SL}_d(\mathbf{R})$$
, $K = \operatorname{SO}(d)$.

Theorem [PRdlS]

Let p > 2 and $d \ge 3$ such that $\alpha := \frac{d-2}{2} - \frac{d-1}{p} > 0$. If $\varphi : (1, \infty) \to \mathbf{C}$ is a function such that $m(g) = \varphi(||g||)$ is a multiplier on $L_p(VNG)$, then φ is of class $C^{\alpha-}$. Moreover, there are C and $c_k > 0$ such that

• φ has a limit φ_{∞} such that

$$|arphi(\mathbf{x}) - arphi_{\infty}| \le \|T_m\|_{cb} rac{\mathsf{C}}{\mathbf{x}^{\mathsf{c}_{\mathrm{o}}}}$$

• For every integer 1 \leq *k* $< \alpha$ and *x* \in (1, ∞)

$$|\varphi^{(k)}(x)| \leq \|T_m\|_{cb} \frac{C}{(x-1)^k x^{c_k}}$$

Proof : Rank o reduction.

$$\mathbf{S}^{d-1} = \{ x = (x_1, \dots, x_d) \in \mathbf{R}^d \mid \sum x_i^2 = 1 \}.$$

If $m : [-1, 1] \to \mathbf{C}$ is a function, we are interested in the Schur multiplier $S_m : B(L_2(\mathbf{S}^{d-1})) \to B(L_2(\mathbf{S}^{d-1}))$ given by $A = (a_{x,y})_{x,y \in \mathbf{S}^{d-1}} \mapsto (m(\langle x, y \rangle) a_{x,y})_{x,y \in \mathbf{S}^{d-1}}.$

Proposition (Lafforgue-dlS, de Laat-dlS, PRdlS)

Let $p > 2 + \frac{2}{d-2}$, et $\alpha := \frac{d-2}{2} - \frac{d-1}{p} > 0$. If S_m is bounded on $S_p(L_2(\mathbf{S}^{d-1}))$, then m is of class $C^{\alpha-}$ on (-1, 1).

$$\mathbf{S}^{d-1} = \{ x = (x_1, \dots, x_d) \in \mathbf{R}^d \mid \sum x_i^2 = 1 \}.$$

If $m : [-1, 1] \to \mathbf{C}$ is a function, we are interested in the Schur multiplier $S_m : B(L_2(\mathbf{S}^{d-1})) \to B(L_2(\mathbf{S}^{d-1}))$ given by $A = (a_{x,y})_{x,y \in \mathbf{S}^{d-1}} \mapsto (m(\langle x, y \rangle)a_{x,y})_{x,y \in \mathbf{S}^{d-1}}.$

Proposition (Lafforgue-dlS, de Laat-dlS, PRdlS)

Let $p > 2 + \frac{2}{d-2}$, et $\alpha := \frac{d-2}{2} - \frac{d-1}{p} > 0$. If S_m is bounded on $S_p(L_2(\mathbf{S}^{d-1}))$, then m is of class $C^{\alpha-}$ on (-1, 1).

Open question : what about when 2 ?

Toy question : (spherical Hilbert transform) Let $m(\delta) = 1_{\delta > 0}$. Is S_m bounded on S_p for some $p \neq 2$?

For $\delta \in [-1, 1]$, define an operator T_{δ} on $L_2(\mathbf{S}^{n-1})$

$$T_{\delta}f(x) = ext{average of } f ext{ on } \{y \in \mathbf{S}^{n-1} \mid \langle x, y \rangle = \delta \}.$$

(Lafforgue-dlS, de Laat-dlS) If $\delta \in (-1, 1)$, $T_{\delta} \in S_p((L_2(\mathbf{S}^{n-1})))$ if and only if $p > 2 + \frac{2}{n-2}$. Let $\alpha := \frac{n-2}{2} - \frac{n-1}{p} > 0$. (Parcet-Ricard-dlS) The map $\delta \in (-1, 1) \mapsto T_{\delta} \in S_p(L_2SO(n))$ if of class $C^{\alpha-}$ (C^{α} if $\alpha \notin \mathbf{N}$).







