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Local smoothing for the wave equation

Free wave equation in Rn+1:{
utt = ∆x(u),
u|t=0 = g , ut |t=0 = 0.

(1)

Question
If we assume g ∈ Lp, is it always true that u(·, 1) ∈ Lp? If not,
how many Lp derivatives it might lose?

I Similar story if we assume generally ut |t=0 = g̃ .

I True for p = 2.

I If p 6= 2, g ∈ Lp(Rn) 6⇒ u(·, 1) ∈ Lp(Rn): A wave
concentrating towards a point can blow up the Lp norm at
t = 1 (p > 2).

I When p > 2, one can lose (n − 1)(12 −
1
p ) many derivatives

(Seeger-Sogge-Stein) but not more (Peral, also Miyachi).



Sogge’s local smoothing conjecture

I If p > 2, g ∈ Lp(Rn) would not guarantee u(·, 1) ∈ Lp(Rn)
and one might lose (n − 1)(12 −

1
p ) many derivatives.

I The situation changes if one averages on a local time interval!

Conjecture (Local smoothing (Sogge, 1991))

Let p = 2n
n−1 . If u solves (1), then

‖u‖Lp(Rn×[1,2]) ≤ Cε‖g‖W ε,p(Rn),∀ε > 0.

Here W ε,p is the Sobolev space consist of functions in Lp with
“ε-many Lp derivatives”.

I “The propagator of the wave equation is almost bounded on
Lp, 2 ≤ p ≤ 2n

n−1 if one averages locally in time”.



Local smoothing in 2 + 1 dimensions

In the remaining time we fix n = 2.

Conjecture (Local smoothing in 2 + 1 dimensions)

If u solves (1), then

‖u‖L4(R2×[1,2]) ≤ Cε‖g‖W ε,4(R2),∀ε > 0.

I Sogge proved some nontrivial local smoothing.

I Mockenhaupt-Seeger-Sogge: ε can be 1
8 .

I Improved by Tao-Vargas, Wolff, Lee.

I The conjecture is true for n = 2 (Guth-Wang-Z., 2020).



Wolff’s decoupling approach

There is a local smoothing conjecture for p > 4, asserting you
almost gain 1/p derivatives when averaged over the time interval
[1, 2].

I Wolff invented (lpLp) decoupling (2000) to prove the above
conjecture for p ≥ 74.

I Let Γ = {|ξ3| = |(ξ1, ξ2)|, 1 ≤ ξ3 ≤ 2} be the truncated cone
and partition it into sectors θ of aperture R−1/2 for some
large parameter R.

I Assuming suppf̂ ⊂ Γ. Consider the decomposition f =
∑

θ fθ
where f̂θ is the restriction of f̂ on θ.

I We state Wolff’s result on the next slide.



Results from decoupling

Theorem (Wolff)

For p ≥ 74, ‖f ‖p .ε R
1
2
− 2

p
+ε(
∑

θ ‖fθ‖
p
p)

1
p .

I Bourgain-Demeter proved that the above theorem is true for
p ≥ 6. This range is optimal.

I Such theorems imply the corresponding Lp local smoothing.

I The range 4 ≤ p < 6 for local smoothing cannot be covered
by decoupling.



The square function estimate

In our paper, we are able to prove a different result:

Theorem (Square function estimate, Guth-Wang-Z.)

‖f ‖4 .ε R
ε‖(
∑
θ

|fθ|2)
1
2 ‖4.

I It implies Sogge’s local smoothing conjecture (in 2 + 1
dimensions).

I The proof does not rely on decoupling, but was inspired a lot
by Bourgain-Demeter’s proof of the decoupling conjecture.



Ideas in the proof: Localization

By rescaling, Littlewood-Paley and a localization reduction, we will
always assume suppf̂ ⊂ Γ 1

R
(the 1

R -neighborhood of Γ) and try to
prove

1

R
‖f ‖4L4(B3

R)
.ε R

ε‖f (·, 0)‖4L4(R2).

Here B3
R is the R-ball around 0 in R3.

We will change the meaning of θ to its convex hull (or its
1
R -neighborhood), roughly a box of dimensions 1× R−

1
2 × R−1.



Ideas in the proof: Wave packet decomposition

We can decompose f and fθ further into pieces that essentially
localize both in the physical space and in the frequency space
(Fefferman, Bourgain, ...).

I f =
∑

θ,v fθ,v .

I fθ,v : Wave packets.

I Each fθ,v has frequency support in (the box) θ and physical
support essentially in Tθ,v (direction dual to θ).

I |fθ,v | ≈ const (called magnitude next) on Tθ,v .



Boxes adapted to the geometry of the light cone



Ideas in the proof: Case studies (1)

Assuming our f is a sum of N wave packets and each wave packet
has magnitude ∼ 1, what is a good upper bound of ‖f ‖4L4(BR)

?

Example 1: Separated wave packets case

When wave packets have separated supports, ‖f ‖4L4(BR)
∼ NR

3
2 .



Ideas in the proof: Case studies (2)

Assuming our f is a sum of N wave packets and each wave packet
has magnitude ∼ 1, what is a good upper bound of ‖f ‖4L4(BR)

?

Example 2: A Random example

When wave packets have random positions and signs and

N ≥ R
3
2 = |BR |

|Tθ,v | , we expect ‖f ‖4L4(BR)
∼ R3(NR−

3
2 )

1
2
·4 = N2.



Ideas in the proof: Case studies (cont.)

I Assuming our f is a sum of N wave packets and each wave
packet has magnitude ∼ 1, what is a good upper bound of
‖f ‖4L4(BR)

?

I Based on the previous two examples, it is tempting to guess

‖f ‖4L4(BR)
.ε R

ε(NR
3
2 + N2).

I Unfortunately, this is wrong!



Ideas in the proof: Case studies (cont.)

I Assuming our f is a sum of N wave packets and each wave
packet has magnitude ∼ 1, what is a good upper bound of
‖f ‖4L4(BR)

?

I Based on the previous two examples, it is tempting to guess

‖f ‖4L4(BR)
.ε R

ε(NR
3
2 + N2).

I Unfortunately, this is wrong!



Ideas in the proof: Case studies (3)

Example 3: A Random example in one fat plank

I Consider a fat plank U of dimensions Rs2 × Rs × R with the

direction along the light cone. Here R−
1
2 ≤ s ≤ 1.

I When all wave packets are in U and they have random

positions and signs and N ≥ s3R
3
2 = |U|

|Tθ,v | , we expect

‖f ‖4L4(BR)
∼ |U|(Ns−3R−

3
2 )

1
2
·4 = s−3N2.



Ideas in the proof: A conjecture based on case studies

For each dyadic s ∈ [R−
1
2 , 1], we decompose Γ 1

R
into sectors τ of

aperture d(τ) = s. For each τ , we take all θ ⊂ τ and take Uτ to
be the convex hull of all θ∗ with θ ⊆ τ . The “fat plank” Uτ has
dimensions Rs2 × Rs × R.
For each Uτ , tile BR by translations U//Uτ . For each U, let fU be
the sum of all wave packets that are essentially supported on U.
Note: each such wave packet must have frequency support in τ .

Conjecture

‖f ‖4L4(BR)
.ε R

ε
∑

dyadic s∈[R− 1
2 ,1]

∑
d(τ)=s

∑
U//Uτ

|U|−1‖fU‖4L2 .

I The conjecture is essentially true and it essentially implies the
square function conjecture and the local smoothing conjecture.



Ideas in the proof: Can we induct on scales?

In the remaining time, we focus on the conjecture on the last slide.
We want to prove

‖f ‖4L4(BR)
.ε R

ε
∑

dyadic s∈[R− 1
2 ,1]

∑
d(τ)=s

∑
U//Uτ

|U|−1‖fU‖4L2 .

I Does it help if we already know

‖f ‖4L4(Br )
.ε r

ε
∑

dyadic s∈[r−
1
2 ,1]

∑
d(τ̃)=s

∑
U//Uτ̃

|U|−1‖fU‖4L2

for some r ≤ R/2?

I Comparing (RHS) of the above inequalities and using Lorentz
rescaling, we see it makes sense to be interested in a more
general class of inequalities.



Ideas in the proof: Introducing S(r ,R)

Given dyadic 1 ≤ r ≤ R. Define S(r ,R) to be the best constant
such that∑
Br⊂BR

|Br |−1‖f ‖4L2(Br )
≤ S(r ,R)

∑
dyadic s∈[R− 1

2 ,1]

∑
d(τ)=s

∑
U//Uτ

|U|−1‖fU‖4L2 .

I “
∑

Br⊂BR
” is over a finitely overlapping collection.

I We want S(1,R) .ε R
ε. Which is morally true!

I By Lorentz rescaling, it is not hard to show

S(r1, r3) . log r2 · S(r1, r2) · max
r
− 1

2
2 ≤s≤1

S(s2r2, s
2r3)

where r1 ≤ r2 ≤ r3 and s are dyadic.



Ideas in the proof: Missing pieces of the puzzle

I We want to show S(1,R) .ε R
ε.

I We already know

S(r1, r3) . log r2 · S(r1, r2) · max
r
− 1

2
2 ≤s≤1

S(s2r2, s
2r3).

I S(R
1
2 ,R) is “friendlier” to deal with. Indeed we morally

proved S(r1,R) . 1 whenever R
1
2 ≤ r1 ≤ R. It was proved

very nontrivially by new techniques in incidence geometry.

I What is left? We are done as long as we can show
S(1,K ) ≤ K ε for one fixed constant K = K (ε) that is large
enough (for technical reasons).



Ideas in the proof: Bounding S(R
1
2 ,R)

I First we explain how to (morally) prove S(R
1
2 ,R) . 1.

I By orthogonality of wave packets and Hölder, it suffices to
prove ∫

BR
(
∑

θ,v |fθ,v |2)2

.
∑

s

∑
d(τ)=s

∑
U//Uτ

|U|−1(
∫
U

∑
(θ,v): ess. supp. of fθ,v⊂10U |fθ,v |

2)2.

I Morally we prove this inequality by an incidence theorem.



Ideas in the proof: Bounding S(R
1
2 ,R) using incidence

geometry

Theorem (Essentially in [GWZ])

Let {T} be a collection of 1× R
1
2 × R-planks with directions along

the light cone. Then∫
BR

(
∑

1T )2 .ε R
ε

∑
s∈[R− 1

2 ,1]

∑
d(τ)=s

∑
U//Uτ

|U|−1(

∫
U

∑
T// some θ∗ with θ⊂τ

1T )2

where U ⊂ 10BR .



Ideas in the proof: Bounding S(R
1
2 ,R) using incidence

geometry

I For the parabola there is an analogous theorem which can be
proved elementarily.

I Method of the proof: viewing 1T roughly as a smooth bump
function ψT and then studying the Fourier transform of∑

T ψT via a high/low frequency decomposition.

I Based on the work of Orponen, Vinh, Guth-Solomon-Wang
and Demeter-Guth-Wang.

I The geometry of the cone is used in an essential way.



Ideas in the proof: Bounding S(1,K )

I It remains to find a large enough (for technical reasons)
constant K such that we have S(1,K ) ≤ K ε.

I To achieve this, we realize that it suffices to have a K where a
similar inequality to S(1,K ) ≤ K ε holds when we further
assume suppf̂ is in a shortened cone of height 1

K .

I This is then confirmed by estimates for the parabola.

I A similar trick was used in Bourgain-Demeter’s proof of the
Decoupling Conjecture. See also Pramanik-Seeger.



Thank you!
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