Local smoothing for the wave equation in $2+1$ dimensions

Ruixiang Zhang

University of California, Berkeley

$$
\text { June 9, } 2022
$$

Contents

The problem

Relationship with decoupling

Ideas in the proof

Local smoothing for the wave equation

Free wave equation in \mathbb{R}^{n+1} :

$$
\left\{\begin{array}{l}
u_{t t}=\Delta_{x}(u) \tag{1}\\
\left.u\right|_{t=0}=g,\left.u_{t}\right|_{t=0}=0 .
\end{array}\right.
$$

Question

If we assume $g \in L^{p}$, is it always true that $u(\cdot, 1) \in L^{p}$? If not, how many L^{p} derivatives it might lose?

- Similar story if we assume generally $\left.u_{t}\right|_{t=0}=\tilde{g}$.
- True for $p=2$.
- If $p \neq 2, g \in L^{p}\left(\mathbb{R}^{n}\right) \nRightarrow u(\cdot, 1) \in L^{p}\left(\mathbb{R}^{n}\right)$: A wave concentrating towards a point can blow up the L^{p} norm at $t=1(p>2)$.
- When $p>2$, one can lose $(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)$ many derivatives (Seeger-Sogge-Stein) but not more (Peral, also Miyachi).

Sogge's local smoothing conjecture

- If $p>2, g \in L^{p}\left(\mathbb{R}^{n}\right)$ would not guarantee $u(\cdot, 1) \in L^{p}\left(\mathbb{R}^{n}\right)$ and one might lose $(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)$ many derivatives.
- The situation changes if one averages on a local time interval!

Conjecture (Local smoothing (Sogge, 1991))
Let $p=\frac{2 n}{n-1}$. If u solves (1), then

$$
\|u\|_{L^{p}\left(\mathbb{R}^{n} \times[1,2]\right)} \leq C_{\varepsilon}\|g\|_{W^{\varepsilon, p}\left(\mathbb{R}^{n}\right)}, \forall \varepsilon>0
$$

Here $W^{\varepsilon, p}$ is the Sobolev space consist of functions in L^{p} with " ε-many L^{p} derivatives".

- "The propagator of the wave equation is almost bounded on $L^{p}, 2 \leq p \leq \frac{2 n}{n-1}$ if one averages locally in time".

Local smoothing in $2+1$ dimensions

In the remaining time we fix $n=2$.
Conjecture (Local smoothing in $2+1$ dimensions)
If u solves (1), then

$$
\|u\|_{L^{4}\left(\mathbb{R}^{2} \times[1,2]\right)} \leq C_{\varepsilon}\|g\|_{W^{\varepsilon, 4}\left(\mathbb{R}^{2}\right)}, \forall \varepsilon>0 .
$$

- Sogge proved some nontrivial local smoothing.
- Mockenhaupt-Seeger-Sogge: ε can be $\frac{1}{8}$.
- Improved by Tao-Vargas, Wolff, Lee.
- The conjecture is true for $n=2$ (Guth-Wang-Z., 2020).

Wolff's decoupling approach

There is a local smoothing conjecture for $p>4$, asserting you almost gain $1 / p$ derivatives when averaged over the time interval [1, 2].

- Wolff invented ($I^{P} L^{p}$) decoupling (2000) to prove the above conjecture for $p \geq 74$.
- Let $\Gamma=\left\{\left|\xi_{3}\right|=\left|\left(\xi_{1}, \xi_{2}\right)\right|, 1 \leq \xi_{3} \leq 2\right\}$ be the truncated cone and partition it into sectors θ of aperture $R^{-1 / 2}$ for some large parameter R.
- Assuming supp $\hat{f} \subset \Gamma$. Consider the decomposition $f=\sum_{\theta} f_{\theta}$ where \widehat{f}_{θ} is the restriction of \widehat{f} on θ.
- We state Wolff's result on the next slide.

Results from decoupling

Theorem (Wolff)
For $p \geq 74,\|f\|_{p} \lesssim \varepsilon R^{\frac{1}{2}-\frac{2}{p}+\varepsilon}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{p}^{p}\right)^{\frac{1}{p}}$.

- Bourgain-Demeter proved that the above theorem is true for $p \geq 6$. This range is optimal.
- Such theorems imply the corresponding L^{p} local smoothing.
- The range $4 \leq p<6$ for local smoothing cannot be covered by decoupling.

The square function estimate

In our paper, we are able to prove a different result:
Theorem (Square function estimate, Guth-Wang-Z.)

$$
\|f\|_{4} \lesssim_{\varepsilon} R^{\varepsilon}\left\|\left(\sum_{\theta}\left|f_{\theta}\right|^{2}\right)^{\frac{1}{2}}\right\|_{4}
$$

- It implies Sogge's local smoothing conjecture (in $2+1$ dimensions).
- The proof does not rely on decoupling, but was inspired a lot by Bourgain-Demeter's proof of the decoupling conjecture.

Ideas in the proof: Localization

By rescaling, Littlewood-Paley and a localization reduction, we will always assume supp $\hat{f} \subset \Gamma_{\frac{1}{R}}$ (the $\frac{1}{R}$-neighborhood of Γ) and try to prove

$$
\frac{1}{R}\|f\|_{L^{4}\left(B_{R}^{3}\right)}^{4} \lesssim \varepsilon R^{\varepsilon}\|f(\cdot, 0)\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}
$$

Here B_{R}^{3} is the R-ball around 0 in \mathbb{R}^{3}.
We will change the meaning of θ to its convex hull (or its $\frac{1}{R}$-neighborhood), roughly a box of dimensions $1 \times R^{-\frac{1}{2}} \times R^{-1}$.

Ideas in the proof: Wave packet decomposition

We can decompose f and f_{θ} further into pieces that essentially localize both in the physical space and in the frequency space (Fefferman, Bourgain, ...).

- $f=\sum_{\theta, v} f_{\theta, v}$.
- $f_{\theta, v}$: Wave packets.
- Each $f_{\theta, v}$ has frequency support in (the box) θ and physical support essentially in $T_{\theta, v}$ (direction dual to θ).
- $\left|f_{\theta, v}\right| \approx$ const (called magnitude next) on $T_{\theta, v}$.

Boxes adapted to the geometry of the light cone

Ideas in the proof: Case studies (1)

Assuming our f is a sum of N wave packets and each wave packet has magnitude ~ 1, what is a good upper bound of $\|f\|_{L^{4}\left(B_{R}\right)}^{4}$?

Example 1: Separated wave packets case
When wave packets have separated supports, $\|f\|_{L^{4}\left(B_{R}\right)}^{4} \sim N R^{\frac{3}{2}}$.

Ideas in the proof: Case studies (2)

Assuming our f is a sum of N wave packets and each wave packet has magnitude ~ 1, what is a good upper bound of $\|f\|_{L^{4}\left(B_{R}\right)}^{4}$?

Example 2: A Random example

When wave packets have random positions and signs and $N \geq R^{\frac{3}{2}}=\frac{\left|B_{R}\right|}{\left|T_{\theta, v}\right|}$, we expect $\|f\|_{L^{4}\left(B_{R}\right)}^{4} \sim R^{3}\left(N R^{-\frac{3}{2}}\right)^{\frac{1}{2} \cdot 4}=N^{2}$.

Ideas in the proof: Case studies (cont.)

- Assuming our f is a sum of N wave packets and each wave packet has magnitude ~ 1, what is a good upper bound of $\|f\|_{L^{4}\left(B_{R}\right)}^{4}$?
- Based on the previous two examples, it is tempting to guess

$$
\|f\|_{L^{4}\left(B_{R}\right)}^{4} \lesssim_{\varepsilon} R^{\varepsilon}\left(N R^{\frac{3}{2}}+N^{2}\right) .
$$

Ideas in the proof: Case studies (cont.)

- Assuming our f is a sum of N wave packets and each wave packet has magnitude ~ 1, what is a good upper bound of $\|f\|_{L^{4}\left(B_{R}\right)}^{4}$?
- Based on the previous two examples, it is tempting to guess

$$
\|f\|_{L^{4}\left(B_{R}\right)}^{4} \lesssim_{\varepsilon} R^{\varepsilon}\left(N R^{\frac{3}{2}}+N^{2}\right) .
$$

- Unfortunately, this is wrong!

Ideas in the proof: Case studies (3)

Example 3: A Random example in one fat plank

- Consider a fat plank U of dimensions $R s^{2} \times R s \times R$ with the direction along the light cone. Here $R^{-\frac{1}{2}} \leq s \leq 1$.
- When all wave packets are in U and they have random positions and signs and $N \geq s^{3} R^{\frac{3}{2}}=\frac{|U|}{\left|T_{\theta, V}\right|}$, we expect $\|f\|_{L^{4}\left(B_{R}\right)}^{4} \sim|U|\left(N s^{-3} R^{-\frac{3}{2}}\right)^{\frac{1}{2} \cdot 4}=s^{-3} N^{2}$.

Ideas in the proof: A conjecture based on case studies

For each dyadic $s \in\left[R^{-\frac{1}{2}}, 1\right]$, we decompose $\Gamma_{\frac{1}{R}}$ into sectors τ of aperture $d(\tau)=s$. For each τ, we take all $\theta \subset \tau$ and take U_{τ} to be the convex hull of all θ^{*} with $\theta \subseteq \tau$. The "fat plank" U_{τ} has dimensions $R s^{2} \times R s \times R$.
For each U_{τ}, tile B_{R} by translations $U / / U_{\tau}$. For each U, let f_{U} be the sum of all wave packets that are essentially supported on U. Note: each such wave packet must have frequency support in τ.

Conjecture

$$
\|f\|_{L^{4}\left(B_{R}\right)}^{4} \lesssim_{\varepsilon} R^{\varepsilon} \sum_{\text {dyadic }} \sum_{s \in\left[R^{\left.-\frac{1}{2}, 1\right]}\right.} \sum_{d(\tau)=s} \sum_{U / / U_{\tau}}|U|^{-1}\left\|f_{U}\right\|_{L^{2}}^{4} .
$$

- The conjecture is essentially true and it essentially implies the square function conjecture and the local smoothing conjecture.

Ideas in the proof: Can we induct on scales?

In the remaining time, we focus on the conjecture on the last slide. We want to prove

$$
\|f\|_{L^{4}\left(B_{R}\right)}^{4} \lesssim \varepsilon R^{\varepsilon} \sum_{\text {dyadic }} \sum_{s \in\left[R^{-\frac{1}{2}}, 1\right]} \sum_{d(\tau)=s} \sum_{U / / U_{\tau}}|U|^{-1}\left\|f_{U}\right\|_{L^{2}}^{4} .
$$

- Does it help if we already know

$$
\|f\|_{L^{4}\left(B_{r}\right)}^{4} \lesssim_{\varepsilon} r^{\varepsilon} \sum_{\text {dyadic } s \in\left[r^{-\frac{1}{2}}, 1\right]} \sum_{d(\widetilde{\tau})=s} \sum_{U / / U_{\tilde{\tau}}}|U|^{-1}\left\|f_{U}\right\|_{L^{2}}^{4}
$$

for some $r \leq R / 2$?

- Comparing (RHS) of the above inequalities and using Lorentz rescaling, we see it makes sense to be interested in a more general class of inequalities.

Ideas in the proof: Introducing $S(r, R)$

Given dyadic $1 \leq r \leq R$. Define $S(r, R)$ to be the best constant such that

$$
\sum_{B_{r} \subset B_{R}}\left|B_{r}\right|^{-1}\|f\|_{L^{2}\left(B_{r}\right)}^{4} \leq S(r, R) \sum_{\text {dyadic }} \in \sum_{\left.s R^{-\frac{1}{2}}, 1\right]} \sum_{d(\tau)=s} \sum_{U / / U_{\tau}}|U|^{-1}\left\|f_{U}\right\|_{L^{2}}^{4} .
$$

- " $\sum_{B_{r} \subset B_{R}}$ " is over a finitely overlapping collection.
- We want $S(1, R) \lesssim \varepsilon R^{\varepsilon}$. Which is morally true!
- By Lorentz rescaling, it is not hard to show

$$
S\left(r_{1}, r_{3}\right) \lesssim \log r_{2} \cdot S\left(r_{1}, r_{2}\right) \cdot \max _{r_{2}^{-\frac{1}{2}} \leq s \leq 1} S\left(s^{2} r_{2}, s^{2} r_{3}\right)
$$

where $r_{1} \leq r_{2} \leq r_{3}$ and s are dyadic.

Ideas in the proof: Missing pieces of the puzzle

- We want to show $S(1, R) \lesssim_{\varepsilon} R^{\varepsilon}$.
- We already know

$$
S\left(r_{1}, r_{3}\right) \lesssim \log r_{2} \cdot S\left(r_{1}, r_{2}\right) \cdot \max _{r_{2}^{-\frac{1}{2}} \leq s \leq 1} S\left(s^{2} r_{2}, s^{2} r_{3}\right) .
$$

- $S\left(R^{\frac{1}{2}}, R\right)$ is "friendlier" to deal with. Indeed we morally proved $S\left(r_{1}, R\right) \lesssim 1$ whenever $R^{\frac{1}{2}} \leq r_{1} \leq R$. It was proved very nontrivially by new techniques in incidence geometry.
- What is left? We are done as long as we can show $S(1, K) \leq K^{\varepsilon}$ for one fixed constant $K=K(\varepsilon)$ that is large enough (for technical reasons).

Ideas in the proof: Bounding $S\left(R^{\frac{1}{2}}, R\right)$

- First we explain how to (morally) prove $S\left(R^{\frac{1}{2}}, R\right) \lesssim 1$.
- By orthogonality of wave packets and Hölder, it suffices to prove

$$
\begin{gathered}
\int_{B_{R}}\left(\sum_{\theta, v}\left|f_{\theta, v}\right|^{2}\right)^{2} \\
\lesssim \sum_{s} \sum_{d(\tau)=s} \sum_{U / / U_{\tau}}|U|^{-1}\left(\int_{U} \sum_{(\theta, v): \text { ess. supp. of } f_{\theta, v} \subset 10 U}\left|f_{\theta, v}\right|^{2}\right)^{2} .
\end{gathered}
$$

- Morally we prove this inequality by an incidence theorem.

Ideas in the proof: Bounding $S\left(R^{\frac{1}{2}}, R\right)$ using incidence geometry

Theorem (Essentially in [GWZ])
Let $\{T\}$ be a collection of $1 \times R^{\frac{1}{2}} \times R$-planks with directions along the light cone. Then
$\int_{B_{R}}\left(\sum 1_{T}\right)^{2} \lesssim_{\varepsilon} R^{\varepsilon} \sum_{s \in\left[R^{-\frac{1}{2}}, 1\right]} \sum_{d(\tau)=s} \sum_{U / / U_{\tau}}|U|^{-1}\left(\int_{U} \sum_{T / / \text { some } \theta^{*}}\right.$ with $\theta \subset \tau$
where $U \subset 10 B_{R}$.

Ideas in the proof: Bounding $S\left(R^{\frac{1}{2}}, R\right)$ using incidence geometry

- For the parabola there is an analogous theorem which can be proved elementarily.
- Method of the proof: viewing 1_{T} roughly as a smooth bump function ψ_{T} and then studying the Fourier transform of $\sum_{T} \psi_{T}$ via a high/low frequency decomposition.
- Based on the work of Orponen, Vinh, Guth-Solomon-Wang and Demeter-Guth-Wang.
- The geometry of the cone is used in an essential way.

Ideas in the proof: Bounding $S(1, K)$

- It remains to find a large enough (for technical reasons) constant K such that we have $S(1, K) \leq K^{\varepsilon}$.
- To achieve this, we realize that it suffices to have a K where a similar inequality to $S(1, K) \leq K^{\varepsilon}$ holds when we further assume supp \hat{f} is in a shortened cone of height $\frac{1}{K}$.
- This is then confirmed by estimates for the parabola.
- A similar trick was used in Bourgain-Demeter's proof of the Decoupling Conjecture. See also Pramanik-Seeger.

Thank you!

