Real algebraic geometry, and the Kakeya and Restriction conjectures

Joshua Zahl joint work w/ Jonathan Hickman

El Escorial, 2022

June 10, 2022

A *Besicovitch set* is a compact set $K \subset \mathbb{R}^n$ that contains a unit line segment pointing in every direction.

Kakeya set conjecture:

Every Besicovitch set in \mathbb{R}^n has Hausdorff dimension *n*.

A *Besicovitch set* is a compact set $K \subset \mathbb{R}^n$ that contains a unit line segment pointing in every direction.

Kakeya set conjecture:

Every Besicovitch set in \mathbb{R}^n has Hausdorff dimension *n*.

- Proved for n = 2 (Davies 1971).
- Open for $n \ge 3$, though partial progress.

Kakeya maximal function conjecture:

For $\delta > 0$, let \mathbb{T} be a set of δ tubes in \mathbb{R}^n that point in δ -separated directions. Then for each $1 \le d \le n$,

$$\left\|\sum_{\mathcal{T}\in\mathbb{T}}\chi_{\mathcal{T}}\right\|_{\frac{d}{d-1}} \leq C(n,\varepsilon) \left(\frac{1}{\delta}\right)^{\frac{n}{d}-1+\varepsilon}.$$
(1)

Kakeya maximal function conjecture:

For $\delta > 0$, let \mathbb{T} be a set of δ tubes in \mathbb{R}^n that point in δ -separated directions. Then for each $1 \le d \le n$,

$$\left\|\sum_{T\in\mathbb{T}}\chi_{T}\right\|_{\frac{d}{d-1}}\leq C(n,\varepsilon)\left(\frac{1}{\delta}\right)^{\frac{n}{d}-1+\varepsilon}.$$
(1)

- Proved for n = 2 (Cordoba 1977).
- Open for $n \ge 3$, though partial progress.

If (1) holds for some $d \le n$, we say a Kakeya maximal function estimate holds in \mathbb{R}^n at dimension d.

Progress towards the Kakeya maximal function conjecture.

n	d	
2	2	Cordoba 1977
<i>n</i> ≥ 3	(n+1)/2	Christ-Duoandikoetxea-Rubio de Francia 1987
<i>n</i> ≥ 3	$(n+1)/2 + c_n$	Bourgain 1991
<i>n</i> ≥ 3	(n+2)/2	Wolff 1995
<i>n</i> ≫ 1	$(1+\varepsilon)n/2$	Bourgain 1999
$n \ge 9$	(4n+3)/7	Katz-Tao 2002
4	3 + 1/40	Guth-Z. 2017; Z. 2018
3	$5/2 + \varepsilon$	Katz-Z. 2019
$n \subset [5, 97]$	> (4n+3)/7	Hickman-Rogers 2020
4	3.059	Katz-Z. 2021
$n=5, \geq 7$	$(2-\sqrt{2})n+c_n$	Hickman-Rogers-Zhang; Z. 2021

Kakeya numerology

Every Besicovitch set in \mathbb{R}^n has Hausdorff dimension $\geq d$ \uparrow Kakeya maximal function estimate in \mathbb{R}^n holds at dimension d. \uparrow For a typical $x \in I \cup T$ there are $\leq s^{d-n}$ types containing x

For a typical $x \in \bigcup_{\mathbb{T}} T$, there are $\leq \delta^{d-n}$ tubes containing x.

Multilinear Kakeya (Bennett-Carbery-Tao 2006, Guth 2010):

Let $\mathbb{T}_1, \ldots, \mathbb{T}_n$ be sets of δ tubes in \mathbb{R}^n , $\#\mathbb{T}_i \leq \delta^{1-n}$. Suppose the tubes in \mathbb{T}_i make large angle with the tubes in \mathbb{T}_j . Then

 $\left\|\left(\sum_{T_1\in\mathbb{T}_1}\sum_{T_2\in\mathbb{T}_2}\cdots\sum_{T_n\in\mathbb{T}_n}\chi_{T_1}\chi_{T_n}\cdots\chi_{T_n}\right)^{\frac{1}{n}}\right\|_{\frac{n}{n-1}}\leq C(n).$

Multilinear Kakeya (Bennett-Carbery-Tao 2006, Guth 2010):

Let $\mathbb{T}_1, \ldots, \mathbb{T}_n$ be sets of δ tubes in \mathbb{R}^n , $\#\mathbb{T}_i \leq \delta^{1-n}$. Suppose the tubes in \mathbb{T}_i make large angle with the tubes in \mathbb{T}_j . Then

$$\left\|\left(\sum_{T_1\in\mathbb{T}_1}\sum_{T_2\in\mathbb{T}_2}\cdots\sum_{T_n\in\mathbb{T}_n}\chi_{T_1}\chi_{T_n}\cdots\chi_{T_n}\right)^{\frac{1}{n}}\right\|_{\frac{n}{n-1}}\leq C(n).$$

A slightly more complicated version (Carbery-Valdimarsson): Let $\mathbb{T}_1, \ldots, \mathbb{T}_k$ be sets of δ tubes in \mathbb{R}^n , $2 \le k \le n$. Then

$$\begin{split} \Big\|\Big(\sum_{T_1\in\mathbb{T}_1}\cdots\sum_{T_k\in\mathbb{T}_k}\chi_{T_1}\cdots\chi_{T_n}|v_1\wedge\ldots\wedge v_k|\Big)^{\frac{1}{k}}\Big\|_{\frac{k}{k-1}}\\ &\leq C(n)\Big(\frac{1}{\delta}\Big)^{\frac{n}{k}-1}\prod_{i=1}^k(\delta^{n-1}\#\mathbb{T}_i)^{\frac{1}{k}}. \end{split}$$

Moral:

Let \mathbb{T} be a set of distinct δ tubes in \mathbb{R}^n , with $\#\mathbb{T} \leq \delta^{1-n}$.

Suppose that for a typical $x \in \bigcup_{\mathbb{T}} T$, most *k*-tuples of tubes containing *x* satisfy $|v_1 \land \ldots \land v_k| \sim 1$. Then a typical *x* is contained in $\leq \delta^{k-n}$ tubes.

Moral:

Let \mathbb{T} be a set of distinct δ tubes in \mathbb{R}^n , with $\#\mathbb{T} \leq \delta^{1-n}$.

Suppose that for a typical $x \in \bigcup_{\mathbb{T}} T$, most *k*-tuples of tubes containing *x* satisfy $|v_1 \land \ldots \land v_k| \sim 1$. Then a typical *x* is contained in $\leq \delta^{k-n}$ tubes.

Opposite extreme:

Suppose that for a typical $x \in \bigcup_{\mathbb{T}} T$, the tubes containing x are in the δ -neighborhood of a k - 1 plane. Then a typical x is contained in $\leq \delta^{2-k}$ tubes.

The Bourgain-Guth multilinear \rightarrow linear machine

Conclusion:

A Kakeya maximal function estimate holds at dimension

$$d = \begin{cases} (n+2)/2, & n \text{ even,} \\ (n+1)/2, & n \text{ odd} \end{cases}$$

Improved multilinear Kakeya for direction-separated tubes (Z. 2021)

Let $\mathbb{T}_1, \ldots, \mathbb{T}_k$ be sets of δ tubes that point in δ -separated directions. Then

$$\left\|\left(\sum_{T_1\in\mathbb{T}_1}\cdots\sum_{T_k\in\mathbb{T}_k}\chi_{T_1}\cdots\chi_{T_k}|v_1\wedge\ldots\wedge v_k|^{\frac{k}{d}}\right)^{\frac{1}{k}}\right\|_{\frac{d}{d-1}}\leq C(n,\varepsilon)\left(\frac{1}{\delta}\right)^{\frac{n}{d}-1-\varepsilon},$$
$$d=\frac{n^2+k^2+n-k}{2n}.$$

Improved multilinear Kakeya for direction-separated tubes (Z. 2021)

Let $\mathbb{T}_1, \ldots, \mathbb{T}_k$ be sets of δ tubes that point in δ -separated directions. Then

$$\left\|\left(\sum_{T_1\in\mathbb{T}_1}\cdots\sum_{T_k\in\mathbb{T}_k}\chi_{T_1}\cdots\chi_{T_k}|v_1\wedge\ldots\wedge v_k|^{\frac{k}{d}}\right)^{\frac{1}{k}}\right\|_{\frac{d}{d-1}}\leq C(n,\varepsilon)\left(\frac{1}{\delta}\right)^{\frac{n}{d}-1-\varepsilon}$$
$$d=\frac{n^2+k^2+n-k}{2n}.$$

Hickman-Rogers-Zhang concurrently proved a similar result.

Corollary (Hickman-Rogers-Zhang; Z. 2021)

A Kakeya maximal function estimate in \mathbb{R}^n holds at dimension $d = (2 - \sqrt{2})n + c_n$, $c_n \ge 0$.

Corollary (Hickman-Rogers-Zhang; Z. 2021)

A Kakeya maximal function estimate in \mathbb{R}^n holds at dimension $d = (2 - \sqrt{2})n + c_n$, $c_n \ge 0$.

This is new in dimension $n \ge 7$ (and n = 5).

Also improves the Kakeya set conjecture for certain n.

How do we prove this theorem? Basic idea:

- The function we want to estimate is supported on $E = \bigcap_{i=1}^{k} \bigcup_{T \in \mathbb{T}_{i}} T.$
- We break *E* into pieces, so that few tubes from $\mathbb{T}_1, \ldots, \mathbb{T}_k$ intersect each piece.
- We apply (conventional) *k*-linear Kakeya to estimate the *L^d* norm on each piece.

To make this work, we need a way to partition E, so that few tubes intersect each piece.

We do this using polynomial partitioning.

Polynomial partitioning (Guth-Katz 2010): Basic numerology

Given a parameter $t \ge 1$, we can partition \mathbb{R}^m (or a low degree *m*-dimensional variety) into about t^m cells, plus a boundary, so that each tube intersects O(t) cells.

The boundary is the δ -neighbourhood of a variety. We iterate

this process and construct a tree of grains.

Tree of grains

j-th level: co-dimension *j* grains; diameter λ_j ; branching D_{n-i}^{n-j}

The main enemy

- Applying k-linear Kakeya is effective if the tree has many leaves.
- What if the tree has few leaves?
- Then each grain in the tree has large intersection with many tubes from T_i, i = 1,..., k.

The main enemy

- Applying k-linear Kakeya is effective if the tree has many leaves.
- What if the tree has few leaves?
- Then each grain in the tree has large intersection with many tubes from T_i, i = 1,..., k.
- If the varieties in the tree are linear (i.e. the grains are rectangular prisms), then this cannot happen too much, since the tubes in T_i point in δ-separated directions.
- What about more general varieties?

Theorem (Katz-Rogers 2018) Let \mathbb{T} be a set of δ tubes pointing in δ -separated directions. Let $\delta \leq \lambda \leq 1$. Let $S \subset \mathbb{R}^n$ be a semi-algebraic set. Then

$$\#\{T \in \mathbb{T} \colon |T \cap S| \ge \lambda |T|\} \lessapprox \frac{\delta^{1-n}|S|}{\lambda^n}$$

(The RHS is what you expect if S is a rectangular prism.)

Theorem (Katz-Rogers 2018) Let \mathbb{T} be a set of δ tubes pointing in δ -separated directions. Let $\delta \leq \lambda \leq 1$. Let $S \subset \mathbb{R}^n$ be a semi-algebraic set. Then

$$\#\{T \in \mathbb{T} \colon |T \cap S| \ge \lambda |T|\} \lessapprox \frac{\delta^{1-n}|S|}{\lambda^n}$$

(The RHS is what you expect if *S* is a rectangular prism.) *Direction-separated tubes obey the polynomial Wolff axioms.*

Theorem (Hickman-Rogers-Zhang; Z.)

Let \mathbb{T} be a set of δ tubes pointing in δ -separated directions. Let $S_1 \supset S_2 \supset \cdots \supset S_k$ be nested sequence of grains (δ -neighborhoods of varieties), where S_i has codimension $\geq i$ and diameter λ_i . Then

$$\#\{T\in\mathbb{T}\colon |T\cap S_i|\geq\lambda_i|T|,\ i=1,\ldots,k\}\lesssim \frac{\delta^{k+1-n}}{\lambda_1\cdots\lambda_k}.$$

(The RHS is what you expect if S_1, \ldots, S_k are rectangular prisms.)

Theorem (Hickman-Rogers-Zhang; Z.)

Let \mathbb{T} be a set of δ tubes pointing in δ -separated directions. Let $S_1 \supset S_2 \supset \cdots \supset S_k$ be nested sequence of grains (δ -neighborhoods of varieties), where S_i has codimension $\geq i$ and diameter λ_i . Then

$$\#\{T \in \mathbb{T} \colon |T \cap S_i| \ge \lambda_i |T|, \ i = 1, \dots, k\} \lessapprox \frac{\delta^{k+1-n}}{\lambda_1 \cdots \lambda_k}.$$

(The RHS is what you expect if S_1, \ldots, S_k are rectangular prisms.)

Direction-separated tubes obey the nested polynomial Wolff axioms.

How do we prove this?

The answer is related to a semi-algebraic version of Keleti's line segment extension conjecture.

Proposition

Let $S \subset \mathbb{R}^n$ be a semi-algebraic set and let \mathbb{T} be the set of $\lambda \times \delta$ tubes contained in S. If we lengthen each of these tubes by a factor of $1 \leq A \leq \lambda^{-1}$, then their union has volume $\leq A^n |S|$.

Fourier restriction

The Fourier extension operator for the truncated paraboloid:

$$Ef(x) = \int_{B^{n-1}} f(\omega) e^{i(x_1\omega_1 + \dots + x_{n-1}\omega_{n-1} + x_n|\omega|^2)} d\omega,$$

where B^{n-1} is the unit ball in \mathbb{R}^{n-1} .

Stein conjectured that

$$\|Ef\|_{L^{p}(\mathbb{R}^{n})} \leq C_{n,p}\|f\|_{L^{p}(B^{n-1})}$$
 (R^{*}_p)

holds for all $p > \frac{2n}{n-1}$.

The conjecture has been proved for n = 2 (Fefferman-Stein 1970).

It remains open for $n \ge 3$, though partial progress has been made by many researchers, including Bourgain, Fefferman, Guth, Hickman, Moyua, Rogers, Stein, Tao, Tomas, Vargas, Vega, Wang, Wolff, Zhang, Zygmund. For *n* large, Stein's conjecture says the extension operator *E* is bounded on L^p for $p > 2 + 2n^{-1} + O(n^{-2})$.

Currently, we know that *E* is bounded on L^p for $p > 2 + \lambda n^{-1} + O(n^{-2})$, where

λ	
4	Tomas 1975
3	Bourgain-Guth 2011
8/3	Guth 2018
2.604	Hickman-Rogers 2019
2.596	Hickman-Z. 2022

Thanks for listening.