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A Besicovitch set is a compact set K ⊂ Rn that contains a unit
line segment pointing in every direction.

Kakeya set conjecture:
Every Besicovitch set in Rn has Hausdorff dimension n.

Proved for n = 2 (Davies 1971).
Open for n ≥ 3, though partial progress.
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Kakeya maximal function conjecture:
For δ > 0, let T be a set of δ tubes in Rn that point in
δ-separated directions. Then for each 1 ≤ d ≤ n,∥∥∥∑
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∥∥∥
d

d−1

≤ C(n, ε)
(1
δ

) n
d−1+ε

. (1)

Proved for n = 2 (Cordoba 1977).
Open for n ≥ 3, though partial progress.

If (1) holds for some d ≤ n, we say a Kakeya maximal function
estimate holds in Rn at dimension d .
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Progress towards the Kakeya maximal function conjecture.
n d
2 2 Cordoba 1977

n ≥ 3 (n + 1)/2 Christ-Duoandikoetxea-Rubio de Francia 1987
n ≥ 3 (n + 1)/2 + cn Bourgain 1991
n ≥ 3 (n + 2)/2 Wolff 1995
n >> 1 (1 + ε)n/2 Bourgain 1999
n ≥ 9 (4n + 3)/7 Katz-Tao 2002

4 3 + 1/40 Guth-Z. 2017; Z. 2018
3 5/2 + ε Katz-Z. 2019

n ⊂ [5, 97] > (4n + 3)/7 Hickman-Rogers 2020
4 3.059 Katz-Z. 2021

n = 5,≥ 7 (2−
√

2)n + cn Hickman-Rogers-Zhang; Z. 2021



Kakeya numerology

Every Besicovitch set in Rn has Hausdorff dimension ≥ dxy
Kakeya maximal function estimate in Rn holds at dimension d .xy

For a typical x ∈
⋃

T T , there are ≤ δd−n tubes containing x .



Multilinear Kakeya (Bennett-Carbery-Tao 2006, Guth 2010):

Let T1, . . . ,Tn be sets of δ tubes in Rn, #Ti ≤ δ1−n.
Suppose the tubes in Ti make large angle with the tubes in Tj .

Then ∥∥∥( ∑
T1∈T1

∑
T2∈T2

. . .
∑

Tn∈Tn

χT1χTn · · ·χTn

) 1
n
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n
n−1

≤ C(n).

A slightly more complicated version (Carbery-Valdimarsson):

Let T1, . . . ,Tk be sets of δ tubes in Rn, 2 ≤ k ≤ n. Then∥∥∥( ∑
T1∈T1

. . .
∑

Tk∈Tk

χT1 · · ·χTn |v1∧ . . . ∧ vk |
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(δn−1#Ti)
1
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Moral:

Let T be a set of distinct δ tubes in Rn, with #T ≤ δ1−n.

Suppose that for a typical x ∈
⋃

T T , most k -tuples of tubes
containing x satisfy |v1 ∧ . . . ∧ vk | ∼ 1.
Then a typical x is contained in ≤ δk−n tubes.

Opposite extreme:

Suppose that for a typical x ∈
⋃

T T , the tubes containing x are
in the δ-neighborhood of a k − 1 plane.
Then a typical x is contained in ≤ δ2−k tubes.
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The Bourgain-Guth multilinear→ linear machine
T: δ tubes in Rn

2 ≤ k ≤ n
k -transverse (k − 1)-plainy

T satisfies (1)
for d = k

T satisfies (1)
for d = n − k + 2

T satisfies (1)
for d = min(k ,n − k + 2)

Conclusion:
A Kakeya maximal function estimate holds at dimension

d =

{
(n + 2)/2, n even,
(n + 1)/2, n odd
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Improved multilinear Kakeya for direction-separated tubes
(Z. 2021)

Let T1, . . . ,Tk be sets of δ tubes that point in δ-separated
directions. Then∥∥∥( ∑

T1∈T1

. . .
∑

Tk∈Tk

χT1 . . .χTk |v1∧. . .∧vk |
k
d

) 1
k
∥∥∥

d
d−1

≤ C(n, ε)
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δ

) n
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,

d =
n2 + k2 + n − k

2n
.

Hickman-Rogers-Zhang concurrently proved a similar result.
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Corollary (Hickman-Rogers-Zhang; Z. 2021)

A Kakeya maximal function estimate in Rn holds at dimension
d = (2−

√
2)n + cn, cn ≥ 0.

This is new in dimension n ≥ 7 (and n = 5).

Also improves the Kakeya set conjecture for certain n.
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How do we prove this theorem? Basic idea:
The function we want to estimate is supported on
E =

⋂k
i=1
⋃

T∈Ti
T .

We break E into pieces, so that few tubes from T1, . . . ,Tk
intersect each piece.
We apply (conventional) k -linear Kakeya to estimate the Ld

norm on each piece.

To make this work, we need a way to partition E , so that few
tubes intersect each piece.

We do this using polynomial partitioning.



Polynomial partitioning (Guth-Katz 2010): Basic
numerology

Given a parameter t ≥ 1, we can partition Rm (or a low degree
m-dimensional variety) into about tm cells, plus a boundary, so
that each tube intersects O(t) cells.

The boundary is the δ-neighbourhood of a variety. We iterate

this process and construct a tree of grains.



Tree of grains

j-th level: co-dimension j grains; diameter λj ; branching Dn−j
n−j



The main enemy
Applying k -linear Kakeya is effective if the tree has many
leaves.
What if the tree has few leaves?
Then each grain in the tree has large intersection with
many tubes from Ti , i = 1, . . . , k .

If the varieties in the tree are linear (i.e. the grains are
rectangular prisms), then this cannot happen too much,
since the tubes in Ti point in δ-separated directions.
What about more general varieties?
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Theorem (Katz-Rogers 2018)
Let T be a set of δ tubes pointing in δ-separated directions.
Let δ ≤ λ ≤ 1.
Let S ⊂ Rn be a semi-algebraic set. Then

#{T ∈ T : |T ∩ S| ≥ λ|T |} / δ1−n|S|
λn .

(The RHS is what you expect if S is a rectangular prism.)

Direction-separated tubes obey the polynomial Wolff axioms.
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Theorem (Hickman-Rogers-Zhang; Z.)
Let T be a set of δ tubes pointing in δ-separated directions.
Let S1 ⊃ S2 ⊃ · · · ⊃ Sk be nested sequence of grains
(δ-neighborhoods of varieties), where Si has codimension ≥ i
and diameter λi . Then

#{T ∈ T : |T ∩ Si | ≥ λi |T |, i = 1, . . . , k} / δk+1−n

λ1 · · ·λk
.

(The RHS is what you expect if S1, . . . ,Sk are rectangular
prisms.)

Direction-separated tubes obey the nested polynomial Wolff
axioms.
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How do we prove this?
The answer is related to a semi-algebraic version of Keleti’s line
segment extension conjecture.

Proposition
Let S ⊂ Rn be a semi-algebraic set and let T be the set of λ× δ
tubes contained in S. If we lengthen each of these tubes by a
factor of 1 ≤ A ≤ λ−1, then their union has volume / An|S|.



Semi-algebraic Keletiww�
Nested polynomial Wolff axiomsww�
Tree of grains has many leaves.ww�

Improved k -linear Kakeya for direction-separated tubesww�
Kakeya maximal function estimate

(k -linear Kakeya)

(Bourgain-Guth machine)
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Fourier restriction

The Fourier extension operator for the truncated paraboloid:

Ef (x) =
∫

Bn−1
f (ω)ei(x1ω1+···+xn−1ωn−1+xn|ω|2) dω,

where Bn−1 is the unit ball in Rn−1.

Stein conjectured that

‖Ef ‖Lp(Rn) ≤ Cn,p‖f‖Lp(Bn−1) (R∗p)

holds for all p > 2n
n−1 .



The conjecture has been proved for n = 2 (Fefferman-Stein
1970).

It remains open for n ≥ 3, though partial progress has been
made by many researchers, including Bourgain, Fefferman,
Guth, Hickman, Moyua, Rogers, Stein, Tao, Tomas, Vargas,
Vega, Wang, Wolff, Zhang, Zygmund.



For n large, Stein’s conjecture says the extension operator E is
bounded on Lp for p > 2 + 2n−1 + O(n−2).

Currently, we know that E is bounded on Lp for
p > 2 + λn−1 + O(n−2), where

λ

4 Tomas 1975
3 Bourgain-Guth 2011
8/3 Guth 2018
2.604 . . . Hickman-Rogers 2019
2.596 . . . Hickman-Z. 2022



Thanks for listening.


