
Global minimisers of energies related to
dislocations

Joan Mateu
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We consider a nonlocal energy

Iα(µ) =
1

2

∫∫
R2×R2

Wα(x− y) dµ(x) dµ(y) +
1

2

∫
R2

|x|2 dµ(x)

defined on probability measures µ ∈ P(R2), where the interaction
potential Wα is given by

Wα(x1, x2) = −1

2
log(x2

1+x2
2)+α

x2
1

x2
1 + x2

2

, x = (x1, x2) ∈ R2 .
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Dislocations

The kernel is obtained by adding to the Coulomb potential an
anisotropic term weighted by a parameter α ∈ R.

1
2

∫
R2 |x|2 dµ(x) is called the forcing term or confinement.

This term produces shear stress or constraint of being in a finite
portion of metal.
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Dislocations: The planar case

Frostman

When the anisotrophy is switched off, α = 0, there exists a unique
probability measure that minimises the energy I(µ), namely, the
normalised characteristic function of the unit disc D, 1

πχD(z)

The minimiser is unique. Then you proceed by a direct calculation
or by symmetry plus harmonicity.
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Dislocations

IDEALISED DISLOCATIONS

Straight & parallel; edge

Single slip, and single sign (all positive)

INTERACTION STRESS

generated by a dislocation
at 0

and acting on a dislocation
at x

F (x) = −κ∇V (x)

V (x) = − log |x|+ x2
1
|x|2

x1

x2

Conjecture: positive dislocations prefer to form vertical walls. Can we
prove it ?
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Dislocations

Aim: Characterise the minimiser (equilibrium measure)

Does the minimiser exist? Is it compactly supported?

Is the minimiser unique?

Does the minimiser possess any symmetries?

What is the dimension of its support?

Can we find the minimiser explicitly?
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Some available results

In general one can consider the above problem for a variety of
interaction potentials and confinements

Huge literature on existence, confinement, regularity of
minimisers for a variety of potentials and for a variety of
applications.

(e.g. Cañizo, Carrillo, Castorina, Chipot, Choksi, Delgadino,
Fetecau, Figalli, Hittmeir, Huang, Kolokolnikov, Mainini,
Mellet, Patacchini, Simione, Slepčev, Sugiyama, Topaloglu,
Volzone, Yao, etc...)
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Some available results

Explicit computation of the equilibrium measure:

only done for the Coulomb kernel and for power laws, and
radial external fields

based on the Coulomb kernel being the fundamental solution
of ∆ and on radial symmetry
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Dislocations: The planar case

Coming back to our dislocation potential

Wα(x) = −1

2
log(x2

1 + x2
2) + α

x2
1

x2
1 + x2

2

.

In the case α = 1, The minimisers of I1 were since long
conjectured to be vertical walls of dislocations, and this has been
confirmed by [Mora, Rondi, Scardia (2016)]. They proved that the
only minimiser of I1 is the semi-circle law.

µ1 :=
1

π
δ0 ⊗

√
2− x2

2H
1 (−

√
2,
√

2) (1)

on the vertical axis.
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Dislocations: The planar case

It is not difficult to prove that µ1, that is the semicircle law, is the
only minimiser of Iα for α ≥ 1, since
Iα(µ1) = I1(µ1) < I1(µ) ≤ Iα(µ) ∀µ 6= µ1.

The case α < 0 can be recovered from the knowledge of the case
α > 0 by switching x1 and x2, so we can limit our analysis to
α ∈ (0, 1).

Can we characterise the minimiser of Iα for every 0 < α < 1?
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Dislocations: The planar case

Theorem (Carrillo, Mora, M. Rondi, Scardia, Verdera)

Let 0 ≤ α < 1. The measure

µα :=
1√

1− α2π
χΩ(
√

1−α,
√

1+α), (2)

where

Ω(
√

1− α,
√

1 + α) :=

{
x = (x1, x2) ∈ R2 :

x2
1

1− α
+

x2
2

1 + α
< 1

}
,

is the unique minimiser of the functional Iα among probability
measures P(R2).
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Dislocations: The planar case

What is surprising is that techniques developed in the context of
fluid mechanics turn out to be crucial for the characterisation of
the minimisers of the anisotropic energy Iα.

In particular the minimality of the semi-circle law for the
dislocation energy I1 can be deduced from our result by a limiting
argument based on Γ-convergence.

That is, we obtain again the result of [Mora, Rondi, Scardia], but
with a different proof based on methods from fluid mechanics and
complex analysis

Moreover the case α = 1 is in the context of edge dislocations of
metals.
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Proof of the Theorem

In relation with the existence and uniqueness we have

Proposition

Let α ∈ [0, 1]. Then the energy Iα is well defined on P(R2), is
strictly convex on the class of measures with compact support and
finite interaction energy, and has a unique minimiser in P(R2).
Moreover, the minimiser has compact support and finite energy.

In fact the key point for the uniqueness is that the Fourier
transform of our kernel never vanishes

〈Ŵα, ϕ〉 =
1

2π

∫
R2

(1− α)ξ2
1 + (1 + α)ξ2

2

|ξ|4
ϕ(ξ) dξ

for every ϕ in the Schwarz class.
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Proof of the Theorem

To obtain the characterisation of the mimimisers we use that
standard computations in potential theory shows that any
minimiser µ of Iα must satisfy the following Euler-Lagrange
conditions.

If

Pµ(x) = (Wα ∗ µ(x)) +
|x|2

2

Then, one has

Pµ(x) = Cα for every x ∈ Ω(
√

1− α,
√

1 + α),

and
Pµ(x) ≥ Cα for every x ∈ R2,
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Proof of the Theorem

In fact, we compute explicitly the gradient of Wα ∗ µ, where
µ =

χΩ(a,b)

|Ω(a,b)| , both inside and outside Ω(a, b). This is enough to
check the Euler-Lagrange equations and to conclude the proof of
Theorem.

∇(Wα ∗ µ)(x) + x = 0 for every x ∈ Ω(
√

1− α,
√

1 + α),

and

∇(Wα ∗ µ)(x) + x does not vanish for every x ∈ C \ Ω.
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Proof of the Theorem

In order to evaluate the convolution ∇Wα ∗ µ, it is convenient to
work in complex variables.

In complex variables the potential Wα reads as

Wα(x) ≡Wα(z) = −1

2
log(zz̄) +

α

2

(
1 +

z

2z̄
+

z̄

2z

)
,

and its gradient

∇Wα(x) = − x

|x|2
+ 2α

x1x2

|x|4
x⊥ ≡ 2∂̄Wα(z) = −1

z̄
+
α

2

1

z
− α

2

z

z̄2
,

(3)
where x⊥ = (x2,−x1).
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Proof of the Theorem

We compute

1

z
∗ µ = z̄ − λz inside Ω, being λ =

a− b
a+ b

By taking the conjugate we obtain directly

1

z̄
∗ µ = z − λz̄ inside Ω.

One can also get
z

z̄2
∗ µ = λ(z − λz̄) inside Ω.

For this computation we use that 1
π
z
z̄ is the fundamental solution

of ∂2,
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Proof of the Theorem

Using the above computations inside and the fact that all the
potential are linear inside one obtains

−1− αλ+ ab = 0,

λ+
α

2
+ λ2α

2
= 0,

Now, it is easy to check that a =
√

1− α and b =
√

1 + α are the
unique solution of the system.

To verify the second Euler-Lagrange condition one has to compute
all the potentials outside.
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Proof of the Theorem

If E is the candidate ellipse, then one has to prove that

Pµ(z) ≥ Cα, z ∈ C \ Ω

This requires a precise computation of ∇Pµ on C \ Ω

∇Pµ(z) = −1

z
∗ µ+

α

2

(1

z
∗ µ− z

z̄2
∗
)

+ z
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Proof of the Theorem

(
− 1

z
∗ µ
)
(z) = 2h(z̄), z /∈ Ω

where

h(z) =
1

z +
√
z2 + c2

, c2 = b2 − a2

and (
− z

z̄2
∗ µ
)
(z) = 2λh(z̄)− 2h′(z̄)(z − λz̄ − 2abh(z̄))

where

h′(z̄) = − h(z̄)

N(z̄)
, N(z) =

√
z2 + c2
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Proof of the Theorem

So, we obtain

∇Pµ(z)N(z̄) = t,
x2

a2 + t
+

y2

b2 + t
= 1, t ≥ 0

and
〈∇Pµ(z) ·N(z)〉 = t, 〈∇Pµ(z) · iN(z)〉 = 0
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Dislocations: The 3-D case

We consider a nonlocal energy

Iα(µ) =
1

2

∫∫
R3×R3

Wα(x−y) dµ(x) dµ(y)+
1

2

∫
R3

|x|2 dµ(x) (4)

defined on probability measures µ ∈ P(R3), where the interaction
potential Wα is given by

Wα(x1, x2, x3) =
1

|x|
+ α

x2
1

|x|3
, x = (x1, x2, x3) ∈ R3 , (5)
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Dislocations: The 3-D case

Again the problem is to describe the minimisers of the above
energy.

The kernel is obtained by adding to the 3 dimensional Coulomb
potential an anisotropic term weighted by a parameter α ∈ R.

In the particular case where α = 0, the minimiser is radial, and is
given by µ0 := 3

4πχB1(0), the normalised characteristic function of
the unit ball.
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Dislocations: The 3-D case

Theorem (Carrillo, Mora, M. Rondi, Scardia, Verdera)

Let −1 < α < 1. There exist constants a(α) and b(α) such that
the measure

µα :=
3

ab24π
χΩ(a,b,b), (6)

where

Ω(a, b, b) :=

{
x = (x1, x2, x3) ∈ R3 :

x2
1

a2
+
x2

2

b2
+
x2

3

b2
< 1

}
,

is the unique minimiser of the functional Iα among probability
measures P(R3).
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Dislocations: 3D

The minimizer is given by the probability measure of the
characteristic functions of an oblate ellipsoid (0 < α < 1), the
characteristic function of a ball ( α = 0) or the characteristic
function of a prolate ellipsoid (−1 < α < 0).

The computations are much more involved and we can not use
some of the advantages of the complex numbers.

The idea is again to check the Euler-Lagrage Equations:

(Wα ∗ µα)(x) +
|x|2

2
= Cα for every x ∈ Ω(a, b, b), (7)

(Wα ∗ µα)(x) +
|x|2

2
≥ Cα for every x ∈ R3, (8)
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Dislocations: 3D

To do that, one has to compute explicitly the kernel associated to
this energy inside and outside our ellipsoid.

Then it is better to use apropiate coordenates, that is the oblate
espheroidal coordinates or the prolate spheroidal coordinates.

This solution, when α goes to 1 or to −1, converges to the
characteristic function of an oblate or a prolate ellipsoid (It is
different from the planar case).
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More general kernels

The next purpose is to study the problem of minimisers for more
general kernels.

We consider energy functionals Iκ defined on probability measures
in the plane, µ, as

Iκ(µ) =

∫
C

∫
C
W κ(z − w)dµ(z)dµ(w) +

∫
C
|z|2dµ(z). (9)

Here the interaction potential W κ is given in the plane by

W κ(z) = − log |z|+ κ(z),

where κ is an even kernel of homogeneity zero.
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More general kernels

W κ(0) = +∞ and is an even real-valued function, homogeneous
of degree 0 and of class C3(C \ {0})

The question would be to give conditions on the kernel κ(z) such
that the minimisers of the above energy are ellipses.

Conjecture. If we have an smooth even kernel such that the
Fourier transform is positive, then minimisers should be ellipses.

That is, the uniqueness will be a consequence of the positivity of
the Fourier transform of the kernel.

The first Euler-Lagrange condition will determine the ellipse and it
should be enough. It means that in some sense the second
Euler-Lagrange condition is for free.
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More general kernels

We can not prove the conjecture in general and we can do it if the
anisotrophic potential has small norm.

Theorem

There exists ε0 > 0 such that if κ is an even real function,
homogeneous of degree 0, of class C3 off the origin, and satisfies
the smallness condition.

|∇jκ(z)| ≤ ε0 for |z| = 1 and j ∈ {0, 1, 2, 3}.

Then there exists a triple (a, b, ϕ) such that the probability
measure χE

|E| ,is the unique minimiser of the above energy, where

E = E(a, b, ϕ) = eiϕ
{

(x, y) ∈ R2 :
x2

a2
+
y2

b2
≤ 1
}
.
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More general kernels

In this result we get: Existence; Uniqueness and characterization of
minimisers of energy.

For the higher dimensional case we have the corresponding result.
Let’s consider the energy

Iκ(µ) =

∫
Rd

∫
Rd

W κ(z − w)dµ(z)dµ(w) +

∫
Rd

|z|2dµ(z).

Here the interaction potential W κ is given in higher dimensions by

W κ(z) = − 1

|x|d−2
+ κ(x),
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More general kernels

Theorem

Let d ≥ 3. There exists ε0 > 0 such that if κ is real valued
function, homogeneous of degree 2− d, even in each variable, of
class C3 off the origin, and satisfies the smallness condition

|∇jκ(x)| ≤ ε0 for |x| = 1 and j ∈ {0, 1, 2, 3}.

and Ŵ k > 0 outside the origin, then there exists an ellipsoid such
that the probability measure χE

|E| is the unique minimiser of the
above energy.

Here the ellipsoid is given by

E =
{

(x1, x2, · · ·xd) ∈ Rd :
x2

1

a2
1

+
x2

2

a2
2

+ · · ·+
x2
d

a2
d

≤ 1
}
.
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More general kernels

This result can be seen as the stability of ellipsoids as energy
minimisers, since the minimiser of the Coulomb energy is the
normalised characteristic function of a ball.

The idea of the proof is an approximation argument.

Uniqueness: We show that the energy Iκ is strictly convex on a
class of measures that are relevant for the minimisers. We achieve
this by showing that the Fourier transform of the potential W k is
positive outside the origin.

To get the characterisation we use Euler-Lagrange conditions. EL1
gives us a precise ellipsoid which is candidate to be the minimiser.
In this point we use again that ∂i,jκ is constant on the ellipsoid.
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More general kernels

For the second Euler-Lagrange condition we adopt a purely
perturbative argument, which exploit the “closeness” of every term
of the equation. for κ small, to the corresponding term of the
corresponding Euler-Lagrange condition for the case κ = 0.
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A very recent result

In a very recent result Carrillo and Ruiwen Shu prove the following:

Theorem

If we take the family of planar kernels in (9) and the Fourier
transform of the kernel is positive. Then one of the following
holds:

There exists a unique triple (a, b, ϕ) such that χE

|E| is the

unique minimiser, being E the ellipse E(a, b, ϕ).

There exits a unique pair (b, ϕ) such that
Ceiϕ

√
b2 − x2χL is the unique minimiser. Here L is the

interval L = (−b, b).
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Open problems

In higher dimensions the arguments of Carrillo and Shu do not
work in an easy way. More work is need for this case.

In higher dimensions for |α| > 1 nothing is known. In this case we
lost uniqueness and it means that more mathematics are needed.
Moreover, Baremblat functions should appear at some place.
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Thank you for your attention
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