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Function classes of Neural Networks

Neural networks produce structured parametric families of functions of
the form

Φ(x) = WL ◦ ρ ◦WL−1 ◦ . . . ρ ◦W1(x), x ∈ RD

where

Wℓ(x) = Aℓx + bℓ, ℓ = 1, . . . , L

Aℓ ∈ RNℓ×Nℓ−1 are the filters and bℓ ∈ RNℓ are the biases

ρ : R→ R is the activation function

L(Φ) is the number of layers of Φ

Nℓ ∈ N, i = ℓ, . . . , L is the width of the ℓ-th layer, N0 = D, and
N(Φ) =

∑L
i=0Ni is the number of neurons of Φ

M(Φ) =
∑L

ℓ=1 ||Aℓ||0 + ||bℓ||0 is the number of weights (or
parameters) of Φ
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Function classes of Neural Networks

Graph representation

Number of layers L = 4

Number of neurons N = 15

Number of weights M =
∑4

ℓ=1 ||Aℓ||0 + ||bℓ||0 = 44 + 12 = 56
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Function classes of Neural Networks

Assumption: I wil identify a neural network with the function
implemented by the neural network

(In practice, multiple graph representations may realize the same function)

Definition

For a tuple (M0, L0,B0), where M0, L0 ∈ N ∪ {∞} and B0 > 0,
F(M0, L0,B0) denotes the function class of neural networks with number
of weights M0, number of layers L0 and with scale B0:

F(M0, L0,B0) =
{
Φ: [0, 1]D → RNL

∣∣∣ L(Φ) ≤ L0,W (Φ) ≤W0,B(Φ) ≤ B0

}
where B(Φ) = maxℓ{||vec(Aℓ)||∞, ||bℓ||∞} is the scale of the weights of Φ
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Function classes of Neural Networks

Examples of activation functions:

Sigmoid: ρ(x) = 1
1+e−x

Rectified linear unit (ReLU): ρ(x) = max{x , 0}

• ReLU is most commonly used in applications
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Approximations using Neural Networks

Universal approximation theorems have historically been used as a
justification of the expressive power of neural networks.

They state that: continuous functions on compact domains can be
approximated arbitrarily well by neural networks.

Theorem [Cybenko, 1989]

Assume ρ is a sigmoidal activation function.
For every f ∈ C ([0, 1]D), given ε > 0, there exists Φ ∈ F(M, L = 2,B),
such that

|Φ(x)− f (x)| < ε, for any x ∈ [0, 1]D

Note: number of weights M(Φ) (⇒ number of neurons N2(Φ)) can
become arbitrarily large.
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Approximations using Neural Networks

Hornik (1991): universal approximation holds with continuous,
bounded, non-constant activation functions and L = 2

Number weights M(Φ) and number of neurons N2 of Φ can become
arbitrarily large.

Idea of the proof:
▶ F(M, L = 2,B) ⊂ C ([0, 1]D) is a linear subspace
▶ Arguing by contradiction, suppose F(M, L = 2,B) not dense
▶ By Hahn-Banach Thm., there exists a signed Radon measure µ such

that
∫
[0,1]D

Φ(x) dµ(x) = 0 for all Φ ∈ F(M, L = 2,B).
▶ The functions ρ(ax + b) belong to Φ ∈ F(M, L = 2,B) for any

a ∈ RD , b ∈ R.
▶ Contradiction follows since ρ is discriminatory, i.e., the only Radom

measure µ for which
∫
[0,1]D

ρ(ax + b) dµ(x) = 0, a ∈ RD , b ∈ R, is the
zero measure.
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Approximations using Neural Networks

There are dual versions of the approximation theorem above where the
network has bounded width and arbitrarily large depth.

Theorem [Kidger and Lyons, 2020]

Assume ρ is a nonaffine continuous function which is continuously
differentiable at least one point, with nonzero derivative at that point.
For every f ∈ C ([0, 1]D), given ε > 0, there exists a neural network
Φ : RD → Rd where the number of neurons Nℓ for each layer ℓ bounded
by D + d + 2 such that

|Φ(x)− f (x)| < ε, for any x ∈ [0, 1]D

Note: number of layers L(Φ) can become arbitrarily large.

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 11 / 42



Approximations using Neural Networks

There are dual versions of the approximation theorem above where the
network has bounded width and arbitrarily large depth.

Theorem [Kidger and Lyons, 2020]

Assume ρ is a nonaffine continuous function which is continuously
differentiable at least one point, with nonzero derivative at that point.
For every f ∈ C ([0, 1]D), given ε > 0, there exists a neural network
Φ : RD → Rd where the number of neurons Nℓ for each layer ℓ bounded
by D + d + 2 such that

|Φ(x)− f (x)| < ε, for any x ∈ [0, 1]D

Note: number of layers L(Φ) can become arbitrarily large.

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 11 / 42



Approximations using Neural Networks

There are dual versions of the approximation theorem above where the
network has bounded width and arbitrarily large depth.

Theorem [Kidger and Lyons, 2020]

Assume ρ is a nonaffine continuous function which is continuously
differentiable at least one point, with nonzero derivative at that point.
For every f ∈ C ([0, 1]D), given ε > 0, there exists a neural network
Φ : RD → Rd where the number of neurons Nℓ for each layer ℓ bounded
by D + d + 2 such that

|Φ(x)− f (x)| < ε, for any x ∈ [0, 1]D

Note: number of layers L(Φ) can become arbitrarily large.

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 11 / 42



Deep Neural Networks

Modern network architectures are typically very deep

Deep vs. shallow networks: Depth improves expressive power

With respect to shallow networks (and traditional function
representations), deep neural networks can exploit composition
→ Blessing of compositionality
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Example: piecewise linear functions on R

Triangle function:

T (x) =

{
2x if 0 ≤ x < 1

2

2(1− x) if 1
2 ≤ x ≤ 1

x ∈ R,

can be expressed using ρ(x) = max{x , 0} as

Φ(x) =
[
2 −4

]
ρ

[1
1

]
x +

[
0
−1

2

] = 2(x − 0)+ − 4(x − 1
2)+

Φ(x) is a neural network with L = 2, N2 = 2, M = 6.
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Example: piecewise linear functions on R

Neural Network with L = 2, N2 = 2
→ piecewise linear function with at most 2 breakpoints

Neural Networks with L = 2, N − 2 = N
→ piecewise linear function with at most N breakpoints

▶ Same expressive power (M = O(N2)) as continuous piecewise linear
functions with the same number of parameters:
N breakpoints ↔ N2 parameters

Composition increases the number of breakpoints.
Neural Networks with L layers, N neurons/layer
(complexity M = O(LN2))

→ piecewise linear function with NL breakpoints

Deep neural networks can improve classical approximation
methods for several function classes
[Daubechies, DeVore, Foucart, Hanin, Petrova, 2022]
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Approximations using Neural Networks

Shallow network are comparable to traditional approximation methods in
terms of computational complexity.

Theorem - Shallow Network Approximation [Mhaskar 1996]

Consider f ∈ C ([0, 1]D). Then

inf
Φ∈F(M,L=2,B)

∥f − Φ∥∞ ≤ c M−1/D

That is, the complexity of a single-layer neural networks Φ that
approximates f with accuracy at least ε is

M = O(ε−D)

Same approximation rate as classical piecewise linear approximations
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approximates f with accuracy at least ε is

M = O(ε−D)

Same approximation rate as classical piecewise linear approximations
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Approximations using Deep Neural Networks

Deep networks can exploit compositionality to reduce the number of
parameters needed to approximate functions.

Theorem - Deep Network Approximation [Yarotsky, 2017,2018]

For f ∈ C ([0, 1]D)

inf
Φ∈F(M,L,B)

∥f − Φ∥∞ ≤ c M−2/D

That is, the complexity of a deep networks Φ that approximates f with
accuracy at least ε is

M = O(ε−D/2)

It improves the approximation rate of shallow networks

Optimal approximation rate achievable with a ReLU NN

L(Φ) grown like O(ln(1/ε))
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Approximations using Deep Neural Networks

Theorem - Deep Network Approximation [Petersen-Voigtländer, 2018]

Let f be piecewise Cβ([0, 1]D) with β > 0. Then

inf
Φ∈F(M,L,B)

∥f − Φ∥L2([0,1]D) ≤ c M−β/(2(D−1))

That is, the complexity of a deep networks Φ that approximates f with
accuracy at least ε is

M = O(ε−2(D−1)/β)

Optimal approximation rate achievable with a ReLU NN

The number of layers satisfies L ≤ c ′ log(β + 2)(1 + β/D) where c ′ is
an absolute constant

The constant c depends on D, β but dependence is not explicit
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Approximations using Deep Neural Networks

Most approximations results using neural network - including those
presented above - are non-quantitative and asymptotic

inf
Φ∈F(M,L,B)

∥f − Φ∥ ≤ c M−β/D

Approximation constant c depend on D non-explicitly

L need to be sufficiently large but no quantitative bound is shown

[Lu, Shen, Yang, Zhang, 2020], [Shen, Yang, Zhang, 2021] are the first
papers to provide non-asymptotic and quantitative approximation
results.
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Approximations using Deep Neural Networks

Theorem [Shen, Yang, Zhang, 2021]

Let f ∈ Bλ(C
α([0, 1]D)), the space of Hölder continuous function of order

α ∈ [0, 1) with Hölder constant λ, and let F(N, L,B) where N is the
width and L is the depth of Φ
Then, for p ∈ [1,∞]

inf
Φ∈F(N,L,B)

∥f − Φ∥Lp([0,1]D) ≤ 19
√
DλN−2α/DL−2α/D

That is, the complexity of a deep networks Φ that approximates f with
accuracy at least ε is about

M = O(ε−D/α) (Note: M = O(LN2))

This is the nearly optimal approximation rate

Quantitative values for N and L are given

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 19 / 42



Approximations using Deep Neural Networks

Theorem [Shen, Yang, Zhang, 2021]

Let f ∈ Bλ(C
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Curse of Dimensionality

Success of deep neural networks in applications is not fully explained
by their mere approximation properties.

Their performance on problems where input dimension is high often
appears to overcome the curse of dimensionality (COD).

[Bellman, 1952, Novak & Wozniakowsk, 2009]

Approximation methods deteriorate exponentially fast with increasing
dimension D

▶ Computational cost of traditional numerical PDE solvers such as finite
difference, finite element and spectral methods, scales with D

▶ Pointwise approximation of the solution with accuracy ε requires
M = O(ε−D) parameters → practically impossible to achieve
satisfactory accuracy for very large D
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Curse of Dimensionality

In many multi-dimensional problems, data is highly structured and the
information of interest is low-dimensional

Widely used image datasets:

MNIST: 28× 28 = 784 pixels
per image → R784

▶ intrinsic dimension:
between 8 and 13

ImageNet: 224× 224× 3 = 150528
pixels per image → R150528

▶ intrinsic dimension:
between 26 and 43
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Manifold hypothesis

Many theoretical results explains this phenomenon either explicitly or
implicitly using the manifold hypothesis.

Manifold hypothesis:

There is a d-dimensional manifold containing our D-dimensional data of
interest where d ≪ D
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Manifold hypothesis

We want to approximate a function

f : RD ⊃ S 7→ R

Under the manifold hypothesis, we are not seeking to approximate f with
respect to a norm on RD .

Rather, we approximate f on a d-dimensional manifoldM, where d ≪ D.

D : ambient dimension vs. d : intrinsic dimension

Bonus: neural networks can learn local coordinate transformations
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Manifold hypothesis

[Shaham,Cloninger,Coifman,2018; Schmidt-Hieber,2019; Nakada,Imaizumi,2020]

Theorem (informal version)

LetM⊂ RD be a smooth d-dimensional manifold and let
f ∈ Bλ(C

α([0, 1]D)), space of Hölder continuous function of order
α ∈ [0, 1) with Hölder constant λ. Then

inf
Φ∈F(N,L,B)

∥f − Φ∥L∞(M) < c(λ, α,D)M−α/d

The complexity of a deep neural network Φ that approximates f with
accuracy at least ε satisfies

M ≤ c̃(λ, α,D) ε−d/α

Complexity grows like ε−d/α (d rather than D)

c̃ depends on D with polynomial or logarithmic dependence
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Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]

1 Construct a basis or a frame (e.g., a wavelet frame or a polynomial
basis) of Cα([0, 1]D) whose elements are implemented as neural
networks

2 Construct an atlas forM⊂ RD

by covering it with open balls

3 Use the open cover to obtain a
partition of unity ofM
and expand any f onM
using a basis or a frame on Rd

4 Extend the basis or frame terms from the original domain on Rd to
RD in a way that depends on the curvature of the manifold.
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Network approximation - Manifold hypothesis

Our result [Labate,Shi, 2022]

Theorem (informal version)

LetM⊂ RD be a Riemannian d-dimensional manifold (with some
regularity) and let f ∈ Bλ(C

α([0, 1]D)), α ∈ (0, 1). For δ ∈ (0, 1),

inf
Φ∈F(N,L,B)

∥f − Φ∥L∞(M) < c(λ, δ, α)M−α/dδ

where d < dδ < D. The complexity of a deep networks Φ that
approximates f with accuracy at least ε satisfies

M ≤ c̃(λ, α) ε−dδ/α

Complexity grows like ε−dδ/α (dδ rather than D)

c̃ does not depend on D
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Johnson-Lindenstrauss Lemma

One key tool in our approach is an appropriate version of the
Johnson-Lindenstrauss lemma, establishing low-distortion embeddings
of points from high-dimensional into low-dimensional space.

Theorem [Johnson-Lindenstrauss, 1984]

Let δ ∈ (0, 1) and x1, . . . , xp ∈ RD be arbitrary points. Let
m = O(δ−2 log p). Then there is a Lipschitz map f : RD → Rm such that

(1− δ)|xi − xj |2 ≤ |f (xi )− f (xj)|2 ≤ (1 + δ)|xi − xj |2, for all i , j

Low-distortion embeddings ←→ Restricted Isometry Property (RIP)

Applications in compressed sensing, manifold learning, dimensionality
reduction, . . .

Recent application in the context of approximations using neural
networks: [Cai, Li, Sun, Wang, 2019], [Shen, Yang, Zhang, 2021]
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Johnson-Lindenstrauss Lemma

Manifold extension: preservation of ambient distances on a manifold
under the action of random projections

Theorem [Baraniuk and Wakin, 2009]

LetM⊂ RD be a compact d-dimensional Riemannian submanifold having
condition number 1/τ , volume V , and geodesic covering regularity R. Fix
δ, γ ∈ (0, 1) and let A be a random orthoprojector from RD to Rdδ with

dδ = O

(
d log(DVRτ−1δ−1)

δ2

)
= O

(
d
log(Dδ−1)

δ2

)

Then, for every pair of points x1, x2 ∈M

(1− δ)

√
dδ
D
|x1 − x2| ≤ |Ax1 − Ax2| ≤ (1 + δ)

√
dδ
D
|x1 − x2|

holds with probability at least 1− γ.
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Johnson-Lindenstrauss Lemma

Technical requirements on manifoldM⊂ RD :

Condition number 1/τ → norm of the second fundamental form of
M is bounded by 1/τ in all directions:

▶ manifold cannot curve too much locally
▶ angle between tangent spaces at nearby points cannot be too large
▶ geodesic and ambient distance cannot differ too much

Geodesic covering regularity of the manifold: closely related to the
more traditional notion of distance covering number

▶ it ensures that any ball centered on the manifold captures a certain
amount of its volume

Random orthoprojection A : RD → Rdδ

δ ∈ (0, 1) controls balance between isometry and dimension reduction

δ is closer to 1 ⇒ dδ is closer to d ⇒ weaker isometric property

δ is closer to 0 ⇒ dδ farther from d ⇒ better isometric property
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Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1 Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower dimensional

function g0 on [0, 1]dδ by projecting f0 via a random orthoprojection
A : RD ⊃M→ Rdδ [Theorem by Baraniuk and Wakin, 2009]

2 Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3 Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4 By applying the mapping A, derive from Φg̃0 a neural network Φf0 to
approximate f0 onM

Challenges:

To approximate Bλ(C
α([0, 1]D)) using neural networks

To control number of parameters of Φg0 and Φf0

To ensure the projected function g0 is Hölder continuous
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Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 31 / 42



Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1 Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower dimensional

function g0 on [0, 1]dδ by projecting f0 via a random orthoprojection
A : RD ⊃M→ Rdδ [Theorem by Baraniuk and Wakin, 2009]

2 Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3 Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4 By applying the mapping A, derive from Φg̃0 a neural network Φf0 to
approximate f0 onM

Challenges:

To approximate Bλ(C
α([0, 1]D)) using neural networks

To control number of parameters of Φg0 and Φf0

To ensure the projected function g0 is Hölder continuous

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 31 / 42



Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1 Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower dimensional

function g0 on [0, 1]dδ by projecting f0 via a random orthoprojection
A : RD ⊃M→ Rdδ [Theorem by Baraniuk and Wakin, 2009]

2 Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3 Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4 By applying the mapping A, derive from Φg̃0 a neural network Φf0 to
approximate f0 onM

Challenges:

To approximate Bλ(C
α([0, 1]D)) using neural networks

To control number of parameters of Φg0 and Φf0

To ensure the projected function g0 is Hölder continuous
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Network approximation - Manifold hypothesis

Idea of the proof: 1-2. Approximation of Bλ(C
α([0, 1]D))

Several contributions have shown how to build neural networks
implementing functions efficiently.

Operations on neural networks [Petersen-Voigtlaender,2018]

Concatenation. Given neural networks
Φ1 ∈F(M1, L1,B1) and Φ2 ∈ F(M2, L2,B2),
the concatenation of Φ1 and Φ2

is another neural network
Φ1 ◦ Φ2 ∈ F(2M1 + 2M2, L1 + L2 − 1,max(B1,B2))

Parallelization. Given neural networks
Φ1 ∈F(M1, L,B1) and Φ2 ∈ F(M2, L,B2),
with the same input dimension, the parallelization
of Φ1 and Φ2 is a neural network
P(Φ1,Φ2) ∈ F(M1 +M2, L,max(B1,B2))
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Network approximation - Manifold hypothesis

Idea of the proof: 1-2. Approximation of Bλ(C
α([0, 1]D))

Proposition (Approximation of monomials). Fix b > 0 and D ∈ N. For
any ε > 0 and ν ∈ ND with |ν| ≤ b there is a neural network
Φmul
ε ∈ F(M, L,B) with D-dimensional input and 1-dimensional output

satisfying

sup
x∈[0,1]D

∣∣∣Φmul
ε (x)− xν

∣∣∣ ≤ ε.

We can choose M = N(Φmul
ε ), L = L(Φmul

ε ), B = B(Φmul
ε ) such that

W ≤ 384 6D b
(
119 + 36⌊1/D⌋+ (384) 4⌊1/D⌋

)
ε−D ,

L ≤ (1 + ⌈log2⌊b⌋⌉)(11 + 1/D),

B ≤ c(ε, b,D)

Proof. Refinement of result in [Petersen and Voigtlaender, 2018].
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Network approximation - Manifold hypothesis

Idea of the proof: 3. Construction of low-dimensional function
We apply orthoprojection A : RD ⊃M→ Rdδ to define a function g on
A(M)

g is not guaranteed to be Hölder continuous but can be approximated
uniformly with small error by a function g̃ ∈ Bλ̃(C

α([0, 1]dδ))
By concatenation we can define an approximating neural network,
Φf = Φg̃ ⊙ ((A, 0)) giving

|g(y)− Φf (x)| ≤ |g(y)− g̃(y)|+ |g̃(Ax)− Φg̃ (Ax)|
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Application: Generalization error

We show an application of the approximation result to the problem of
controlling the generalization error in a regression problem.

Let us consider a nonparametric regression problem corresponding to n
observations {(Xi ,Yi )}ni=1 ∈ [0, 1]D × R from the model

Yi = f0(Xi ) + εi , i = 1, · · · , n,

where

f0 ∈ Bλ(C
α([0, 1]D)),

the covariates Xi marginally follow a probability measure µ,

the errors εi are i.i.d normally distributed with mean 0 and variance
σ2 and are independent of the Xi .
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Application: Generalization error

The solution of the regression problem is an estimator f̂ approximating the
unknown function f0 ∈ Bλ(C

α([0, 1]D))

The performance of the estimator is assessed by the generalization error

∥f̂ − f0∥2L2(µ) = EX∼µ

[
(f̂ (X )− f0(X ))2

]
We identify the estimator class with neural networks F(N, L,B)

Fact: The generalization error using neural networks is on the order

O(n−2α/(2α+D))

This rate is optimal in the minimax sense [Schmidt-Hieber, 2020]

Generalization error suffers from the curse of dimensionality

The network complexity also depends on D
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Application: Generalization error

Our approach: manifold assumption

We assume data lies on a d-dimensional manifold with d ≪ D

To estimate the regression function f0, we compute the least square
estimator Φ̂ ∈ F(M, L,B) of f0 associated with the empirical risk
minimization

Φ̂ = argmin
Φ=g◦A

g∈F(M,L,B)

1

n

n∑
i=1

(
Yi − Φ(Xi )

)2
,

with the estimator returning a neural network Φ̂ of the form g ◦ A where
g ∈ F(M, L,B) and A is a random orthoprojection

A : RD → Rdδ d < dδ < D
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Application: Generalization error

Our result [Labate,Shi, 2022]

Theorem (informal version)

LetM⊂ RD be a Riemannian d-dimensional manifold (with some
regularity) and let f ∈ Bλ(C

α([0, 1]D)), α ∈ (0, 1). Let Φ̂ be the solution
of the empirical risk minimization problem given above. Then there exists
a constant c = c(σ, β, dδ, λ) such that

∥Φ̂− f0∥2L2(µ) ≤ c n−2α/(2α+dδ)(1 + log n)2

holds with probability at least 1− 2 exp(−ndδ/(2α+dδ)) for n large.

Constant c does not depend on D, improving existing result [Nakada
and Imaizumi, 2019]

Complexity of the network depends weakly on D. M depends linearly
with D and L,B do not depend on D but only on dδ.
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Conclusion

Application of Johnson-Lindenstrauss lemma is useful to manage
COD using neural networks without the need to define an explicit
atlas from the ambient space RD into the lower dimensional space Rd

and improved control over the dependence of the parametrization of
the network on D.

The drawback is that this approach offers limited control over the
regularity of f

How to adapt this approach to smooth and piecewise smooth
functions such as Hölder function with smoothness α > 1 and Besov
spaces?
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Questions?

References + codes at: www.math.uh.edu\∼dlabate
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