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© Introduction: Neural Networks
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Function classes of Neural Networks

Neural networks produce structured parametric families of functions of
the form

S(x)=WropoW,_q0...p0 Wi(x), x € RP
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Function classes of Neural Networks

Neural networks produce structured parametric families of functions of
the form

S(x)=WropoW,_q0...p0 Wi(x), x € RP

where
o Wy(x)=Ax+b, (=1,....L
o Ay € RNexNe-1 gre the filters and by € RM are the biases
p R — R is the activation function
L(®) is the number of layers of ¢
Ny €N, i=4¥, ..., Lis the width of the ¢-th layer, Np = D, and
N(P) = Z,'L:o N; is the number of neurons of ¢

M(®) = S5_; [1Acllo + ||be]lo is the number of weights (or
parameters) of ¢ E{j
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Function classes of Neural Networks
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Function classes of Neural Networks

Graph representation
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hidden layers

o Number of layers L=14
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Function classes of Neural Networks

Graph representation

input layer output layer

hidden layers

o Number of layers L=14

@ Number of neurons N =15
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Function classes of Neural Networks
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o Number of layers L=14
@ Number of neurons N =15
o Number of weights M = S25_ ||Asllo + ||be||o = 44 + 12 = 56
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Function classes of Neural Networks

Assumption: | wil identify a neural network with the function
implemented by the neural network

(In practice, multiple graph representations may realize the same function)
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Function classes of Neural Networks

Assumption: | wil identify a neural network with the function
implemented by the neural network

(In practice, multiple graph representations may realize the same function)
Definition
For a tuple (Mo, Lo, By), where My, Ly € NU {oo} and By > 0,

F(Mo, Lo, By) denotes the function class of neural networks with number
of weights My, number of layers Ly and with scale By:

F(Mo, Lo, Bo) = {®:[0,1]° — R™ | L(®) < Lo, W(®) < Wo, B(9) < By

where B(®) = maxy{||vec(Ar)||oos || bel|o } is the scale of the weights of ®
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Function classes of Neural Networks

Examples of activation functions:
e Sigmoid: p(x) = H%

e Rectified linear unit (ReLU): p(x) = max{x, 0}
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Function classes of Neural Networks

Examples of activation functions:

e Sigmoid: p(x) = H%

e Rectified linear unit (ReLU): p(x) = max{x, 0}

Sigmoid RelLU
1.0 10 A
0.8 - 8-
0.6 64
0.4 - 44
0.2 A 24
0.0 ] ! m Y ] ]
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Function classes of Neural Networks

Examples of activation functions:

e Sigmoid: p(x) = H%

e Rectified linear unit (ReLU): p(x) = max{x, 0}

Sigmoid RelLU
1.0 10 A
0.8 - 8-
0.6 64
0.4 - 44
0.2 A 24
0.0 ] ! m Y ] ]

e RelLU is most commonly used in applications %
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© Functional approximations with Neural Networks
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Approximations using Neural Networks

Universal approximation theorems have historically been used as a
justification of the expressive power of neural networks.
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Approximations using Neural Networks

Universal approximation theorems have historically been used as a
justification of the expressive power of neural networks.

They state that: continuous functions on compact domains can be
approximated arbitrarily well by neural networks.
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Approximations using Neural Networks

Universal approximation theorems have historically been used as a
justification of the expressive power of neural networks.

They state that: continuous functions on compact domains can be
approximated arbitrarily well by neural networks.

Theorem [Cybenko, 1989]

Assume p is a sigmoidal activation function.

For every f € C([0,1]P), given & > 0, there exists ® € F(M, L =2, B),
such that

|&(x) — f(x)| <&, foranyx e [0,1]P
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Approximations using Neural Networks

Universal approximation theorems have historically been used as a
justification of the expressive power of neural networks.

They state that: continuous functions on compact domains can be
approximated arbitrarily well by neural networks.

Theorem [Cybenko, 1989]

Assume p is a sigmoidal activation function.

For every f € C([0,1]P), given & > 0, there exists ® € F(M, L =2, B),
such that

|&(x) — f(x)| <&, foranyx e [0,1]P

Note: number of weights M(®) (= number of neurons No(®)) can
become arbitrarily large.
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Approximations using Neural Networks

@ Hornik (1991): universal approximation holds with continuous,
bounded, non-constant activation functions and L = 2
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Approximations using Neural Networks

@ Hornik (1991): universal approximation holds with continuous,
bounded, non-constant activation functions and L = 2

o Number weights M(®) and number of neurons N, of ® can become
arbitrarily large.
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Approximations using Neural Networks

@ Hornik (1991): universal approximation holds with continuous,
bounded, non-constant activation functions and L = 2

o Number weights M(®) and number of neurons N, of ® can become
arbitrarily large.
@ ldea of the proof:
» F(M,L=2,B)C C([0,1]°) is a linear subspace
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Approximations using Neural Networks

@ Hornik (1991): universal approximation holds with continuous,
bounded, non-constant activation functions and L = 2

o Number weights M(®) and number of neurons N, of ® can become
arbitrarily large.
@ ldea of the proof:
» F(M,L=2,B)C C([0,1]°) is a linear subspace
» Arguing by contradiction, suppose F(M, L =2, B) not dense
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Approximations using Neural Networks

@ Hornik (1991): universal approximation holds with continuous,
bounded, non-constant activation functions and L = 2
o Number weights M(®) and number of neurons N, of ® can become
arbitrarily large.
@ ldea of the proof:
» F(M,L=2,B)C C([0,1]°) is a linear subspace
» Arguing by contradiction, suppose F(M, L =2, B) not dense
» By Hahn-Banach Thm., there exists a signed Radon measure p such
that f[o,1]D &(x) du(x) =0 for all & € F(M,L=2,B).
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Approximations using Neural Networks

@ Hornik (1991): universal approximation holds with continuous,
bounded, non-constant activation functions and L = 2
e Number weights M(®) and number of neurons N, of ® can become
arbitrarily large.
@ ldea of the proof:
» F(M,L=2,B)C C([0,1]°) is a linear subspace
» Arguing by contradiction, suppose F(M, L =2, B) not dense
» By Hahn-Banach Thm., there exists a signed Radon measure p such
that f[O,l]D &(x) du(x) =0 for all & € F(M,L=2,B).
» The functions p(ax + b) belong to & € F(M, L =2, B) for any
acRP beR
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Approximations using Neural Networks

@ Hornik (1991): universal approximation holds with continuous,
bounded, non-constant activation functions and L = 2

o Number weights M(®) and number of neurons N, of ® can become
arbitrarily large.
@ ldea of the proof:
» F(M,L=2,B)C C([0,1]°) is a linear subspace
» Arguing by contradiction, suppose F(M, L =2, B) not dense
» By Hahn-Banach Thm., there exists a signed Radon measure p such
that f[O,l]D &(x) du(x) =0 for all & € F(M,L=2,B).
» The functions p(ax + b) belong to & € F(M, L =2, B) for any
acRP beR
» Contradiction follows since p is discriminatory, i.e., the only Radom
measure 4 for which [;; 10 p(ax + b) du(x) =0, a € RP, b € R, is the

Zero measure.
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Approximations using Neural Networks

There are dual versions of the approximation theorem above where the
network has bounded width and arbitrarily large depth.
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Approximations using Neural Networks

There are dual versions of the approximation theorem above where the
network has bounded width and arbitrarily large depth.

Theorem [Kidger and Lyons, 2020]

Assume p is a nonaffine continuous function which is continuously
differentiable at least one point, with nonzero derivative at that point.
For every f € C([0,1]P), given & > 0, there exists a neural network

¢ : RP — R? where the number of neurons N, for each layer ¢ bounded
by D + d + 2 such that

|&(x) — f(x)| <&, foranyx e [0,1]P
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Approximations using Neural Networks

There are dual versions of the approximation theorem above where the
network has bounded width and arbitrarily large depth.

Theorem [Kidger and Lyons, 2020]

Assume p is a nonaffine continuous function which is continuously
differentiable at least one point, with nonzero derivative at that point.
For every f € C([0,1]P), given & > 0, there exists a neural network

¢ : RP — R? where the number of neurons N, for each layer ¢ bounded
by D + d + 2 such that

|&(x) — f(x)| <&, foranyx e [0,1]P

Note: number of layers L(®) can become arbitrarily large.
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Deep Neural Networks

(a) A Shallow Network (b) A Deep Neural Network

@ Modern network architectures are typically very deep
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Deep Neural Networks

(a) A Shallow Network (b) A Deep Neural Network

@ Modern network architectures are typically very deep

@ Deep vs. shallow networks: Depth improves expressive power
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Deep Neural Networks

(a) A Shallow Network (b) A Deep Neural Network

@ Modern network architectures are typically very deep
@ Deep vs. shallow networks: Depth improves expressive power

@ With respect to shallow networks (and traditional function
representations), deep neural networks can exploit composition

L
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Deep Neural Networks

(a) A Shallow Network (b) A Deep Neural Network

@ Modern network architectures are typically very deep
@ Deep vs. shallow networks: Depth improves expressive power

@ With respect to shallow networks (and traditional function
representations), deep neural networks can exploit composition
— Blessing of compositionality

L
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Example: piecewise linear functions on R

Triangle function:

n@:{% ifo<x<l

x € R,
21-x) if3<x<1
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Example: piecewise linear functions on R

Triangle function:

2 if 0 < 1
T(X):{x nUsx<2 x €R.

21-x) if3<x<1

can be expressed using p(x) = max{x,0} as
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Example: piecewise linear functions on R

Triangle function:
2x if0<x<3

T(x) = x € R,
) {2(1—x) iflgxgl
can be expressed using p(x) = max{x,0} as
d(x) = ; =2(x —0)4 —4(x — 3)+
2

-1/2 0 1
Neural Network Output function
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Example: piecewise linear functions on R

Triangle function:
2x if0<x<3

T(x) = x € R,
) {2(1—x) iflgxgl
can be expressed using p(x) = max{x,0} as
d(x) = ; =2(x —0)4 —4(x — 3)+
2

-1/2 0 1
Neural Network Output function
o ®(x) is a neural network with L =2, N =2, M = 6. -
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Example: piecewise linear functions on R

@ Neural Network with L =2, No =2
— piecewise linear function with at most 2 breakpoints
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— piecewise linear function with at most 2 breakpoints
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— piecewise linear function with at most N breakpoints
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Example: piecewise linear functions on R

@ Neural Network with L =2, No =2

— piecewise linear function with at most 2 breakpoints
@ Neural Networks with L =2, N-2=N

— piecewise linear function with at most N breakpoints

» Same expressive power (M = O(N?)) as continuous piecewise linear
functions with the same number of parameters:
N breakpoints <> N? parameters

%

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 14 /42



Example: piecewise linear functions on R

@ Neural Network with L =2, No =2
— piecewise linear function with at most 2 breakpoints

@ Neural Networks with L =2, N-2=N
— piecewise linear function with at most N breakpoints

» Same expressive power (M = O(N?)) as continuous piecewise linear
functions with the same number of parameters:
N breakpoints <> N? parameters
@ Composition increases the number of breakpoints.
Neural Networks with L layers, N neurons/layer
(complexity M = O(LN?))
— piecewise linear function with Nt breakpoints
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Example: piecewise linear functions on R

@ Neural Network with L =2, No =2

— piecewise linear function with at most 2 breakpoints
Neural Networks with L =2, N —-2=N

— piecewise linear function with at most N breakpoints

» Same expressive power (M = O(N?)) as continuous piecewise linear
functions with the same number of parameters:
N breakpoints <> N? parameters

(]

Composition increases the number of breakpoints.

Neural Networks with L layers, N neurons/layer

(complexity M = O(LN?))

— piecewise linear function with Nt breakpoints

@ Deep neural networks can improve classical approximation
methods for several function classes

[Daubechies, DeVore, Foucart, Hanin, Petrova, 2022]
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Approximations using Neural Networks

Shallow network are comparable to traditional approximation methods in
terms of computational complexity.
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Approximations using Neural Networks

Shallow network are comparable to traditional approximation methods in
terms of computational complexity.

Theorem - Shallow Network Approximation [Mhaskar 1996]
Consider f € C([0,1]P). Then

inf If = ®|loc < cM~YP
deF(M,L=2,B)

That is, the complexity of a single-layer neural networks ¢ that
approximates f with accuracy at least ¢ is

M = O(e_D)

%

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 15 /42



Approximations using Neural Networks

Shallow network are comparable to traditional approximation methods in
terms of computational complexity.

Theorem - Shallow Network Approximation [Mhaskar 1996]
Consider f € C([0,1]P). Then

inf If = ®|loc < cM~YP
deF(M,L=2,B)

That is, the complexity of a single-layer neural networks ¢ that
approximates f with accuracy at least ¢ is

M = O(e_D)

@ Same approximation rate as classical piecewise linear approximations
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Approximations using Deep Neural Networks

Deep networks can exploit compositionality to reduce the number of
parameters needed to approximate functions.
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Approximations using Deep Neural Networks

Deep networks can exploit compositionality to reduce the number of
parameters needed to approximate functions.

Theorem - Deep Network Approximation [Yarotsky, 2017,2018]
For f € C([0,1]P)

inf  ||[f — oo < cM/P
deF(M,L,B)

That is, the complexity of a deep networks ¢ that approximates f with
accuracy at least € is

M = O(c~P/?)
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Approximations using Deep Neural Networks

Deep networks can exploit compositionality to reduce the number of
parameters needed to approximate functions.

Theorem - Deep Network Approximation [Yarotsky, 2017,2018]
For f € C([0,1]P)

inf  ||[f — oo < cM/P
deF(M,L,B)

That is, the complexity of a deep networks ¢ that approximates f with
accuracy at least € is

M = O(c~P/?)

@ It improves the approximation rate of shallow networks
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Approximations using Deep Neural Networks

Deep networks can exploit compositionality to reduce the number of
parameters needed to approximate functions.

Theorem - Deep Network Approximation [Yarotsky, 2017,2018]
For f € C([0,1]P)

inf  ||[f — oo < cM/P
deF(M,L,B)

That is, the complexity of a deep networks ¢ that approximates f with
accuracy at least € is

M = O(c~P7?)

@ It improves the approximation rate of shallow networks
@ Optimal approximation rate achievable with a ReLU NN
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Approximations using Deep Neural Networks

Deep networks can exploit compositionality to reduce the number of
parameters needed to approximate functions.

Theorem - Deep Network Approximation [Yarotsky, 2017,2018]
For f € C([0,1]P)

inf  ||[f — oo < cM/P
deF(M,L,B)

That is, the complexity of a deep networks ¢ that approximates f with
accuracy at least € is

M = O(c~P7?)

@ It improves the approximation rate of shallow networks

@ Optimal approximation rate achievable with a ReLU NN

o L(®) grown like O(In(1/¢)) Eﬂ
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Approximations using Deep Neural Networks

Theorem - Deep Network Approximation [Petersen-Voigtlander, 2018]
Let f be piecewise C”([0,1]P) with 3 > 0. Then

: ~ < - -B/(D-1))
¢€f'(f,'\j’L’B) If — @[ 2o,p) < cM

That is, the complexity of a deep networks ® that approximates f with
accuracy at least € is

M — 0(5—2(0—1)/5)
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Approximations using Deep Neural Networks

Theorem - Deep Network Approximation [Petersen-Voigtlander, 2018]
Let f be piecewise C”([0,1]P) with 3 > 0. Then

: ~ < - -B/(D-1))
¢€f'(f,'\);’L’B) If — @[ 2o,p) < cM

That is, the complexity of a deep networks ® that approximates f with
accuracy at least € is

M — 0(5—2(0—1)/5)

@ Optimal approximation rate achievable with a ReLU NN
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Approximations using Deep Neural Networks

Theorem - Deep Network Approximation [Petersen-Voigtlander, 2018]
Let f be piecewise C”([0,1]P) with 3 > 0. Then

: ~ < - -B/(D-1))
¢€f'(f,'\);’L’B) [f = @l 20,00y S M

That is, the complexity of a deep networks ® that approximates f with
accuracy at least € is

M = O(e=2D-1)/8)

@ Optimal approximation rate achievable with a ReLU NN

@ The number of layers satisfies L < ¢’ log(8 + 2)(1 + 8/D) where ¢’ is
an absolute constant
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Approximations using Deep Neural Networks

Theorem - Deep Network Approximation [Petersen-Voigtlander, 2018]
Let f be piecewise C”([0,1]P) with 3 > 0. Then

: ~ < - -B/(D-1))
¢€f'(f,'\);’L’B) [f = @l 20,00y S M

That is, the complexity of a deep networks ® that approximates f with
accuracy at least € is

M = O(e=2D-1)/8)

@ Optimal approximation rate achievable with a ReLU NN

@ The number of layers satisfies L < ¢’ log(8 + 2)(1 + 8/D) where ¢’ is
an absolute constant

@ The constant ¢ depends on D, 3 but dependence is not explicit %
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Approximations using Deep Neural Networks

Most approximations results using neural network - including those
presented above - are non-quantitative and asymptotic

inf  ||[f—®| <cm PP
deF(M,L,B)
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Approximations using Deep Neural Networks

Most approximations results using neural network - including those
presented above - are non-quantitative and asymptotic

inf  ||[f—®| <cm PP
deF(M,L,B)

@ Approximation constant ¢ depend on D non-explicitly

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 18 /42



Approximations using Deep Neural Networks

Most approximations results using neural network - including those
presented above - are non-quantitative and asymptotic

inf  ||[f—®| <cm PP
deF(M,L,B)

@ Approximation constant ¢ depend on D non-explicitly

@ L need to be sufficiently large but no quantitative bound is shown
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Approximations using Deep Neural Networks

Most approximations results using neural network - including those
presented above - are non-quantitative and asymptotic

inf  ||[f—®| <cm PP
deF(M,L,B)

@ Approximation constant ¢ depend on D non-explicitly

@ L need to be sufficiently large but no quantitative bound is shown

[Lu, Shen, Yang, Zhang, 2020], [Shen, Yang, Zhang, 2021] are the first
papers to provide non-asymptotic and quantitative approximation
results.
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Approximations using Deep Neural Networks

Theorem [Shen, Yang, Zhang, 2021]

Let £ € BA\(C%([0,1]P)), the space of Hdlder continuous function of order
a € [0,1) with Holder constant A, and let F(N, L, B) where N is the
width and L is the depth of ¢

Then, for p € [1, 0]

inf [|f —® < 19VDAN~2/P~22/D
¢€f'(',‘V7L’B) | HLP([O,I]D) < 19vDX

That is, the complexity of a deep networks ® that approximates f with
accuracy at least ¢ is about

M = O(e~P/) (Note: M = O(LN?))

%
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Approximations using Deep Neural Networks

Theorem [Shen, Yang, Zhang, 2021]

Let £ € BA\(C%([0,1]P)), the space of Hdlder continuous function of order
a € [0,1) with Holder constant A, and let F(N, L, B) where N is the
width and L is the depth of ¢

Then, for p € [1, 0]

inf [|f —® < 19VDAN~2/P~22/D
q>efl(r)v,L,B) | HLP([O,I]D) < 19vDX

That is, the complexity of a deep networks ® that approximates f with
accuracy at least ¢ is about

M = O(e~P/) (Note: M = O(LN?))

@ This is the nearly optimal approximation rate
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Approximations using Deep Neural Networks

Theorem [Shen, Yang, Zhang, 2021]

Let £ € BA\(C%([0,1]P)), the space of Hdlder continuous function of order
a € [0,1) with Holder constant A, and let F(N, L, B) where N is the
width and L is the depth of ¢

Then, for p € [1, 0]

inf [|f —® < 19VDAN~2/P~22/D
q>efl(r)v,L,B) | HLP([O,I]D) < 19vDX

That is, the complexity of a deep networks ® that approximates f with
accuracy at least ¢ is about

M = O(e~P/) (Note: M = O(LN?))

@ This is the nearly optimal approximation rate
@ Quantitative values for N and L are given L@:-Ij
Provable approximations using DNNs El Escorial 2022 19/42



Outline...

© Dimensionality reduction using Neural Networks
@ Curse of Dimensionality
@ Manifold hypothesis
@ Generalization error
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Curse of Dimensionality

@ Success of deep neural networks in applications is not fully explained
by their mere approximation properties.
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Curse of Dimensionality

@ Success of deep neural networks in applications is not fully explained
by their mere approximation properties.

@ Their performance on problems where input dimension is high often
appears to overcome the curse of dimensionality (COD).
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Curse of Dimensionality

@ Success of deep neural networks in applications is not fully explained
by their mere approximation properties.

@ Their performance on problems where input dimension is high often
appears to overcome the curse of dimensionality (COD).

[Bellman, 1952, Novak & Wozniakowsk, 2009]

Approximation methods deteriorate exponentially fast with increasing
dimension D
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Curse of Dimensionality

@ Success of deep neural networks in applications is not fully explained
by their mere approximation properties.

@ Their performance on problems where input dimension is high often
appears to overcome the curse of dimensionality (COD).

[Bellman, 1952, Novak & Wozniakowsk, 2009]

Approximation methods deteriorate exponentially fast with increasing
dimension D

» Computational cost of traditional numerical PDE solvers such as finite
difference, finite element and spectral methods, scales with D
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Curse of Dimensionality

@ Success of deep neural networks in applications is not fully explained
by their mere approximation properties.

@ Their performance on problems where input dimension is high often
appears to overcome the curse of dimensionality (COD).
[Bellman, 1952, Novak & Wozniakowsk, 2009]

Approximation methods deteriorate exponentially fast with increasing
dimension D

» Computational cost of traditional numerical PDE solvers such as finite
difference, finite element and spectral methods, scales with D

» Pointwise approximation of the solution with accuracy ¢ requires
M = O(e~P) parameters — practically impossible to achieve
satisfactory accuracy for very large D
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Curse of Dimensionality

In many multi-dimensional problems, data is highly structured and the
information of interest is low-dimensional
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Curse of Dimensionality

In many multi-dimensional problems, data is highly structured and the
information of interest is low-dimensional

Widely used image datasets:

@ MNIST: 28 x 28 = 784 pixels
per image — R784

» intrinsic dimension:
between 8 and 13
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Curse of Dimensionality

In many multi-dimensional problems, data is highly structured and the
information of interest is low-dimensional

Widely used image datasets:

o MNIST: 28 x 28 = 784 pixels S
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per image — R784

» intrinsic dimension:
between 8 and 13
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o ImageNet: 224 x 224 x 3 = 150528
pixels per image — JR150528

> intrinsic dimension: _

between 26 and 43
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Manifold hypothesis

Many theoretical results explains this phenomenon either explicitly or
implicitly using the manifold hypothesis.
Manifold hypothesis:

There is a d-dimensional manifold containing our D-dimensional data of
interest where d < D

shrinking w
transformation 4

2,
4 &
) l >
raw input vector space %
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Manifold hypothesis

We want to approximate a function
f:RP>S—R

Under the manifold hypothesis, we are not seeking to approximate f with
respect to a norm on RP.

%
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Manifold hypothesis

We want to approximate a function
f:RP>S—R

Under the manifold hypothesis, we are not seeking to approximate f with
respect to a norm on RP.

Rather, we approximate f on a d-dimensional manifold M, where d < D.

D : ambient dimension vs. d: intrinsic dimension
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Manifold hypothesis

We want to approximate a function
f:RP>S—R

Under the manifold hypothesis, we are not seeking to approximate f with
respect to a norm on RP.

Rather, we approximate f on a d-dimensional manifold M, where d < D.

A

RD

e ,.g
.

D : ambient dimension vs. d: intrinsic dimension

Bonus: neural networks can learn local coordinate transformations %
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Manifold hypothesis

[Shaham,Cloninger,Coifman,2018; Schmidt-Hieber,2019; Nakada,Imaizumi,2020]
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Manifold hypothesis

[Shaham,Cloninger,Coifman,2018; Schmidt-Hieber,2019; Nakada,Imaizumi,2020]

Theorem (informal version)

Let M C RP be a smooth d-dimensional manifold and let
f € B)\(C%([0,1]P)), space of Hélder continuous function of order
a € [0,1) with Holder constant A. Then

inf || — &l A, a, D) M~/
scrm gy lf = Pl < (A, D)

The complexity of a deep neural network ¢ that approximates f with
accuracy at least ¢ satisfies

M < &\, o, D)9/
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Manifold hypothesis

[Shaham,Cloninger,Coifman,2018; Schmidt-Hieber,2019; Nakada,Imaizumi,2020]

Theorem (informal version)

Let M C RP be a smooth d-dimensional manifold and let
f € B)\(C%([0,1]P)), space of Hélder continuous function of order
a € [0,1) with Holder constant A. Then

inf || — &l A, a, D) M~/
scrm gy lf = Pl < (A, D)

The complexity of a deep neural network ¢ that approximates f with
accuracy at least ¢ satisfies

M < &\, o, D)9/

o Complexity grows like €4/ (d rather than D)
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Manifold hypothesis

[Shaham,Cloninger,Coifman,2018; Schmidt-Hieber,2019; Nakada,Imaizumi,2020]

Theorem (informal version)

Let M C RP be a smooth d-dimensional manifold and let
f € B)\(C%([0,1]P)), space of Hélder continuous function of order
a € [0,1) with Holder constant A. Then

inf || — &l A, a, D) M~/
scrm gy lf = Pl < (A, D)

The complexity of a deep neural network ¢ that approximates f with
accuracy at least ¢ satisfies

M < &\, o, D)9/

o Complexity grows like €4/ (d rather than D)
o C depends on D with polynomial or logarithmic dependence Elglj
Provable approximations using DNNs El Escorial 2022 25/42



Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]
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Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]

@ Construct a basis or a frame (e.g., a wavelet frame or a polynomial
basis) of C%([0,1]P) whose elements are implemented as neural
networks
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Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]

@ Construct a basis or a frame (e.g., a wavelet frame or a polynomial
basis) of C%([0,1]P) whose elements are implemented as neural
networks

@ Construct an atlas for M C RP
by covering it with open balls

/FcRd © O/ /
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Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]

@ Construct a basis or a frame (e.g., a wavelet frame or a polynomial
basis) of C%([0,1]P) whose elements are implemented as neural
networks

@ Construct an atlas for M C RP
by covering it with open balls

© Use the open cover to obtain a
partition of unity of M

and expand any f on M /FCRd © O/ /

using a basis or a frame on R¢
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Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]

@ Construct a basis or a frame (e.g., a wavelet frame or a polynomial
basis) of C%([0,1]P) whose elements are implemented as neural
networks

@ Construct an atlas for M C RP
by covering it with open balls

© Use the open cover to obtain a
partition of unity of M

and expand any f on M /FC R¢ © O/ /

using a basis or a frame on R¢

O Extend the basis or frame terms from the original domain on RY to
RP in a way that depends on the curvature of the manifold.
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Network approximation - Manifold hypothesis

Our result [Labate,Shi, 2022]
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Network approximation - Manifold hypothesis
Our result [Labate,Shi, 2022]

Theorem (informal version)

Let M C RP be a Riemannian d-dimensional manifold (with some
regularity) and let f € By(C([0,1]P)), @ € (0,1). For 6 € (0,1),

inf f— @ o \, 3, ) M~/ d
¢e;'{}v,L,B)” Loy < (A, 6, @)

where d < ds < D. The complexity of a deep networks ¢ that
approximates f with accuracy at least ¢ satisfies

M < &\, o) e %/
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Network approximation - Manifold hypothesis
Our result [Labate,Shi, 2022]

Theorem (informal version)

Let M C RP be a Riemannian d-dimensional manifold (with some
regularity) and let f € By(C([0,1]P)), @ € (0,1). For 6 € (0,1),

inf f— @ o \, 3, ) M~/ d
%fl(r;ms)ll Loy < (A, 6, @)

where d < ds < D. The complexity of a deep networks ¢ that
approximates f with accuracy at least ¢ satisfies

M < &\, o) e %/

o Complexity grows like ~%/® (djs rather than D)
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Network approximation - Manifold hypothesis
Our result [Labate,Shi, 2022]

Theorem (informal version)

Let M C RP be a Riemannian d-dimensional manifold (with some
regularity) and let f € By(C([0,1]P)), @ € (0,1). For 6 € (0,1),

inf f— @ o \, 3, ) M~/ d
%fl(r;ms)ll Loy < (A, 6, @)

where d < ds < D. The complexity of a deep networks ¢ that
approximates f with accuracy at least ¢ satisfies

M < &\, o) e %/

o Complexity grows like ~%/® (djs rather than D)
o ¢ does not depend on D L_LEWE
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Johnson-Lindenstrauss Lemma

One key tool in our approach is an appropriate version of the
Johnson-Lindenstrauss lemma, establishing low-distortion embeddings
of points from high-dimensional into low-dimensional space.
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Johnson-Lindenstrauss Lemma

One key tool in our approach is an appropriate version of the
Johnson-Lindenstrauss lemma, establishing low-distortion embeddings
of points from high-dimensional into low-dimensional space.

Theorem [Johnson-Lindenstrauss, 1984]

Let 6 € (0,1) and xi,...,x, € RP be arbitrary points. Let
m = O(62log p). Then there is a Lipschitz map f : R® — R™ such that

(1= 8)lxi — P < IF(x)) = FO)P < (1+O)lxi — P, for all i,
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Johnson-Lindenstrauss Lemma

One key tool in our approach is an appropriate version of the
Johnson-Lindenstrauss lemma, establishing low-distortion embeddings
of points from high-dimensional into low-dimensional space.

Theorem [Johnson-Lindenstrauss, 1984]

Let 6 € (0,1) and xi,...,x, € RP be arbitrary points. Let
m = O(62log p). Then there is a Lipschitz map f : R® — R™ such that

(1= 8)lxi — P < IF(x)) = FO)P < (1+O)lxi — P, for all i,

@ Low-distortion embeddings <— Restricted Isometry Property (RIP)
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Johnson-Lindenstrauss Lemma

One key tool in our approach is an appropriate version of the
Johnson-Lindenstrauss lemma, establishing low-distortion embeddings
of points from high-dimensional into low-dimensional space.

Theorem [Johnson-Lindenstrauss, 1984]

Let 6 € (0,1) and xi,...,x, € RP be arbitrary points. Let
m = O(62log p). Then there is a Lipschitz map f : R® — R™ such that

(1= 8)lxi — P < IF(x)) = FO)P < (1+O)lxi — P, for all i,

@ Low-distortion embeddings <— Restricted Isometry Property (RIP)

@ Applications in compressed sensing, manifold learning, dimensionality

reduction, ...
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Johnson-Lindenstrauss Lemma

One key tool in our approach is an appropriate version of the
Johnson-Lindenstrauss lemma, establishing low-distortion embeddings
of points from high-dimensional into low-dimensional space.

Theorem [Johnson-Lindenstrauss, 1984]

Let 6 € (0,1) and xi,...,x, € RP be arbitrary points. Let
m = O(62log p). Then there is a Lipschitz map f : R® — R™ such that

(1= 8)lxi — P < IF(x)) = FO)P < (1+O)lxi — P, for all i,

@ Low-distortion embeddings <— Restricted Isometry Property (RIP)

@ Applications in compressed sensing, manifold learning, dimensionality
reduction, ...

@ Recent application in the context of approximations using neural
networks: [Cai, Li, Sun, Wang, 2019], [Shen, Yang, Zhang, 2021]
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Johnson-Lindenstrauss Lemma

Manifold extension: preservation of ambient distances on a manifold
under the action of random projections
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Johnson-Lindenstrauss Lemma

Manifold extension: preservation of ambient distances on a manifold
under the action of random projections

Theorem [Baraniuk and Wakin, 2009]

Let M C RP be a compact d-dimensional Riemannian submanifold having
condition number 1/7, volume V/, and geodesic covering regularity R. Fix
8,7 € (0,1) and let A be a random orthoprojector from RP to R% with

. O<dlog(DV7€7151)> _ O(dlog(oal))

92 92

Then, for every pair of points x1, x € M

d d
(1—5),/5‘5|x1 — x| < |Ax — Ax| < (1+5),/5‘5|x1—x2

holds with probability at least 1 — . ﬁ
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:

e Condition number 1/7 — norm of the second fundamental form of
M is bounded by 1/7 in all directions:
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:

e Condition number 1/7 — norm of the second fundamental form of
M is bounded by 1/7 in all directions:

» manifold cannot curve too much locally
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:

e Condition number 1/7 — norm of the second fundamental form of
M is bounded by 1/7 in all directions:

» manifold cannot curve too much locally
> angle between tangent spaces at nearby points cannot be too large
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:

e Condition number 1/7 — norm of the second fundamental form of
M is bounded by 1/7 in all directions:

» manifold cannot curve too much locally
> angle between tangent spaces at nearby points cannot be too large
» geodesic and ambient distance cannot differ too much
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:

e Condition number 1/7 — norm of the second fundamental form of
M is bounded by 1/7 in all directions:

» manifold cannot curve too much locally
> angle between tangent spaces at nearby points cannot be too large
» geodesic and ambient distance cannot differ too much

@ Geodesic covering regularity of the manifold: closely related to the
more traditional notion of distance covering number
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:

e Condition number 1/7 — norm of the second fundamental form of
M is bounded by 1/7 in all directions:

» manifold cannot curve too much locally
> angle between tangent spaces at nearby points cannot be too large
» geodesic and ambient distance cannot differ too much

@ Geodesic covering regularity of the manifold: closely related to the
more traditional notion of distance covering number

> it ensures that any ball centered on the manifold captures a certain
amount of its volume
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:

e Condition number 1/7 — norm of the second fundamental form of
M is bounded by 1/7 in all directions:

» manifold cannot curve too much locally
> angle between tangent spaces at nearby points cannot be too large
» geodesic and ambient distance cannot differ too much

@ Geodesic covering regularity of the manifold: closely related to the
more traditional notion of distance covering number

> it ensures that any ball centered on the manifold captures a certain
amount of its volume

Random orthoprojection A : RP — R%
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:

e Condition number 1/7 — norm of the second fundamental form of
M is bounded by 1/7 in all directions:

» manifold cannot curve too much locally
> angle between tangent spaces at nearby points cannot be too large
» geodesic and ambient distance cannot differ too much

@ Geodesic covering regularity of the manifold: closely related to the
more traditional notion of distance covering number

> it ensures that any ball centered on the manifold captures a certain
amount of its volume

Random orthoprojection A : RP — R%

0 € (0,1) controls balance between isometry and dimension reduction
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:

e Condition number 1/7 — norm of the second fundamental form of
M is bounded by 1/7 in all directions:

» manifold cannot curve too much locally
> angle between tangent spaces at nearby points cannot be too large
» geodesic and ambient distance cannot differ too much

@ Geodesic covering regularity of the manifold: closely related to the
more traditional notion of distance covering number

> it ensures that any ball centered on the manifold captures a certain
amount of its volume

Random orthoprojection A : RP — R%

0 € (0,1) controls balance between isometry and dimension reduction

@ J is closer to 1 = dj is closer to d = weaker isometric property
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Johnson-Lindenstrauss Lemma

Technical requirements on manifold M C RP:

e Condition number 1/7 — norm of the second fundamental form of
M is bounded by 1/7 in all directions:

» manifold cannot curve too much locally
> angle between tangent spaces at nearby points cannot be too large
» geodesic and ambient distance cannot differ too much

@ Geodesic covering regularity of the manifold: closely related to the
more traditional notion of distance covering number

> it ensures that any ball centered on the manifold captures a certain
amount of its volume

Random orthoprojection A : RP — R%

0 € (0,1) controls balance between isometry and dimension reduction
@ J is closer to 1 = dj is closer to d = weaker isometric property

@ 0 is closer to 0 = djs farther from d = better isometric property E{]
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Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof
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Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

@ Given fy € By\(C*([0,1]P)), @ € (0, 1), define a lower dimensional
function go on [0,1]% by projecting fy via a random orthoprojection
A:RP 5 M — R% [Theorem by Baraniuk and Wakin, 2009]
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Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

@ Given fy € By\(C*([0,1]P)), @ € (0, 1), define a lower dimensional
function go on [0,1]% by projecting fy via a random orthoprojection
A:RP 5 M — R% [Theorem by Baraniuk and Wakin, 2009]

@ Extend gy continuously to a function g on By(C%([0,1]%))
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Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

@ Given fy € By\(C*([0,1]P)), @ € (0, 1), define a lower dimensional
function go on [0,1]% by projecting fy via a random orthoprojection
A:RP 5 M — R% [Theorem by Baraniuk and Wakin, 2009]

@ Extend gy continuously to a function g on By(C%([0,1]%))

© Construct a neural network ®& to approximate functions
g € B\(C*([0,1]%)), a € (0,1)
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Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

@ Given fy € By\(C*([0,1]P)), @ € (0, 1), define a lower dimensional
function go on [0,1]% by projecting fy via a random orthoprojection
A:RP 5 M — R% [Theorem by Baraniuk and Wakin, 2009]

@ Extend gy continuously to a function g on By(C%([0,1]%))

© Construct a neural network ®& to approximate functions
g € B\(C2([0,1]%)), a € (0,1)

O© By applying the mapping A, derive from ®& a neural network ®% to
approximate fy on M

Challenges:
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Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

@ Given fy € By\(C*([0,1]P)), @ € (0, 1), define a lower dimensional
function go on [0,1]% by projecting fy via a random orthoprojection
A:RP 5 M — R% [Theorem by Baraniuk and Wakin, 2009]

@ Extend gy continuously to a function g on By(C%([0,1]%))

© Construct a neural network ®& to approximate functions
g € B\(C2([0,1]%)), a € (0,1)

O© By applying the mapping A, derive from ®& a neural network ®% to
approximate fy on M

Challenges:
o To approximate By(C%([0,1])) using neural networks
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Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

@ Given fy € By\(C*([0,1]P)), @ € (0, 1), define a lower dimensional
function go on [0,1]% by projecting fy via a random orthoprojection
A:RP 5 M — R% [Theorem by Baraniuk and Wakin, 2009]

@ Extend gy continuously to a function g on By(C%([0,1]%))

© Construct a neural network ®& to approximate functions
g € B\(C2([0,1]%)), a € (0,1)

O© By applying the mapping A, derive from ®& a neural network ®% to
approximate fy on M

Challenges:
o To approximate By(C%([0,1])) using neural networks
@ To control number of parameters of ®& and ¢
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Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

@ Given fy € By\(C*([0,1]P)), @ € (0, 1), define a lower dimensional
function go on [0,1]% by projecting fy via a random orthoprojection
A:RP 5 M — R% [Theorem by Baraniuk and Wakin, 2009]

@ Extend gy continuously to a function g on By(C%([0,1]%))

© Construct a neural network ®& to approximate functions
g € B\(C2([0,1]%)), a € (0,1)

O© By applying the mapping A, derive from ®& a neural network ®% to
approximate fy on M

Challenges:
o To approximate By(C%([0,1])) using neural networks
@ To control number of parameters of ®& and ¢
@ To ensure the projected function gp is Holder continuous %
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Network approximation - Manifold hypothesis

Idea of the proof: 1-2. Approximation of B,(C%([0,1]P))
Several contributions have shown how to build neural networks
implementing functions efficiently.

%
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Network approximation - Manifold hypothesis

Idea of the proof: 1-2. Approximation of B,(C%([0,1]P))
Several contributions have shown how to build neural networks
implementing functions efficiently.

Operations on neural networks [Petersen-Voigtlaender,2018]
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Network approximation - Manifold hypothesis

Idea of the proof: 1-2. Approximation of B,(C%([0,1]P))
Several contributions have shown how to build neural networks
implementing functions efficiently.

Operations on neural networks [Petersen-Voigtlaender,2018]

Concatenation. Given neural networks ng? e e j>o
0 oS o— _ .

&1 €F(My, L1, B) and &y € F(My, Ly, By), *o-o ~ =°

the concatenation of ®; and &, 5 oo o

. O O g

is another neural network =22 >°

P10, € .F(2M1 +2My, L1 + L — 1, max(Bl, Bz))
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Network approximation - Manifold hypothesis

Idea of the proof: 1-2. Approximation of B,(C%([0,1]P))
Several contributions have shown how to build neural networks
implementing functions efficiently.

Operations on neural networks [Petersen-Voigtlaender,2018]

Concatenation. Given neural networks

P, 6.7'—(/\/71, Ly, Bl) and &, € .7'—(/\/72, Ly, Bg),
the concatenation of ®; and ®,

is another neural network

Pi0d; € .F(2M1 +2My, L1 + L — 1, max(Bl, Bz))

Parallelization. Given neural networks

P, E.F(Ml, L, Bl) and ¢, € .F(MQ, L, Bz),

with the same input dimension, the parallelizatio
of ®; and @, is a neural network

P(Cbl, ¢2) € ]:(Ml + Mo, L, max(Bl, Bz))

—
o
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Network approximation - Manifold hypothesis

Idea of the proof: 1-2. Approximation of B,(C%([0,1]P))

Proposition (Approximation of monomials). Fix b > 0 and D € N. For
any € > 0 and v € NP with |v| < b there is a neural network

o™l ¢ F(M, L, B) with D-dimensional input and 1-dimensional output
satisfying

sup  [®M(x) — x¥| <e.
x€[0,1]P

%

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 33/42



Network approximation - Manifold hypothesis

Idea of the proof: 1-2. Approximation of B,(C%([0,1]P))

Proposition (Approximation of monomials). Fix b > 0 and D € N. For
any € > 0 and v € NP with |v| < b there is a neural network

o™l ¢ F(M, L, B) with D-dimensional input and 1-dimensional output
satisfying

sup  [®™(x) — x”

x€[0,1]P
We can choose M = N(¢™), L = (™), B = B(d™) such that
o W < 38460 b (119 +36|1/D] + (384)4U/DJ> e D

o L < (1+ logy[b]])(11+1/D),
e B<c(e b,D)

<e.
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Network approximation - Manifold hypothesis

Idea of the proof: 1-2. Approximation of B,(C%([0,1]P))

Proposition (Approximation of monomials). Fix b > 0 and D € N. For
any € > 0 and v € NP with |v| < b there is a neural network

o™l ¢ F(M, L, B) with D-dimensional input and 1-dimensional output
satisfying

CD'E"UI(X) - xY

sup <e.

x€[0,1]P
We can choose M = N(¢™), L = (™), B = B(d™) such that
o W < 38460 b (119 +36|1/D] + (384)4U/DJ> e D

o L < (1+ logy[b]])(11+1/D),
e B<c(e b,D)

Proof. Refinement of result in [Petersen and Voigtlaender, 2018].

%
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Network approximation - Manifold hypothesis

Idea of the proof: 3. Construction of low-dimensional function

We apply orthoprojection A : RP 5 M — R% to define a function g on
AM)

%
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Network approximation - Manifold hypothesis

Idea of the proof: 3. Construction of low-dimensional function
We apply orthoprojection A : RP 5 M — R% to define a function g on
AM)

g is not guaranteed to be Holder continuous but can be approximated
uniformly with small error by a function g € B;(C*([0, 1]%))

%
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Network approximation - Manifold hypothesis

Idea of the proof: 3. Construction of low-dimensional function
We apply orthoprojection A : RP 5 M — R% to define a function g on
AM)

g is not guaranteed to be Holder continuous but can be approximated
uniformly with small error by a function g € B;(C*([0, 1]%))

By concatenation we can define an approximating neural network,
of = d8 o ((A,0)) giving

g(y) — & (x)| < lg(y) — &(y)| + [8(Ax) — ®E(Ax)]

%
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Application: Generalization error

We show an application of the approximation result to the problem of
controlling the generalization error in a regression problem.
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Application: Generalization error

We show an application of the approximation result to the problem of
controlling the generalization error in a regression problem.

Let us consider a nonparametric regression problem corresponding to n
observations {(X;, Y;)}7_, € [0,1]° x R from the model

’Yi:fb(xi)-i-&‘,', izl)"'?”?
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Application: Generalization error

We show an application of the approximation result to the problem of
controlling the generalization error in a regression problem.

Let us consider a nonparametric regression problem corresponding to n
observations {(X;, Y;)}7_, € [0,1]° x R from the model

’Yi:fb(xi)-i-&‘,', izl)"'?”?

where
o fi € By(C*([0,1]7)),
@ the covariates X; marginally follow a probability measure pu,

@ the errors ¢; are i.i.d normally distributed with mean 0 and variance
o2 and are independent of the X;.
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Application: Generalization error

The solution of the regression problem is an estimator fapproximating the
unknown function fy € By(C%([0,1]°))
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Application: Generalization error

The solution of the regression problem is an estimator fapproximating the
unknown function fy € By(C%([0,1]°))

The performance of the estimator is assessed by the generalization error

17— o2y = Exuu [(FOX) = 6(X))?]
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unknown function fy € By(C%([0,1]°))

The performance of the estimator is assessed by the generalization error

17— o2y = Exuu [(FOX) = 6(X))?]

We identify the estimator class with neural networks F(N, L, B)
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Application: Generalization error

The solution of the regression problem is an estimator fapproximating the
unknown function fy € By(C%([0,1]°))

The performance of the estimator is assessed by the generalization error
17— o2y = Exuu [(FOX) = 6(X))?]

We identify the estimator class with neural networks F(N, L, B)

Fact: The generalization error using neural networks is on the order

O(nf2a/(2a+D))

This rate is optimal in the minimax sense [Schmidt-Hieber, 2020]

%

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 36 /42



Application: Generalization error

The solution of the regression problem is an estimator fapproximating the
unknown function fy € By(C%([0,1]°))

The performance of the estimator is assessed by the generalization error
17— o2y = Exuu [(FOX) = 6(X))?]

We identify the estimator class with neural networks F(N, L, B)

Fact: The generalization error using neural networks is on the order
O(nf2a/(2a+D))
This rate is optimal in the minimax sense [Schmidt-Hieber, 2020]

@ Generalization error suffers from the curse of dimensionality
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Application: Generalization error

The solution of the regression problem is an estimator fapproximating the
unknown function fy € By(C%([0,1]°))

The performance of the estimator is assessed by the generalization error
17— o2y = Exuu [(FOX) = 6(X))?]

We identify the estimator class with neural networks F(N, L, B)

Fact: The generalization error using neural networks is on the order

O(nf2a/(2a+D))

This rate is optimal in the minimax sense [Schmidt-Hieber, 2020]

@ Generalization error suffers from the curse of dimensionality
@ The network complexity also depends on D %
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Application: Generalization error

Our approach: manifold assumption
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Application: Generalization error

Our approach: manifold assumption

We assume data lies on a d-dimensional manifold with d <« D

%

Demetrio Labate (UH) Provable approximations using DNNs El Escorial 2022 37/42



Application: Generalization error

Our approach: manifold assumption
We assume data lies on a d-dimensional manifold with d < D

To estimate the regression function fy, we compute the least square
estimator ¢ € F(M, L, B) of fy associated with the empirical risk
minimization .
~ 1 2
&= argmin — Y — ®(X)
b=goA N ,Z;( ' : ) ’
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Application: Generalization error

Our approach: manifold assumption
We assume data lies on a d-dimensional manifold with d < D

To estimate the regression function fy, we compute the least square
estimator ¢ € F(M, L, B) of fy associated with the empirical risk
minimization .

~ 1 2
d = argmin E Y — (X)),
¢§goA n= ( ( ))

with the estimator returning a neural network ® of the form g o A where
g € F(M,L,B) and A is a random orthoprojection

A:RP SRS d<ds<D

%
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Application: Generalization error

Our result [Labate,Shi, 2022]
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Application: Generalization error

Our result [Labate,Shi, 2022]

Theorem (informal version)

Let M C RP be a Riemannian d-dimensional manifold (with some
regularity) and let f € By(C%([0,1]P)), « € (0,1). Let ® be the solution
of the empirical risk minimization problem given above. Then there exists
a constant ¢ = ¢(o, 8, ds, \) such that

& — foll3a,) < € n22/etd)(1 + log n)?

holds with probability at least 1 — 2 exp(—n9/(2+ds)) for n large.
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Application: Generalization error

Our result [Labate,Shi, 2022]

Theorem (informal version)

Let M C RP be a Riemannian d-dimensional manifold (with some
regularity) and let f € By(C%([0,1]P)), « € (0,1). Let ® be the solution
of the empirical risk minimization problem given above. Then there exists
a constant ¢ = ¢(o, 8, ds, \) such that

& — fb”é(@ < cn /et (1 4 og n)?

holds with probability at least 1 — 2 exp(—n9/(2+ds)) for n large.

e Constant ¢ does not depend on D, improving existing result [Nakada
and Imaizumi, 2019]
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Application: Generalization error

Our result [Labate,Shi, 2022]

Theorem (informal version)

Let M C RP be a Riemannian d-dimensional manifold (with some
regularity) and let f € By(C%([0,1]P)), « € (0,1). Let ® be the solution
of the empirical risk minimization problem given above. Then there exists
a constant ¢ = ¢(o, 8, ds, \) such that

19 = follF2( < € n—2/ G+ (L + log n)?

holds with probability at least 1 — 2 exp(—n9/(2+ds)) for n large.

e Constant ¢ does not depend on D, improving existing result [Nakada
and Imaizumi, 2019]

@ Complexity of the network depends weakly on D. M depends Iinear%
with D and L, B do not depend on D but only on dj.
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Outline...

@ Conclusion

%
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Conclusion

@ Application of Johnson-Lindenstrauss lemma is useful to manage
COD using neural networks without the need to define an explicit
atlas from the ambient space RP into the lower dimensional space R
and improved control over the dependence of the parametrization of
the network on D.
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@ Application of Johnson-Lindenstrauss lemma is useful to manage
COD using neural networks without the need to define an explicit
atlas from the ambient space RP into the lower dimensional space R
and improved control over the dependence of the parametrization of
the network on D.

@ The drawback is that this approach offers limited control over the
regularity of f
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Conclusion

@ Application of Johnson-Lindenstrauss lemma is useful to manage
COD using neural networks without the need to define an explicit
atlas from the ambient space RP into the lower dimensional space R
and improved control over the dependence of the parametrization of
the network on D.

@ The drawback is that this approach offers limited control over the
regularity of f

@ How to adapt this approach to smooth and piecewise smooth
functions such as Holder function with smoothness o > 1 and Besov
spaces?

%
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Questions?

References + codes at: www.math.uh.edu\~dlabate

L
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