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Introduction /History /Context

Classical 1-phase free boundary problem (Alt-Caffarelli, Jerison,
Kenig-Toro, others)
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Introduction /History /Context

Classical 1-phase free boundary problem (Alt-Caffarelli, Jerison,
Kenig-Toro, others)

Q: given regularity of |Vu|‘8§2 = % (with v = inward unit

normal), what can we deduce re: regularity of the free boundary?
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Introduction /History /Context

At least in presence of “Comparison Principle” (aka "Boundary
Harnack Principle” aka “Rate Theorem”), u might as well be a
Green function with some fixed pole, thus % might as well be the
Poisson kernel.
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Introduction /History /Context

At least in presence of “Comparison Principle” (aka "Boundary
Harnack Principle” aka “Rate Theorem”), u might as well be a
Green function with some fixed pole, thus % might as well be the
Poisson kernel.

We will consider caloric versions of this classical 1-phase problem.
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Introduction /History /Context

At least in presence of “Comparison Principle” (aka "Boundary
Harnack Principle” aka “Rate Theorem”), u might as well be a
Green function with some fixed pole, thus % might as well be the

Poisson kernel.
We will consider caloric versions of this classical 1-phase problem.

Remark: Comparison principle was proved by Fabes-Garofalo-Salsa
for caloric functions in Lip(1,1/2) domains.
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Introduction /History /Context

At least in presence of “Comparison Principle” (aka "Boundary
Harnack Principle” aka “Rate Theorem”), u might as well be a
Green function with some fixed pole, thus % might as well be the

Poisson kernel.
We will consider caloric versions of this classical 1-phase problem.

Remark: Comparison principle was proved by Fabes-Garofalo-Salsa
for caloric functions in Lip(1,1/2) domains.

Remark: The key idea in our argument: “Littlewood-Paley theory
on level sets of the Green function”. More precisely, we view the
level set of the Green function at height r > 0, as a substitute for
regularizations of the boundary at scale r, for which we can prove
local Littlewood-Paley estimates; the latter in turn yield the
desired regularity of the boundary.
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Introduction /History /Context

Let A (o) be the usual Muckenhoupt class of measures.
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Introduction /History /Context

Let A (o) be the usual Muckenhoupt class of measures.

o Dahlberg (1977): If Q € R? is a Lipschitz domain, then
harmonic measure w € Ay (o) (0 1= HI7L|sq is surface
measure); equivalently, (D), (the Dirichlet problem with data
in LP) is solvable for some p < oo (in fact, can take p = 2).
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Introduction /History /Context

Let A (o) be the usual Muckenhoupt class of measures.

o Dahlberg (1977): If Q € R? is a Lipschitz domain, then
harmonic measure w € Ay (o) (0 1= HI7L|sq is surface
measure); equivalently, (D), (the Dirichlet problem with data
in LP) is solvable for some p < oo (in fact, can take p = 2).

What about the parabolic case?
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Introduction /History

Let a(x, t) be a Lip(1,1/2) function defined on R™1 x R, i.e.,

sup |3(X, t)_a(y)s)‘
() £(y.s) I(x =y, t=s)

= [|allLip(1,1/2) < 0,

where ||(x, t)|| == |x| + |t]*/2.
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Introduction /History

Let a(x, t) be a Lip(1,1/2) function defined on R™1 x R, i.e.,

|a(x, t) — a(y, s)|

= i <
— 5)” ”a”L/p(1,1/2) o0,

sup
() £(ys) (X =yt

where ||(x, t)|| == |x| + |t]*/2.

We consider Lip(1,1/2) graph domains Q ¢ R"*! =R x R"~! x R
defined by

Q= {(x0,x, t) € R x R™ xR :xg > a(x,t)}.

Set
Y =00 ={(a(x,t),x,t) ERx R" T x R}.
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Define “surface measure” on X by o := 7-[2+1|):, where the
parabolic Hausdorff measure Hgﬂ is defined like classical H"*1,
but using the parabolic diameter of the sets in the covering (or
essentially equivalently, covering by parabolic cubes, i.e., of
dimension r x r x ... x r x r?).
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Define “surface measure” on X by o := 7-[2+1|):, where the
parabolic Hausdorff measure Hgﬂ is defined like classical H"*1,
but using the parabolic diameter of the sets in the covering (or
essentially equivalently, covering by parabolic cubes, i.e., of
dimension r x r x ... x r x r?).

Let w denote caloric measure in Q. As in the elliptic setting,
w € Ax(0) (in a suitable local, scale invariant way) is equivalent
to solvability of (D), for the heat equation in .
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Define “surface measure” on X by o := 7-[2+1|):, where the
parabolic Hausdorff measure Hgﬂ is defined like classical H"*1,
but using the parabolic diameter of the sets in the covering (or
essentially equivalently, covering by parabolic cubes, i.e., of
dimension r x r x ... x r x r?).

Let w denote caloric measure in Q. As in the elliptic setting,
w € Ax(0) (in a suitable local, scale invariant way) is equivalent
to solvability of (D), for the heat equation in .

Q: For which domains does this happen?

Steve Hofmann (joint work with S. Bortz, J. M. Martell, and K. | Caloric measure and regular Lip(1,1/2) graphs



Following Dahlberg's work, Hunt conjectured that w € A (o) in
every Lip(1,1/2) domain.
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Following Dahlberg's work, Hunt conjectured that w € A (o) in
every Lip(1,1/2) domain.

But this is false: C.E. due to Kaufman-Wu (1988).
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Following Dahlberg's work, Hunt conjectured that w € A (o) in
every Lip(1,1/2) domain.

But this is false: C.E. due to Kaufman-Wu (1988).

Motivated by the work of Strichartz on BMO-Sobolev spaces, and
by Murray’s thesis results under Coifman’s direction, J. L. Lewis
and M. A. M. Murray proved the following. Let £ be the domain
above a Lip(1,1/2) graph as above.

Theorem (Lewis-Murray 1995)

If X is a Regular Lip(1,1/2) (“R-Lip”) graph, then w € Ax(0);
equivalently (D), is solvable for some p < cc.

Steve Hofmann (joint work with S. Bortz, J. M. Martell, and K. | Caloric measure and regular Lip(1,1/2) graphs



Definition (R-Lip and GPG)
a(x, t) € R-Lip if a(x, t) is Lipschitz in x, uniformly in t, and if

Dya:= (; o H"Y?)a e BMO(R").

The graph of an R-Lip function is called a Good Parabolic Graph
(“GPG").

Here H = 9; — A is the usual heat operator in R"! x R, and BMO
is parabolic BMO, i.e., defined w.r.t. parabolic cubes in R"1 x R.
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Definition (R-Lip and GPG)
a(x, t) € R-Lip if a(x, t) is Lipschitz in x, uniformly in t, and if

Dya:= (; o H"Y?)a e BMO(R").

The graph of an R-Lip function is called a Good Parabolic Graph
(“GPG").

Here H = 9; — A is the usual heat operator in R"! x R, and BMO
is parabolic BMO, i.e., defined w.r.t. parabolic cubes in R"1 x R.

So, H=1/2 is a parabolic fractional integral which smooths by order
1in x and order 1/2 in t, thus D, is a half-order time derivative.
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Definition (R-Lip and GPG)
a(x, t) € R-Lip if a(x, t) is Lipschitz in x, uniformly in t, and if

Dya:= (; o H"Y?)a e BMO(R").

The graph of an R-Lip function is called a Good Parabolic Graph
(“GPG").

Here H = 9; — A is the usual heat operator in R"! x R, and BMO
is parabolic BMO, i.e., defined w.r.t. parabolic cubes in R"1 x R.

So, H=1/2 is a parabolic fractional integral which smooths by order
1in x and order 1/2 in t, thus D, is a half-order time derivative.

Hence Dya € BMO implies Lip(1/2) in t, but is strictly stronger
(follows essentially from work of Strichartz on BMO-Sobolev
spaces).
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Lewis-Murray says R-Lip suffices for (D),/Ax, while Kaufman-Wu
says that Lip(1,1/2) is not good enough. This suggested the
conjecture that R-Lip is also necessary.
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Lewis-Murray says R-Lip suffices for (D),/Ax, while Kaufman-Wu
says that Lip(1,1/2) is not good enough. This suggested the
conjecture that R-Lip is also necessary.

We now know this is true:

Theorem (S. Bortz, J. M. Martell, K. Nystrém, S.H.)

Let Q be a Lip(1,1/2) graph domain as above. Suppose that
w € Ax(0). Then a € R-Lip (i.e., ¥ € GPG).
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Lewis-Murray says R-Lip suffices for (D),/Ax, while Kaufman-Wu
says that Lip(1,1/2) is not good enough. This suggested the
conjecture that R-Lip is also necessary.

We now know this is true:

Theorem (S. Bortz, J. M. Martell, K. Nystrém, S.H.)

Let Q be a Lip(1,1/2) graph domain as above. Suppose that
w € Ax(0). Then a € R-Lip (i.e., ¥ € GPG).

Remark: Can define parabolic uniform rectifiability (“P-UR")
analogously to David-Semmes elliptic theory. For a Lip(1,1/2)
graph ¥, we have ¥ € P-UR iff ¥ € GPG. More generally, in work
in progress we expect to show (believe we can show) that for a
space-time corkscrew domain Q with parabolic-TSADR boundary
Y, if w € (weak)-Ax(0), then ¥ € P-UR (uses present result in a
crucial way).
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We'll sketch the proof of the Theorem. Some notation:
Mo =1+ |lallLip(1,1/2)-

X =(x,t) eR" =R xR,

X = (x0,x,t) = (x0, X) € R™1 =R x R""! x R.
(Similarly for Y, Z, Y, Z etc.)
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We'll sketch the proof of the Theorem. Some notation:
Mo := 1+ [|al[Lip(1,1/2)-

X =(x,t) eR" =R xR,

X = (x0,x,t) = (x0, X) € R™1 =R x R""! x R.
(Similarly for Y, Z, Y, Z etc.)

For X € Q, we let 6(X) := dist(X, X).

Here and below, distances and diameters will always be taken
w.r.t. the parabolic distance unless otherwise specified.
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The n-dim parabolic cube of “length” r, centered at
X =(x,t) € R

QX):={(Y=(y,8): |xi—yil<r,1<i<n-—1,|t—s|<r?},
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The n-dim parabolic cube of “length” r, centered at
X =(x,t) € R

QX):={(Y=(y,8): |xi—yil<r,1<i<n-—1,|t—s|<r?},

The (n+ 1)-dim parabolic box of “length” r, centered at
X = (x0, x,t) € R™1:

1(X) := (x0 — 2Mo\/nr, xo + 2Mo+/nr) x Qy(x, t).

(Note: I, is elongated vertically, but still has diameter ~ r).
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The n-dim parabolic cube of “length” r, centered at
X =(x,t) € R

QX):={(Y=(y,8): |xi—yil<r,1<i<n-—1,|t—s|<r?},

The (n+ 1)-dim parabolic box of “length” r, centered at
X = (x0, x,t) € R™1:

1(X) := (x0 — 2Mo\/nr, xo + 2Mo+/nr) x Qy(x, t).
(Note: I, is elongated vertically, but still has diameter ~ r).
For X = (xo0, x, t) = (a(x, t), x, t) € X, we define the “surface box"

A(X) =% N 1(X).
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(Sketch of) Proof of Theorem:
Fix a surface box A := Ag(X?), with X° = (a(x?, %), x°,t%) € %.
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(Sketch of) Proof of Theorem:
Fix a surface box A := Ag(X?), with X° = (a(x?, %), x°,t%) € %.
Set A, = AlOQR(XO).

Let X* = (x3,x*, t*) be a time forward CS point relative to A,;
i.e., 0(X*) ~ dist(X*, A,) ~ R, and t* = t° + (200R)2.
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(Sketch of) Proof of Theorem:

Fix a surface box A := Ag(X?), with X° = (a(x?, %), x°,t%) € %.
Set A, = AlOQR(XO).

Let X* = (x3,x*, t*) be a time forward CS point relative to A,;
i.e., 0(X*) ~ dist(X*, A,) ~ R, and t* = t° + (200R)2.

G.(Y) := RYG(X*,Y) is the normalized caloric Green function
with pole at X*.

(Note d = n+ 1 is the homogeneous dimension of ¥ and of
parabolic R").

* . - .
we = R9wX" is normalized caloric measure with pole at X*.

k. := dw,/do is the normalized “Poisson kernel".
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As an easy consequence of the A, property, we have:

Given € > 0, there is a constant My = My(g) and a closed set
F. = Fi(e) C A, such that

(1) oA\ F) <eo(A)

and such that for all X € F, and all 0 < r < 50R

) < s@mmy Japo kedo < My
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As an easy consequence of the A, property, we have:

Given € > 0, there is a constant My = My(g) and a closed set
F. = Fi(e) C A, such that

(1) oA\ F) <eo(A)

and such that for all X € F, and all 0 < r < 50R

) < s@mmy Japo kedo < My

The lemma follows from doubling and a standard stopping time
argument using the fact that k. belongs to some A, class, and

that k;l/(pfl) belongs to Ay
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By parabolic “CFMS estimates”, due to FGS in caloric case, the
lemma implies that

(3) G.(Y) ~ 5(Y)

in a very ample sawtooth (relative to F,). Also by an estimate of
Caffarelli and Salsa, for some small enough constant 1 depending
only on n and Mj,

G,

(4) 04,Gi ~ — o i Q' = Isor(XY) N{Y € Q: §(Y) < nR}.
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By parabolic “CFMS estimates”, due to FGS in caloric case, the
lemma implies that

(3) G.(Y) ~ 5(Y)

in a very ample sawtooth (relative to F,). Also by an estimate of
Caffarelli and Salsa, for some small enough constant 1 depending
only on n and Mj,

(4) 04 Gi =~ %, in Q= lor(X®) N {Y € Q: §(Y) < nR}.
Thus, the level set ¥, :={Y : G.(Y) = r} is a graph, at least
inside of &/, i.e.,

>, = {(ar(}/7s)7y’s)} =: {A’(y’ S)}

inside Q'.
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Also, by (3) and (4), in a slightly restricted sawtooth €. (relative
to F. N Asor(X?), with shortened “ceiling” depending on 7).

(5) Oy G &

G.
—~~1.
0
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Also, by (3) and (4), in a slightly restricted sawtooth €. (relative
to F. N Asor(X?), with shortened “ceiling” depending on 7).

G,
(5) Oy, Gs & NN 1.
In addition, in Q*, since G, ~ §,
(6) 6(Ar(y;s)) = r = Gi(Ary,s)).
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Also, by (3) and (4), in a slightly restricted sawtooth €. (relative
to F. N Asor(X?), with shortened “ceiling” depending on 7).

G.
(5) Oy, Gi = 5 ~1
In addition, in Q*, since G, ~ §,
(6) 6(Ar(y;s)) = r = Gi(Ary,s)).

Recall that we need to prove that the Lip(1,1/2) boundary graph
Y € GPG, i.e,, that D,a € BMO.
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Also, by (3) and (4), in a slightly restricted sawtooth €. (relative
to F. N Asor(X?), with shortened “ceiling” depending on 7).

G.
(5) Oy, Gi = 5 ~1
In addition, in Q*, since G, ~ §,
(6) 6(Ar(y;s)) = r = Gi(Ary,s)).

Recall that we need to prove that the Lip(1,1/2) boundary graph
Y € GPG, i.e,, that D,a € BMO.

To this end, we will view a,, r > 0 as an extension of a,
substituting for P,a (where P, = nice parabolic approx. identity).

Steve Hofmann (joint work with S. Bortz, J. M. Martell, and K. | Caloric measure and regular Lip(1,1/2) graphs



The first main step is to prove Littlewood-Paley estimates for a, in
Qo = {(r,x,t) e RT™ : A(x, t) € Q. }.

Observe that Qg is essentially a sawtooth in ]Rﬁ’fl (localized at
scale R), relative to F = m(F,), where 7(xp, x, t) := (0, x, t).
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The first main step is to prove Littlewood-Paley estimates for a, in
Qo = {(r,x,t) e RT™ : A(x, t) € Q. }.

Observe that Qg is essentially a sawtooth in ]Rﬁ’fl (localized at
scale R), relative to F = m(F,), where 7(xp, x, t) := (0, x, t).

We differentiate the level set equation G.(a,(x,t),x,t) =r
implicitly, and use (5), to get, e.g.,

0t G (Ar(x, 1))

(7) |Orar(x, t)| = 9 Go(Ar(x, 1))

‘ ~ |0: G (Ar(x, 1))] -
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The first main step is to prove Littlewood-Paley estimates for a, in
Qo = {(r,x,t) e RT™ : A(x, t) € Q. }.

Observe that Qg is essentially a sawtooth in ]Rﬁ’fl (localized at
scale R), relative to F = m(F,), where 7(xp, x, t) := (0, x, t).

We differentiate the level set equation G.(a,(x,t),x,t) =r
implicitly, and use (5), to get, e.g.,

0t G (Ar(x, 1))

(7) |Orar(x, t)| = 9 Go(Ar(x, 1))

‘ ~ |0: G (Ar(x, 1))] -

Similarly we get
(8)  IVarar(x )l S1, [VE, ar(x, 1)) S [(V2G)(Ar(x, 1))

etc.
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In particular
0a,(x, B)] + r|V2,a,(x, )] S 1

etc.
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In particular
rdcar(x, t)| + |V a(x, 1) S 1
etc.

We then obtain

// (IrBear (X)) + [FV2, 2, (X)) Ldx < RY.
Qo

r

// PPV 1 0rar(X)|? ar ix <RY.
Qo r

(d=n+1).
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Sketch of proof of Lemma (2):

Use bounds for derivatives of a, in terms of derivatives of G, (i.e.,
(7), (8), etc.), along with Moser type local boundedness and (6)
(i.e., 0(A;) = r) to reduce matters to analogous local square
function bounds for G, in €2,.
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Sketch of proof of Lemma (2):

Use bounds for derivatives of a, in terms of derivatives of G, (i.e.,
(7), (8), etc.), along with Moser type local boundedness and (6)
(i.e., 0(A;) = r) to reduce matters to analogous local square
function bounds for G, in €2,.

In turn, to prove the latter, we use Lemma (1) plus CFMS. This
allows us to replace § by a normalized Green function in Q*, so

that we can then integrate by parts to obtain Carleson measure

estimates for 1q, (X)|0: G«(X)[>5(X)dX, etc.
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Return to Proof of the Theorem:

By the (parabolic) John-Stromberg Lemma, it suffices to show
that there are constants N, 8 such that for each parabolic cube
Qr CR",

inf[{X € Qg : [Dna(X) — C| > N}| < 0|Qr]

with @ sufficiently small. One then obtains ||Dpa| < N.
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Return to Proof of the Theorem:

By the (parabolic) John-Stromberg Lemma, it suffices to show
that there are constants N, 8 such that for each parabolic cube
Qr CR",

ir&f|{X € Qr : [Dpa(X) — C| > N}| < 0|Qr|
with @ sufficiently small. One then obtains ||Dpa| < N.

Recall that F = 7(F.). We take M; large (hence ¢ small) in
Lemma (1), and we have

|Qr\ FI < 0(As\ i) < e0(As) Snmy € QRI-
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We then have
H{X € Qg : |Dpa(X) — C| > N}|

< /\/—2/ IDya(X) — C|*> 4+ Ce|Qr]|.
FNQg
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We then have
H{X € Qg : |Dpa(X) — C| > N}|

< /\/—2/ IDya(X) — C|*> 4+ Ce|Qr]|.
FNQg

Taking first € small enough, and then N large enough, and making
a (standard) localization argument, we reduce to proving

(9) |Qrl / DRa(X)P <1
FNQr

with the implicit constant depending on allowable parameters,
where DR is a localized (at scale R) version of I,,.
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We proceed to the proof of (9). For notational convenience, for
r>0 set
a(r,x, t) .= a,(x,t)

and if r =0 set a(0, x, t) := a(x, t).

Steve Hofmann (joint work with S. Bortz, J. M. Martell, and K. | Caloric measure and regular Lip(1,1/2) graphs



We proceed to the proof of (9). For notational convenience, for
r>0 set

a(r,x, t) .= a,(x,t)
and if r =0 set a(0, x, t) := a(x, t).
Let h(x, t) ~ dist((x, t), F) be a regularized distance function, so

the graph {(h(x, t), x, t)} is the (lower part of the) boundary of a
(regularized) sawtooth (call it Q1) in R, relative to F.

We can construct h so that €1 C Qo, and so that h(x, t) can be
taken to be R-Lip, thus the graph {(h(x, t),x,t)} € GPG.
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For future reference, we record an estimate for a(r, Y) along the
graph of h.

Note that a(r, Y') is monotone increasing in r (since G, is

monotone increasing in xp). Using this fact and the definition of
the level sets, one can show (it's non-trivial, but not too hard) that
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For future reference, we record an estimate for a(r, Y) along the
graph of h.

Note that a(r, Y') is monotone increasing in r (since G, is
monotone increasing in xp). Using this fact and the definition of
the level sets, one can show (it's non-trivial, but not too hard) that

(10) 0<a(h(Y),Y)—a(0,Y) < h(Y).
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Set
al'(x, t) := a(h(x, t),x, t).

The next step is to show that we may replace a by a” in (9) (i.e.,
in the L2 estimate for DRa on F N QR).
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Set
al'(x, t) := a(h(x, t),x, t).

The next step is to show that we may replace a by a” in (9) (i.e.,
in the L2 estimate for DRa on F N QR).

The kernel of DR (localized version of D,), call it KR, satisfies

IKROOIS IXI79 1<y (X))
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Set
al'(x, t) := a(h(x, t),x, t).

The next step is to show that we may replace a by a” in (9) (i.e.,
in the L2 estimate for DRa on F N QR).

The kernel of DR (localized version of D,), call it KR, satisfies

IKROOIS IXI79 1<y (X))

Also, h(Y) ~ dist(Y,F) = 0 on F by definition.
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Hence,

DR a(X) — Dya"(X)|
IX = Y77 a(0, V) — a(h(Y), V)| dY

A

/ch{X—YnsR}
< / X = Y| =9t dist(Y,F)dY,
Fen{lIX-Y|[ SR}

where the last step uses (10) and the definition of h.
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Hence,

DR a(X) — Dya"(X)|
IX = Y77 a(0, V) — a(h(Y), V)| dY

A

/ch{X—YnsR}
< / X = Y| =9t dist(Y,F)dY,
Fen{lIX-Y|[ SR}

where the last step uses (10) and the definition of h.

The latter expression is a parabolic Marcinkiewicz integral, so

/ DRa(X) — DRa"(X)2 dX < R ~ | QR
FﬁQR

as desired.
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Last step is to prove

/ DRa"(X)P dX < |Qrl.

Qr

Equivalently, it remains to prove

(11)

[ ) f(X)dx\ < 1QrlY2|If 2.

for £ € L?(R") with support in Qg.
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Recall that ©; (the regularized sawtooth domain above the graph
of h) is contained in Qg, hence in particular we have

(r+h(X),X)eQ CQy, Xe®r, 0<r<R.
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Recall that ©; (the regularized sawtooth domain above the graph
of h) is contained in Qg, hence in particular we have

(r+h(X),X)eQ CQy, Xe®r, 0<r<R.

Let P, be a nice parabolic approximate identity on R". For v > 0
small,

|Pyrh(X) = h(X)| S vr <,
since h € Lip(1,1/2).
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Hence
r+ Py h(X)=r+h(X)>r

so (r 4+ Py,h(X), X) also lies inside a slightly fattened version of
Q4, call it €y, for which we still have €, C Q.
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Hence
r+ Py h(X)=r+h(X)>r

so (r 4+ Py,h(X), X) also lies inside a slightly fattened version of
Q4, call it €y, for which we still have €, C Q.

Recall that the regularized distance function h is in R-Lip, so we
have Carleson measure estimates for the measures

IV Prh(X) 2 rdrdX, |rd:P-h(X)|? rdrdX

etc. (Remark: this is why we want to replace h by P..h).
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Combining these observations, setting
a(r,X) := a(r+ Py,h(X), X),

and using Lemma (2) (local square function bounds in Q¢ for
derivatives of a(r, X), we obtain

// rata (r X)|2 + |r82 a(r, X)| ) —dX < |QR|-

// 28,8, 3(r, X)2 L dx < QR
Qr r

where Qg is a Carleson box in Rfl with base Qspg.
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Note that at r = 0, we have 3(0, X) = a"(X).
To prove (11), we then write, with f € L2(R") with support in Qg

/anah f = boundary term (with r = R)
R
—/ / o, [Df(s(r,.))(X) P,f(X)} dr dX .
0 n

The boundary term is fairly routine to handle.
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For the main term, we (again) integrate by parts in r (and again
boundary terms are not difficult).
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For the main term, we (again) integrate by parts in r (and again
boundary terms are not difficult).

When both r-derivatives land on D3, we move the (localized) half
order time derivative DR onto P,f.
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For the main term, we (again) integrate by parts in r (and again
boundary terms are not difficult).

When both r-derivatives land on D3, we move the (localized) half
order time derivative DR onto P,f.

When both r-derivatives land on P,f, we use that the kernel of DR
is of the form KR(X) = 9;Vgr(X), where Vg is a smoothly
truncated (at scale R) version of the parabolic fractional integral

kernel. Hence
DRF = KR« 3= Vg % (9:3)

and we can move the convolution kernel Vg onto 92P,f.
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For the main term, we (again) integrate by parts in r (and again
boundary terms are not difficult).

When both r-derivatives land on D3, we move the (localized) half
order time derivative DR onto P,f.

When both r-derivatives land on P,f, we use that the kernel of DR
is of the form KR(X) = 9;Vgr(X), where Vg is a smoothly
truncated (at scale R) version of the parabolic fractional integral

kernel. Hence
DRF = KR« 3= Vg % (9:3)

and we can move the convolution kernel Vg onto 92P,f.

After the derivatives are appropriately balanced, we then use
Cauchy-Schwarz, Lemma (2), and the fact that square function
bounds hold for derivatives of P,f, to obtain (11).

Steve Hofmann (joint work with S. Bortz, J. M. Martell, and K. | Caloric measure and regular Lip(1,1/2) graphs



Thank you

Thank youl!
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