Caloric measure and regular Lip(1,1/2) graphs

Steve Hofmann (joint work with S. Bortz, J. M. Martell, and K. Nyström)

El Escorial 2022, June 6-10

Steve Hofmann (joint work with S. Bortz, J. M. Martell, and K. Caloric measure and regular Lip(1,1/2) graphs

Classical 1-phase free boundary problem (Alt-Caffarelli, Jerison, Kenig-Toro, others)

Classical 1-phase free boundary problem (Alt-Caffarelli, Jerison, Kenig-Toro, others)

Q: given regularity of $|\nabla u||_{\partial\Omega} = \frac{\partial u}{\partial\nu}$ (with $\nu =$ inward unit normal), what can we deduce re: regularity of the free boundary?

We will consider caloric versions of this classical 1-phase problem.

We will consider caloric versions of this classical 1-phase problem.

Remark: Comparison principle was proved by Fabes-Garofalo-Salsa for caloric functions in Lip(1,1/2) domains.

We will consider caloric versions of this classical 1-phase problem.

Remark: Comparison principle was proved by Fabes-Garofalo-Salsa for caloric functions in Lip(1,1/2) domains.

Remark: The key idea in our argument: "Littlewood-Paley theory on level sets of the Green function". More precisely, we view the level set of the Green function at height r > 0, as a substitute for regularizations of the boundary at scale r, for which we can prove local Littlewood-Paley estimates; the latter in turn yield the desired regularity of the boundary. Let $A_{\infty}(\sigma)$ be the usual Muckenhoupt class of measures.

Let $A_{\infty}(\sigma)$ be the usual Muckenhoupt class of measures.

Dahlberg (1977): If Ω ⊂ ℝ^d is a Lipschitz domain, then harmonic measure ω ∈ A_∞(σ) (σ := ℋ^{d-1}|_{∂Ω} is surface measure); equivalently, (D)_p (the Dirichlet problem with data in L^p) is solvable for some p < ∞ (in fact, can take p = 2).

Let $A_{\infty}(\sigma)$ be the usual Muckenhoupt class of measures.

Dahlberg (1977): If Ω ⊂ ℝ^d is a Lipschitz domain, then harmonic measure ω ∈ A_∞(σ) (σ := ℋ^{d-1}|_{∂Ω} is surface measure); equivalently, (D)_p (the Dirichlet problem with data in L^p) is solvable for some p < ∞ (in fact, can take p = 2).

What about the parabolic case?

Let a(x, t) be a Lip(1,1/2) function defined on $\mathbb{R}^{n-1} \times \mathbb{R}$, i.e.,

$$\sup_{(x,t)\neq(y,s)}\frac{|a(x,t)-a(y,s)|}{\|(x-y,t-s)\|} =: \|a\|_{Lip(1,1/2)} < \infty,$$

where $||(x, t)|| := |x| + |t|^{1/2}$.

Let a(x,t) be a Lip(1,1/2) function defined on $\mathbb{R}^{n-1} \times \mathbb{R}$, i.e.,

$$\sup_{(x,t)\neq(y,s)}\frac{|a(x,t)-a(y,s)|}{\|(x-y,t-s)\|} =: \|a\|_{Lip(1,1/2)} < \infty,$$

where $||(x, t)|| := |x| + |t|^{1/2}$.

We consider Lip(1,1/2) graph domains $\Omega \subset \mathbb{R}^{n+1} = \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R}$ defined by

$$\Omega := \left\{ (x_0, x, t) \in \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R} : x_0 > a(x, t) \right\}.$$

Set

$$\Sigma := \partial \Omega = \left\{ (a(x,t),x,t) \in \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R} \right\}.$$

4 E 6 4 E 6

Define "surface measure" on Σ by $\sigma := \mathcal{H}_p^{n+1}|_{\Sigma}$, where the parabolic Hausdorff measure \mathcal{H}_p^{n+1} is defined like classical \mathcal{H}^{n+1} , but using the parabolic diameter of the sets in the covering (or essentially equivalently, covering by parabolic cubes, i.e., of dimension $r \times r \times ... \times r \times r^2$).

Define "surface measure" on Σ by $\sigma := \mathcal{H}_p^{n+1}|_{\Sigma}$, where the parabolic Hausdorff measure \mathcal{H}_p^{n+1} is defined like classical \mathcal{H}^{n+1} , but using the parabolic diameter of the sets in the covering (or essentially equivalently, covering by parabolic cubes, i.e., of dimension $r \times r \times ... \times r \times r^2$).

Let ω denote caloric measure in Ω . As in the elliptic setting, $\omega \in A_{\infty}(\sigma)$ (in a suitable local, scale invariant way) is equivalent to solvability of $(D)_p$ for the heat equation in Ω . Define "surface measure" on Σ by $\sigma := \mathcal{H}_p^{n+1}|_{\Sigma}$, where the parabolic Hausdorff measure \mathcal{H}_p^{n+1} is defined like classical \mathcal{H}^{n+1} , but using the parabolic diameter of the sets in the covering (or essentially equivalently, covering by parabolic cubes, i.e., of dimension $r \times r \times ... \times r \times r^2$).

Let ω denote caloric measure in Ω . As in the elliptic setting, $\omega \in A_{\infty}(\sigma)$ (in a suitable local, scale invariant way) is equivalent to solvability of $(D)_p$ for the heat equation in Ω .

Q: For which domains does this happen?

Following Dahlberg's work, Hunt conjectured that $\omega \in A_{\infty}(\sigma)$ in every Lip(1,1/2) domain.

∃ ► < ∃ ►</p>

э

Following Dahlberg's work, Hunt conjectured that $\omega \in A_{\infty}(\sigma)$ in every Lip(1,1/2) domain.

But this is false: C.E. due to Kaufman-Wu (1988).

Following Dahlberg's work, Hunt conjectured that $\omega \in A_{\infty}(\sigma)$ in every Lip(1,1/2) domain.

But this is false: C.E. due to Kaufman-Wu (1988).

Motivated by the work of Strichartz on BMO-Sobolev spaces, and by Murray's thesis results under Coifman's direction, J. L. Lewis and M. A. M. Murray proved the following. Let Ω be the domain above a Lip(1,1/2) graph as above.

Theorem (Lewis-Murray 1995)

If Σ is a **Regular** Lip(1,1/2) ("R-Lip") graph, then $\omega \in A_{\infty}(\sigma)$; equivalently $(D)_p$ is solvable for some $p < \infty$.

Definition (R-Lip and GPG)

 $a(x, t) \in \mathsf{R-Lip}$ if a(x, t) is Lipschitz in x, uniformly in t, and if

$$\mathbb{D}_n a := (\partial_t \circ H^{-1/2}) a \in \mathsf{BMO}(\mathbb{R}^n).$$

The graph of an R-Lip function is called a *Good Parabolic Graph* ("GPG").

Here $H = \partial_t - \Delta$ is the usual heat operator in $\mathbb{R}^{n-1} \times \mathbb{R}$, and BMO is parabolic BMO, i.e., defined w.r.t. parabolic cubes in $\mathbb{R}^{n-1} \times \mathbb{R}$.

Definition (R-Lip and GPG)

 $a(x,t) \in \mathsf{R-Lip}$ if a(x,t) is Lipschitz in x, uniformly in t, and if

$$\mathbb{D}_n a := (\partial_t \circ H^{-1/2}) a \in \mathsf{BMO}(\mathbb{R}^n).$$

The graph of an R-Lip function is called a *Good Parabolic Graph* ("GPG").

Here $H = \partial_t - \Delta$ is the usual heat operator in $\mathbb{R}^{n-1} \times \mathbb{R}$, and BMO is parabolic BMO, i.e., defined w.r.t. parabolic cubes in $\mathbb{R}^{n-1} \times \mathbb{R}$. So, $H^{-1/2}$ is a parabolic fractional integral which smooths by order

1 in x and order 1/2 in t, thus \mathbb{D}_n is a half-order time derivative.

• • = • • = •

Definition (R-Lip and GPG)

 $a(x, t) \in \mathsf{R-Lip}$ if a(x, t) is Lipschitz in x, uniformly in t, and if

$$\mathbb{D}_n a := (\partial_t \circ H^{-1/2}) a \in \mathsf{BMO}(\mathbb{R}^n).$$

The graph of an R-Lip function is called a *Good Parabolic Graph* ("GPG").

Here $H = \partial_t - \Delta$ is the usual heat operator in $\mathbb{R}^{n-1} \times \mathbb{R}$, and BMO is parabolic BMO, i.e., defined w.r.t. parabolic cubes in $\mathbb{R}^{n-1} \times \mathbb{R}$. So, $H^{-1/2}$ is a parabolic fractional integral which smooths by order 1 in x and order 1/2 in t, thus \mathbb{D}_n is a half-order time derivative.

Hence $\mathbb{D}_n a \in BMO$ implies Lip(1/2) in t, but is strictly stronger (follows essentially from work of Strichartz on BMO-Sobolev spaces).

伺下 イヨト イヨト

Lewis-Murray says R-Lip suffices for $(D)_p/A_\infty$, while Kaufman-Wu says that Lip(1,1/2) is not good enough. This suggested the conjecture that R-Lip is also necessary.

Lewis-Murray says R-Lip suffices for $(D)_p/A_\infty$, while Kaufman-Wu says that Lip(1,1/2) is not good enough. This suggested the conjecture that R-Lip is also necessary.

We now know this is true:

Theorem (S. Bortz, J. M. Martell, K. Nyström, S.H.)

Let Ω be a Lip(1,1/2) graph domain as above. Suppose that $\omega \in A_{\infty}(\sigma)$. Then $a \in R$ -Lip (i.e., $\Sigma \in GPG$).

Lewis-Murray says R-Lip suffices for $(D)_p/A_\infty$, while Kaufman-Wu says that Lip(1,1/2) is not good enough. This suggested the conjecture that R-Lip is also necessary.

We now know this is true:

Theorem (S. Bortz, J. M. Martell, K. Nyström, S.H.)

Let Ω be a Lip(1,1/2) graph domain as above. Suppose that $\omega \in A_{\infty}(\sigma)$. Then $a \in R$ -Lip (i.e., $\Sigma \in GPG$).

Remark: Can define parabolic uniform rectifiability ("P-UR") analogously to David-Semmes elliptic theory. For a Lip(1,1/2) graph Σ , we have $\Sigma \in$ P-UR iff $\Sigma \in$ GPG. More generally, in work in progress we expect to show (believe we can show) that for a space-time corkscrew domain Ω with parabolic-TSADR boundary Σ , if $\omega \in$ (weak)- $A_{\infty}(\sigma)$, then $\Sigma \in$ P-UR (uses present result in a crucial way).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

We'll sketch the proof of the Theorem. Some notation:
$$\begin{split} M_0 &:= 1 + \|a\|_{Lip(1,1/2)}.\\ X &= (x,t) \in \mathbb{R}^n = \mathbb{R}^{n-1} \times \mathbb{R}.\\ \mathbf{X} &= (x_0, x, t) = (x_0, X) \in \mathbb{R}^{n+1} = \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R}.\\ \text{(Similarly for } Y, Z, \mathbf{Y}, \mathbf{Z} \text{ etc.)} \end{split}$$
 We'll sketch the proof of the Theorem. Some notation:
$$\begin{split} M_0 &:= 1 + \|a\|_{Lip(1,1/2)}.\\ X &= (x,t) \in \mathbb{R}^n = \mathbb{R}^{n-1} \times \mathbb{R}.\\ \mathbf{X} &= (x_0, x, t) = (x_0, X) \in \mathbb{R}^{n+1} = \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R}.\\ \text{(Similarly for } Y, Z, \mathbf{Y}, \mathbf{Z} \text{ etc.)} \end{split}$$

For
$$\mathbf{X} \in \Omega$$
, we let $\delta(\mathbf{X}) := dist(\mathbf{X}, \Sigma)$.

Here and below, distances and diameters will always be taken w.r.t. the parabolic distance unless otherwise specified.

The *n*-dim parabolic cube of "length" *r*, centered at $X = (x, t) \in \mathbb{R}^n$:

$$Q_r(X) := \{ (Y = (y, s) : |x_i - y_i| < r, 1 \le i \le n - 1, |t - s| < r^2 \},$$

()

э

The *n*-dim parabolic cube of "length" *r*, centered at $X = (x, t) \in \mathbb{R}^n$: $Q_r(X) := \{(Y = (y, s) : |x_i - y_i| < r, 1 \le i \le n - 1, |t - s| < r^2\},$

The (n + 1)-dim parabolic box of "length" r, centered at $\mathbf{X} = (x_0, x, t) \in \mathbb{R}^{n+1}$:

$$I_r(\mathbf{X}) := (x_0 - 2M_0\sqrt{n}r, x_0 + 2M_0\sqrt{n}r) \times Q_r(x, t).$$

(Note: I_r is elongated vertically, but still has diameter $\approx r$).

The *n*-dim parabolic cube of "length" *r*, centered at $X = (x, t) \in \mathbb{R}^n$: $Q_r(X) := \{(Y = (y, s) : |x_i - y_i| < r, 1 \le i \le n - 1, |t - s| < r^2\},$

The (n + 1)-dim parabolic box of "length" r, centered at $\mathbf{X} = (x_0, x, t) \in \mathbb{R}^{n+1}$:

$$I_r(\mathbf{X}) := (x_0 - 2M_0\sqrt{n}r, x_0 + 2M_0\sqrt{n}r) \times Q_r(x, t).$$

(Note: I_r is elongated vertically, but still has diameter $\approx r$).

For $\mathbf{X} = (x_0, x, t) = (a(x, t), x, t) \in \Sigma$, we define the "surface box" $\Delta_r(\mathbf{X}) := \Sigma \cap I_r(\mathbf{X}).$

周 ト イ ヨ ト イ ヨ ト ・ ヨ ・ の Q ()

(Sketch of) Proof of Theorem:

Fix a surface box $\Delta := \Delta_R(\mathbf{X}^0)$, with $\mathbf{X}^0 = (a(x^0, t^0), x^0, t^0) \in \Sigma$.

(Sketch of) Proof of Theorem:

Fix a surface box $\Delta := \Delta_R(\mathbf{X}^0)$, with $\mathbf{X}^0 = (a(x^0, t^0), x^0, t^0) \in \Sigma$. Set $\Delta_* := \Delta_{100R}(\mathbf{X}^0)$.

Let $\mathbf{X}^* = (x_0^*, x^*, t^*)$ be a time forward CS point relative to Δ_* ; i.e., $\delta(\mathbf{X}^*) \approx \operatorname{dist}(\mathbf{X}^*, \Delta_*) \approx R$, and $t^* = t^0 + (200R)^2$.

(Sketch of) Proof of Theorem:

Fix a surface box $\Delta := \Delta_R(\mathbf{X}^0)$, with $\mathbf{X}^0 = (a(x^0, t^0), x^0, t^0) \in \Sigma$. Set $\Delta_* := \Delta_{100R}(\mathbf{X}^0)$. Let $\mathbf{X}^* = (x_0^*, x^*, t^*)$ be a time forward CS point relative to Δ_* ; i.e., $\delta(\mathbf{X}^*) \approx \operatorname{dist}(\mathbf{X}^*, \Delta_*) \approx R$, and $t^* = t^0 + (200R)^2$.

 $G_*(\mathbf{Y}) := R^d G(\mathbf{X}^*, \mathbf{Y})$ is the normalized caloric Green function with pole at \mathbf{X}^* .

(Note d = n + 1 is the homogeneous dimension of Σ and of parabolic \mathbb{R}^n).

 $\omega_* = R^d \omega^{\mathbf{X}^*}$ is normalized caloric measure with pole at \mathbf{X}^* . $k_* := d\omega_*/d\sigma$ is the normalized "Poisson kernel". As an easy consequence of the A_{∞} property, we have:

Lemma (1)

Given $\varepsilon > 0$, there is a constant $M_1 = M_1(\varepsilon)$ and a closed set $F_* = F_*(\varepsilon) \subset \Delta_*$ such that

(1)
$$\sigma(\Delta_* \setminus F_*) \leq \varepsilon \sigma(\Delta_*)$$

and such that for all $\mathbf{X} \in F_*$ and all $0 < r \le 50R$

(2)
$$\frac{1}{M_1} \leq \frac{1}{\sigma(\Delta_r(\mathbf{X}))} \int_{\Delta_r(\mathbf{X})} k_* \, d\sigma \leq M_1$$
.

• • = • • = •

As an easy consequence of the A_{∞} property, we have:

Lemma (1)

Given $\varepsilon > 0$, there is a constant $M_1 = M_1(\varepsilon)$ and a closed set $F_* = F_*(\varepsilon) \subset \Delta_*$ such that

(1)
$$\sigma(\Delta_* \setminus F_*) \leq \varepsilon \sigma(\Delta_*)$$

and such that for all $\mathbf{X} \in F_*$ and all $0 < r \le 50R$

(2)
$$\frac{1}{M_1} \leq \frac{1}{\sigma(\Delta_r(\mathbf{X}))} \int_{\Delta_r(\mathbf{X})} k_* d\sigma \leq M_1$$
.

The lemma follows from doubling and a standard stopping time argument using the fact that k_* belongs to some A_p class, and that $k_*^{-1/(p-1)}$ belongs to $A_{p'}$.

伺下 イヨト イヨト

By parabolic "CFMS estimates", due to FGS in caloric case, the lemma implies that

$$G_*(\mathbf{Y}) \approx \delta(\mathbf{Y})$$

in a very ample sawtooth (relative to F_*). Also by an estimate of Caffarelli and Salsa, for some small enough constant η depending only on n and M_0 ,

(4)
$$\partial_{x_0} G_* \approx \frac{G_*}{\delta}$$
, in $\Omega' := I_{50R}(\mathbf{X}^0) \cap \{\mathbf{Y} \in \Omega : \delta(\mathbf{Y}) < \eta R\}$.

By parabolic "CFMS estimates", due to FGS in caloric case, the lemma implies that

$$G_*(\mathbf{Y}) \approx \delta(\mathbf{Y})$$

in a very ample sawtooth (relative to F_*). Also by an estimate of Caffarelli and Salsa, for some small enough constant η depending only on n and M_0 ,

(4)
$$\partial_{x_0} G_* \approx \frac{G_*}{\delta}$$
, in $\Omega' := I_{50R}(\mathbf{X}^0) \cap \{\mathbf{Y} \in \Omega : \delta(\mathbf{Y}) < \eta R\}$.

Thus, the level set $\Sigma_r := \{\mathbf{Y} : G_*(\mathbf{Y}) = r\}$ is a graph, at least inside of Ω' , i.e.,

$$\Sigma_r = \{(a_r(y,s), y, s)\} =: \{A_r(y,s)\}$$

inside Ω' .
(5)
$$\partial_{x_0} G_* \approx \frac{G_*}{\delta} \approx 1$$

()

(5)
$$\partial_{x_0} G_* \approx \frac{G_*}{\delta} \approx 1$$

In addition, in Ω^* , since $G_* \approx \delta$,

(6)
$$\delta(A_r(y,s)) \approx r = G_*(A_r(y,s)).$$

(5)
$$\partial_{x_0} G_* \approx \frac{G_*}{\delta} \approx 1$$

In addition, in Ω^* , since $G_* \approx \delta$,

(6)
$$\delta(A_r(y,s)) \approx r = G_*(A_r(y,s)).$$

Recall that we need to prove that the Lip(1,1/2) boundary graph $\Sigma \in GPG$, i.e., that $\mathbb{D}_n a \in BMO$.

(5)
$$\partial_{x_0} G_* \approx \frac{G_*}{\delta} \approx 1$$

In addition, in Ω^* , since $G_* \approx \delta$,

(6)
$$\delta(A_r(y,s)) \approx r = G_*(A_r(y,s)).$$

Recall that we need to prove that the Lip(1,1/2) boundary graph $\Sigma \in GPG$, i.e., that $\mathbb{D}_n a \in BMO$.

To this end, we will view $a_r, r > 0$ as an extension of a, substituting for $P_r a$ (where $P_r =$ nice parabolic approx. identity).

The first main step is to prove Littlewood-Paley estimates for a_r in

$$\Omega_0 := \big\{ (r, x, t) \in \mathbb{R}^{n+1}_+ : A_r(x, t) \in \Omega_* \big\}.$$

Observe that Ω_0 is essentially a sawtooth in \mathbb{R}^{n+1}_+ (localized at scale *R*), relative to $F = \pi(F_*)$, where $\pi(x_0, x, t) := (0, x, t)$.

The first main step is to prove Littlewood-Paley estimates for a_r in

$$\Omega_0 := \big\{ (r, x, t) \in \mathbb{R}^{n+1}_+ : A_r(x, t) \in \Omega_* \big\}.$$

Observe that Ω_0 is essentially a sawtooth in \mathbb{R}^{n+1}_+ (localized at scale *R*), relative to $F = \pi(F_*)$, where $\pi(x_0, x, t) := (0, x, t)$.

We differentiate the level set equation $G_*(a_r(x, t), x, t) = r$ implicitly, and use (5), to get, e.g.,

(7)
$$|\partial_t a_r(x,t)| = \left| \frac{\partial_t G_*(A_r(x,t))}{\partial_{x_0} G_*(A_r(x,t))} \right| \approx |\partial_t G_*(A_r(x,t))| .$$

The first main step is to prove Littlewood-Paley estimates for a_r in

$$\Omega_0 := \big\{ (r, x, t) \in \mathbb{R}^{n+1}_+ : A_r(x, t) \in \Omega_* \big\}.$$

Observe that Ω_0 is essentially a sawtooth in \mathbb{R}^{n+1}_+ (localized at scale *R*), relative to $F = \pi(F_*)$, where $\pi(x_0, x, t) := (0, x, t)$.

We differentiate the level set equation $G_*(a_r(x, t), x, t) = r$ implicitly, and use (5), to get, e.g.,

(7)
$$|\partial_t a_r(x,t)| = \left| \frac{\partial_t G_*(A_r(x,t))}{\partial_{x_0} G_*(A_r(x,t))} \right| \approx |\partial_t G_*(A_r(x,t))| \, .$$

Similarly we get

$$(8) \qquad |\nabla_{x,r}a_r(x,t)| \lesssim 1, \quad |\nabla^2_{x,r}a_r(x,t)| \lesssim |(\nabla^2 G_*)(A_r(x,t))|$$

etc.

In particular

$$|r|\partial_t a_r(x,t)| + r|\nabla^2_{x,r}a_r(x,t)| \lesssim 1$$

etc.

æ

< E > < E >

In particular

$$|r|\partial_t a_r(x,t)| + r|\nabla^2_{x,r}a_r(x,t)| \lesssim 1$$

etc.

We then obtain

Lemma (2) $\iint_{\Omega_0} \left(|r\partial_t a_r(X)|^2 + |r\nabla_{x,r}^2 a_r(X)|^2 \right) \frac{dr}{r} dX \lesssim R^d.$ and $\iint_{\Omega_0} |r^2 \nabla_{x,r} \partial_t a_r(X)|^2 \frac{dr}{r} dX \lesssim R^d.$ (d = n + 1).

Sketch of proof of Lemma (2):

Use bounds for derivatives of a_r in terms of derivatives of G_* (i.e., (7), (8), etc.), along with Moser type local boundedness and (6) (i.e., $\delta(A_r) \approx r$) to reduce matters to analogous local square function bounds for G_* in Ω_* .

Sketch of proof of Lemma (2):

Use bounds for derivatives of a_r in terms of derivatives of G_* (i.e., (7), (8), etc.), along with Moser type local boundedness and (6) (i.e., $\delta(A_r) \approx r$) to reduce matters to analogous local square function bounds for G_* in Ω_* .

In turn, to prove the latter, we use Lemma (1) plus CFMS. This allows us to replace δ by a normalized Green function in Ω^* , so that we can then integrate by parts to obtain Carleson measure estimates for $1_{\Omega_*}(\mathbf{X})|\partial_t G_*(\mathbf{X})|^2 \delta(\mathbf{X}) d\mathbf{X}$, etc.

Return to Proof of the Theorem:

By the (parabolic) John-Stromberg Lemma, it suffices to show that there are constants N, θ such that for each parabolic cube $Q_R \subset \mathbb{R}^n$,

$$\inf_{C} |\{X \in Q_{R} : |\mathbb{D}_{n}a(X) - C| > N\}| \leq \theta |Q_{R}|$$

with θ sufficiently small. One then obtains $\|\mathbb{D}_n a\| \leq N$.

Return to Proof of the Theorem:

By the (parabolic) John-Stromberg Lemma, it suffices to show that there are constants N, θ such that for each parabolic cube $Q_R \subset \mathbb{R}^n$,

$$\inf_{C} |\{X \in Q_{R} : |\mathbb{D}_{n}a(X) - C| > N\}| \leq \theta |Q_{R}|$$

with θ sufficiently small. One then obtains $\|\mathbb{D}_n a\| \leq N$.

Recall that $F = \pi(F_*)$. We take M_1 large (hence ε small) in Lemma (1), and we have

$$|\mathcal{Q}_R\setminus \mathcal{F}|\leq \sigma(\Delta_*\setminus \mathcal{F}_*)\leq arepsilon\sigma(\Delta_*)\lesssim_{n,M_0}arepsilon|\mathcal{Q}_R|.$$

We then have

$$\begin{split} |\{X \in Q_R : |\mathbb{D}_n a(X) - C| > N\}| \\ &\leq N^{-2} \int_{F \cap Q_R} |\mathbb{D}_n a(X) - C|^2 + C\varepsilon |Q_R| \,. \end{split}$$

æ

★ 문 ► ★ 문 ►

We then have

$$\begin{split} |\{X \in Q_R : |\mathbb{D}_n a(X) - C| > N\}| \\ &\leq N^{-2} \int_{F \cap Q_R} |\mathbb{D}_n a(X) - C|^2 + C\varepsilon |Q_R| \,. \end{split}$$

Taking first ε small enough, and then N large enough, and making a (standard) localization argument, we reduce to proving

(9)
$$|Q_R|^{-1} \int_{F \cap Q_R} |\mathbb{D}_n^R a(X)|^2 \lesssim 1$$

with the implicit constant depending on allowable parameters, where \mathbb{D}_n^R is a localized (at scale R) version of \mathbb{D}_n .

We proceed to the proof of (9). For notational convenience, for r > 0 set

$$a(r,x,t) := a_r(x,t)$$

and if r = 0 set a(0, x, t) := a(x, t).

We proceed to the proof of (9). For notational convenience, for r > 0 set

$$a(r,x,t) := a_r(x,t)$$

and if r = 0 set a(0, x, t) := a(x, t).

Let $h(x, t) \approx \text{dist}((x, t), F)$ be a regularized distance function, so the graph $\{(h(x, t), x, t)\}$ is the (lower part of the) boundary of a (regularized) sawtooth (call it Ω_1) in \mathbb{R}^{n+1}_+ , relative to F.

We can construct h so that $\Omega_1 \subset \Omega_0$, and so that h(x, t) can be taken to be R-Lip, thus the graph $\{(h(x, t), x, t)\} \in GPG$.

For future reference, we record an estimate for a(r, Y) along the graph of h.

Note that a(r, Y) is monotone increasing in r (since G_* is monotone increasing in x_0). Using this fact and the definition of the level sets, one can show (it's non-trivial, but not too hard) that

For future reference, we record an estimate for a(r, Y) along the graph of h.

Note that a(r, Y) is monotone increasing in r (since G_* is monotone increasing in x_0). Using this fact and the definition of the level sets, one can show (it's non-trivial, but not too hard) that

(10)
$$0 \le a(h(Y), Y) - a(0, Y) \lesssim h(Y).$$

Set

$$a^h(x,t) := a(h(x,t),x,t).$$

The next step is to show that we may replace a by a^h in (9) (i.e., in the L^2 estimate for $\mathbb{D}_n^R a$ on $F \cap Q_R$).

Set

$$a^h(x,t) := a(h(x,t),x,t).$$

The next step is to show that we may replace a by a^h in (9) (i.e., in the L^2 estimate for $\mathbb{D}_n^R a$ on $F \cap Q_R$).

The kernel of \mathbb{D}_n^R (localized version of \mathbb{D}_n), call it K^R , satisfies $|K^R(X)| \lesssim \|X\|^{-d-1} \mathbf{1}_{\{\|\cdot\|\lesssim R\}}(X)$.

Set

$$a^h(x,t) := a(h(x,t),x,t).$$

The next step is to show that we may replace a by a^h in (9) (i.e., in the L^2 estimate for $\mathbb{D}_n^R a$ on $F \cap Q_R$).

The kernel of \mathbb{D}_n^R (localized version of \mathbb{D}_n), call it K^R , satisfies $|K^R(X)| \lesssim ||X||^{-d-1} \mathbf{1}_{\{\|\cdot\| \le R\}}(X).$

Also, $h(Y) \approx \text{dist}(Y, F) = 0$ on F by definition.

Hence,

$$\begin{split} |\mathbb{D}_n^R a(X) - \mathbb{D}_n^R a^h(X)| \\ \lesssim \int_{F^c \cap \{ \|X-Y\| \lesssim R \}} \|X-Y\|^{-d-1} |a(0,Y) - a(h(Y),Y)| \, dY \\ \lesssim \int_{F^c \cap \{ \|X-Y\| \lesssim R \}} \|X-Y\|^{-d-1} \operatorname{dist}(Y,F) \, dY \, , \end{split}$$

where the last step uses (10) and the definition of h.

Hence,

$$\begin{split} |\mathbb{D}_n^R a(X) - \mathbb{D}_n^R a^h(X)| \\ \lesssim \int_{F^c \cap \{ \|X-Y\| \lesssim R \}} \|X-Y\|^{-d-1} |a(0,Y) - a(h(Y),Y)| \, dY \\ \lesssim \int_{F^c \cap \{ \|X-Y\| \lesssim R \}} \|X-Y\|^{-d-1} \operatorname{dist}(Y,F) \, dY \, , \end{split}$$

where the last step uses (10) and the definition of h.

The latter expression is a parabolic Marcinkiewicz integral, so

$$\int_{F\cap Q_R} |\mathbb{D}_n^R a(X) - \mathbb{D}_n^R a^h(X)|^2 \, dX \lesssim R^d pprox |Q_R|$$

as desired.

Last step is to prove

$$\int_{Q_R} |\mathbb{D}_n^R a^h(X)|^2 \, dX \lesssim |Q_R| \, .$$

Equivalently, it remains to prove

(11)
$$\left|\int_{\mathbb{R}^n} \mathbb{D}_n^R a^h(X) f(X) dX\right| \lesssim |Q_R|^{1/2} ||f||_{L^2}.$$

for $f \in L^2(\mathbb{R}^n)$ with support in Q_R .

Recall that Ω_1 (the regularized sawtooth domain above the graph of *h*) is contained in Ω_0 , hence in particular we have

$$(r + h(X), X) \in \Omega_1 \subset \Omega_0, \quad X \in Q_{5R}, \quad 0 < r \lesssim R.$$

Recall that Ω_1 (the regularized sawtooth domain above the graph of *h*) is contained in Ω_0 , hence in particular we have

$$(r + h(X), X) \in \Omega_1 \subset \Omega_0, \quad X \in Q_{5R}, \quad 0 < r \lesssim R.$$

Let P_r be a nice parabolic approximate identity on \mathbb{R}^n . For $\gamma > 0$ small,

$$|P_{\gamma r}h(X)-h(X)|\lesssim \gamma r\ll r$$
,

since $h \in Lip(1, 1/2)$.

Hence

$$r + P_{\gamma r}h(X) \approx r + h(X) \geq r$$

so $(r + P_{\gamma r}h(X), X)$ also lies inside a slightly fattened version of Ω_1 , call it Ω_2 , for which we still have $\Omega_2 \subset \Omega_0$.

Image: Image:

Hence

$$r+P_{\gamma r}h(X)\approx r+h(X)\geq r$$

so $(r + P_{\gamma r}h(X), X)$ also lies inside a slightly fattened version of Ω_1 , call it Ω_2 , for which we still have $\Omega_2 \subset \Omega_0$.

Recall that the regularized distance function h is in R-Lip, so we have Carleson measure estimates for the measures

$$|\nabla_{x,r}P_rh(X)|^2 r \, dr \, dX, \quad |r\partial_t P_rh(X)|^2 r \, dr \, dX$$

etc. (*Remark: this is why we want to replace h by* $P_{\gamma r}h$).

Combining these observations, setting

$$\widetilde{a}(r,X) := a(r+P_{\gamma r}h(X),X),$$

and using Lemma (2) (local square function bounds in Ω_0 for derivatives of a(r, X), we obtain

Lemma (3)

$$\iint_{\Omega_R} \left(|r\partial_t \, \widetilde{a}(r,X)|^2 \, + \, |r\partial_r^2 \, \widetilde{a}(r,X)|^2 \right) \, \frac{dr}{r} dX \lesssim |Q_R| \, .$$

and

$$\iint_{\Omega_R} |r^2 \partial_r \partial_t \, \widetilde{\mathsf{a}}(r,X)|^2 \, \frac{dr}{r} dX \lesssim |\mathcal{Q}_R| \, ,$$

伺 ト イヨト イヨト

where Ω_R is a Carleson box in \mathbb{R}^{n+1}_+ with base Q_{5R} .

Note that at r = 0, we have $\tilde{a}(0, X) = a^h(X)$.

To prove (11), we then write, with $f \in L^2(\mathbb{R}^n)$ with support in Q_R

$$\int_{\mathbb{R}^n} \mathbb{D}_n^R a^h f = \text{boundary term (with } r = R)$$
$$- \int_0^R \int_{\mathbb{R}^n} \partial_r \left[\mathbb{D}_n^R (\widetilde{a}(r, \cdot))(X) P_r f(X) \right] dr dX.$$

The boundary term is fairly routine to handle.

When both *r*-derivatives land on $\mathbb{D}_n^R \tilde{a}$, we move the (localized) half order time derivative \mathbb{D}_n^R onto $P_r f$.

When both *r*-derivatives land on $\mathbb{D}_n^R \tilde{a}$, we move the (localized) half order time derivative \mathbb{D}_n^R onto $P_r f$.

When both *r*-derivatives land on $P_r f$, we use that the kernel of \mathbb{D}_n^R is of the form $\mathcal{K}^R(X) = \partial_t V_R(X)$, where V_R is a smoothly truncated (at scale R) version of the parabolic fractional integral kernel. Hence

$$\mathbb{D}_n^R \widetilde{a} = K^R * \widetilde{a} = V_R * (\partial_t \widetilde{a})$$

and we can move the convolution kernel V_R onto $\partial_r^2 P_r f$.

When both *r*-derivatives land on $\mathbb{D}_n^R \tilde{a}$, we move the (localized) half order time derivative \mathbb{D}_n^R onto $P_r f$.

When both *r*-derivatives land on $P_r f$, we use that the kernel of \mathbb{D}_n^R is of the form $\mathcal{K}^R(X) = \partial_t V_R(X)$, where V_R is a smoothly truncated (at scale R) version of the parabolic fractional integral kernel. Hence

$$\mathbb{D}_n^R \widetilde{a} = K^R * \widetilde{a} = V_R * (\partial_t \widetilde{a})$$

and we can move the convolution kernel V_R onto $\partial_r^2 P_r f$.

After the derivatives are appropriately balanced, we then use Cauchy-Schwarz, Lemma (2), and the fact that square function bounds hold for derivatives of $P_r f$, to obtain (11).

Thank you

Thank you!

Steve Hofmann (joint work with S. Bortz, J. M. Martell, and K. Caloric measure and regular Lip(1,1/2) graphs

æ