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Introduction/History/Context

Classical 1-phase free boundary problem (Alt-Caffarelli, Jerison,
Kenig-Toro, others)

Q: given regularity of |∇u|
∣∣
∂Ω

= ∂u
∂ν (with ν = inward unit

normal), what can we deduce re: regularity of the free boundary?
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Introduction/History/Context

At least in presence of “Comparison Principle” (aka “Boundary
Harnack Principle” aka “Rate Theorem”), u might as well be a
Green function with some fixed pole, thus ∂u

∂ν might as well be the
Poisson kernel.

We will consider caloric versions of this classical 1-phase problem.

Remark: Comparison principle was proved by Fabes-Garofalo-Salsa
for caloric functions in Lip(1,1/2) domains.

Remark: The key idea in our argument: “Littlewood-Paley theory
on level sets of the Green function”. More precisely, we view the
level set of the Green function at height r > 0, as a substitute for
regularizations of the boundary at scale r , for which we can prove
local Littlewood-Paley estimates; the latter in turn yield the
desired regularity of the boundary.
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Introduction/History/Context

Let A∞(σ) be the usual Muckenhoupt class of measures.

Dahlberg (1977): If Ω ⊂ Rd is a Lipschitz domain, then
harmonic measure ω ∈ A∞(σ) (σ := Hd−1|∂Ω is surface
measure); equivalently, (D)p (the Dirichlet problem with data
in Lp) is solvable for some p <∞ (in fact, can take p = 2).

What about the parabolic case?
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Introduction/History

Let a(x , t) be a Lip(1,1/2) function defined on Rn−1 × R, i.e.,

sup
(x ,t)6=(y ,s)

|a(x , t)− a(y , s)|
‖(x − y , t − s)‖

=: ‖a‖Lip(1,1/2) <∞ ,

where ‖(x , t)‖ := |x |+ |t|1/2.

We consider Lip(1,1/2) graph domains Ω ⊂ Rn+1 = R×Rn−1 ×R
defined by

Ω :=
{

(x0, x , t) ∈ R× Rn−1 × R : x0 > a(x , t)
}
.

Set
Σ := ∂Ω =

{
(a(x , t), x , t) ∈ R× Rn−1 × R

}
.
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Define “surface measure” on Σ by σ := Hn+1
p |Σ, where the

parabolic Hausdorff measure Hn+1
p is defined like classical Hn+1,

but using the parabolic diameter of the sets in the covering (or
essentially equivalently, covering by parabolic cubes, i.e., of
dimension r × r × ...× r × r2).

Let ω denote caloric measure in Ω. As in the elliptic setting,
ω ∈ A∞(σ) (in a suitable local, scale invariant way) is equivalent
to solvability of (D)p for the heat equation in Ω.

Q: For which domains does this happen?
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Following Dahlberg’s work, Hunt conjectured that ω ∈ A∞(σ) in
every Lip(1,1/2) domain.

But this is false: C.E. due to Kaufman-Wu (1988).

Motivated by the work of Strichartz on BMO-Sobolev spaces, and
by Murray’s thesis results under Coifman’s direction, J. L. Lewis
and M. A. M. Murray proved the following. Let Ω be the domain
above a Lip(1,1/2) graph as above.

Theorem (Lewis-Murray 1995)

If Σ is a Regular Lip(1,1/2) (“R-Lip”) graph, then ω ∈ A∞(σ);
equivalently (D)p is solvable for some p <∞.
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Definition (R-Lip and GPG)

a(x , t) ∈ R-Lip if a(x , t) is Lipschitz in x , uniformly in t, and if

Dna := (∂t ◦ H−1/2)a ∈ BMO(Rn).

The graph of an R-Lip function is called a Good Parabolic Graph
(“GPG”).

Here H = ∂t −∆ is the usual heat operator in Rn−1×R, and BMO
is parabolic BMO, i.e., defined w.r.t. parabolic cubes in Rn−1 × R.

So, H−1/2 is a parabolic fractional integral which smooths by order
1 in x and order 1/2 in t, thus Dn is a half-order time derivative.

Hence Dna ∈ BMO implies Lip(1/2) in t, but is strictly stronger
(follows essentially from work of Strichartz on BMO-Sobolev
spaces).
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Lewis-Murray says R-Lip suffices for (D)p/A∞, while Kaufman-Wu
says that Lip(1,1/2) is not good enough. This suggested the
conjecture that R-Lip is also necessary.

We now know this is true:

Theorem (S. Bortz, J. M. Martell, K. Nyström, S.H.)

Let Ω be a Lip(1,1/2) graph domain as above. Suppose that
ω ∈ A∞(σ). Then a ∈ R-Lip (i.e., Σ ∈ GPG).

Remark: Can define parabolic uniform rectifiability (“P-UR”)
analogously to David-Semmes elliptic theory. For a Lip(1,1/2)
graph Σ, we have Σ ∈ P-UR iff Σ ∈ GPG. More generally, in work
in progress we expect to show (believe we can show) that for a
space-time corkscrew domain Ω with parabolic-TSADR boundary
Σ, if ω ∈ (weak)-A∞(σ), then Σ ∈ P-UR (uses present result in a
crucial way).
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We’ll sketch the proof of the Theorem. Some notation:

M0 := 1 + ‖a‖Lip(1,1/2).

X = (x , t) ∈ Rn = Rn−1 × R.

X = (x0, x , t) = (x0,X ) ∈ Rn+1 = R× Rn−1 × R.

(Similarly for Y ,Z , Y,Z etc.)

For X ∈ Ω, we let δ(X) := dist(X,Σ).

Here and below, distances and diameters will always be taken
w.r.t. the parabolic distance unless otherwise specified.
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The n-dim parabolic cube of “length” r , centered at
X = (x , t) ∈ Rn:

Qr (X ) := {(Y = (y , s) : |xi − yi | < r , 1 ≤ i ≤ n− 1 , |t − s| < r2},

The (n + 1)-dim parabolic box of “length” r , centered at
X = (x0, x , t) ∈ Rn+1:

Ir (X) := (x0 − 2M0

√
nr , x0 + 2M0

√
nr)× Qr (x , t).

(Note: Ir is elongated vertically, but still has diameter ≈ r).

For X = (x0, x , t) = (a(x , t), x , t) ∈ Σ, we define the “surface box”

∆r (X) := Σ ∩ Ir (X).
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(Sketch of) Proof of Theorem:

Fix a surface box ∆ := ∆R(X0), with X0 = (a(x0, t0), x0, t0) ∈ Σ.

Set ∆∗ := ∆100R(X0).

Let X∗ = (x∗0 , x
∗, t∗) be a time forward CS point relative to ∆∗;

i.e., δ(X∗) ≈ dist(X∗,∆∗) ≈ R, and t∗ = t0 + (200R)2.

G∗(Y) := RdG (X∗,Y) is the normalized caloric Green function
with pole at X∗.

(Note d = n + 1 is the homogeneous dimension of Σ and of
parabolic Rn).

ω∗ = RdωX∗ is normalized caloric measure with pole at X∗.

k∗ := dω∗/dσ is the normalized “Poisson kernel”.
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As an easy consequence of the A∞ property, we have:

Lemma (1)

Given ε > 0, there is a constant M1 = M1(ε) and a closed set
F∗ = F∗(ε) ⊂ ∆∗ such that

(1) σ(∆∗ \ F∗) ≤ εσ(∆∗)

and such that for all X ∈ F∗ and all 0 < r ≤ 50R

(2) 1
M1
≤ 1

σ(∆r (X))

∫
∆r (X) k∗ dσ ≤ M1 .

The lemma follows from doubling and a standard stopping time
argument using the fact that k∗ belongs to some Ap class, and

that k
−1/(p−1)
∗ belongs to Ap′ .
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By parabolic “CFMS estimates”, due to FGS in caloric case, the
lemma implies that

(3) G∗(Y) ≈ δ(Y)

in a very ample sawtooth (relative to F∗). Also by an estimate of
Caffarelli and Salsa, for some small enough constant η depending
only on n and M0,

(4) ∂x0G∗ ≈
G∗
δ
, in Ω′ := I50R(X0) ∩ {Y ∈ Ω : δ(Y) < ηR}.

Thus, the level set Σr := {Y : G∗(Y) = r} is a graph, at least
inside of Ω′, i.e.,

Σr = {(ar (y , s), y , s)} =: {Ar (y , s)}

inside Ω′.
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Also, by (3) and (4), in a slightly restricted sawtooth Ω∗ (relative
to F∗ ∩∆50R(X0), with shortened “ceiling” depending on η).

(5) ∂x0G∗ ≈
G∗
δ
≈ 1 .

In addition, in Ω∗, since G∗ ≈ δ,

(6) δ(Ar (y , s)) ≈ r = G∗(Ar (y , s)) .

Recall that we need to prove that the Lip(1,1/2) boundary graph
Σ ∈ GPG, i.e., that Dna ∈ BMO.

To this end, we will view ar , r > 0 as an extension of a,
substituting for Pra (where Pr = nice parabolic approx. identity).
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The first main step is to prove Littlewood-Paley estimates for ar in

Ω0 :=
{

(r , x , t) ∈ Rn+1
+ : Ar (x , t) ∈ Ω∗

}
.

Observe that Ω0 is essentially a sawtooth in Rn+1
+ (localized at

scale R), relative to F = π(F∗), where π(x0, x , t) := (0, x , t).

We differentiate the level set equation G∗(ar (x , t), x , t) = r
implicitly, and use (5), to get, e.g.,

(7) |∂tar (x , t)| =

∣∣∣∣ ∂tG∗(Ar (x , t))

∂x0G∗(Ar (x , t))

∣∣∣∣ ≈ |∂tG∗(Ar (x , t))| .

Similarly we get

(8) |∇x ,rar (x , t)| . 1 , |∇2
x ,rar (x , t)| . |(∇2G∗)(Ar (x , t))|

etc.
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In particular

r |∂tar (x , t)| + r |∇2
x ,rar (x , t)| . 1

etc.

We then obtain

Lemma (2)∫∫
Ω0

(
|r∂tar (X )|2 + |r∇2

x ,rar (X )|2
) dr

r
dX . Rd .

and ∫∫
Ω0

|r2∇x ,r∂tar (X )|2 dr

r
dX . Rd .

(d = n + 1).
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Sketch of proof of Lemma (2):

Use bounds for derivatives of ar in terms of derivatives of G∗ (i.e.,
(7), (8), etc.), along with Moser type local boundedness and (6)
(i.e., δ(Ar ) ≈ r) to reduce matters to analogous local square
function bounds for G∗ in Ω∗.

In turn, to prove the latter, we use Lemma (1) plus CFMS. This
allows us to replace δ by a normalized Green function in Ω∗, so
that we can then integrate by parts to obtain Carleson measure
estimates for 1Ω∗(X)|∂tG∗(X)|2δ(X)dX, etc.
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Return to Proof of the Theorem:

By the (parabolic) John-Stromberg Lemma, it suffices to show
that there are constants N, θ such that for each parabolic cube
QR ⊂ Rn,

inf
C
|{X ∈ QR : |Dna(X )− C | > N}| ≤ θ|QR |

with θ sufficiently small. One then obtains ‖Dna‖ . N.

Recall that F = π(F∗). We take M1 large (hence ε small) in
Lemma (1), and we have

|QR \ F | ≤ σ(∆∗ \ F∗) ≤ εσ(∆∗) .n,M0 ε|QR |.

Steve Hofmann (joint work with S. Bortz, J. M. Martell, and K. Nyström)Caloric measure and regular Lip(1,1/2) graphs



Return to Proof of the Theorem:

By the (parabolic) John-Stromberg Lemma, it suffices to show
that there are constants N, θ such that for each parabolic cube
QR ⊂ Rn,

inf
C
|{X ∈ QR : |Dna(X )− C | > N}| ≤ θ|QR |

with θ sufficiently small. One then obtains ‖Dna‖ . N.

Recall that F = π(F∗). We take M1 large (hence ε small) in
Lemma (1), and we have

|QR \ F | ≤ σ(∆∗ \ F∗) ≤ εσ(∆∗) .n,M0 ε|QR |.

Steve Hofmann (joint work with S. Bortz, J. M. Martell, and K. Nyström)Caloric measure and regular Lip(1,1/2) graphs



We then have

|{X ∈ QR : |Dna(X )− C | > N}|

≤ N−2

∫
F∩QR

|Dna(X )− C |2 + Cε|QR | .

Taking first ε small enough, and then N large enough, and making
a (standard) localization argument, we reduce to proving

(9) |QR |−1

∫
F∩QR

|DR
n a(X )|2 . 1

with the implicit constant depending on allowable parameters,
where DR

n is a localized (at scale R) version of Dn.
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We proceed to the proof of (9). For notational convenience, for
r > 0 set

a(r , x , t) := ar (x , t)

and if r = 0 set a(0, x , t) := a(x , t).

Let h(x , t) ≈ dist((x , t),F ) be a regularized distance function, so
the graph {(h(x , t), x , t)} is the (lower part of the) boundary of a
(regularized) sawtooth (call it Ω1) in Rn+1

+ , relative to F .

We can construct h so that Ω1 ⊂ Ω0, and so that h(x , t) can be
taken to be R-Lip, thus the graph {(h(x , t), x , t)} ∈ GPG.
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For future reference, we record an estimate for a(r ,Y ) along the
graph of h.

Note that a(r ,Y ) is monotone increasing in r (since G∗ is
monotone increasing in x0). Using this fact and the definition of
the level sets, one can show (it’s non-trivial, but not too hard) that

(10) 0 ≤ a(h(Y ),Y )− a(0,Y ) . h(Y ) .
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Set
ah(x , t) := a(h(x , t), x , t) .

The next step is to show that we may replace a by ah in (9) (i.e.,
in the L2 estimate for DR

n a on F ∩ QR).

The kernel of DR
n (localized version of Dn), call it KR , satisfies

|KR(X )| . ‖X‖−d−1 1{‖·‖.R}(X ) .

Also, h(Y ) ≈ dist(Y ,F ) = 0 on F by definition.
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Hence,

|DR
n a(X )− DR

n a
h(X )|

.
∫
F c∩{‖X−Y ‖.R}

‖X − Y ‖−d−1 |a(0,Y )− a(h(Y ),Y )| dY

.
∫
F c∩{‖X−Y ‖.R}

‖X − Y ‖−d−1 dist(Y ,F ) dY ,

where the last step uses (10) and the definition of h.

The latter expression is a parabolic Marcinkiewicz integral, so∫
F∩QR

|DR
n a(X )− DR

n a
h(X )|2 dX . Rd ≈ |QR |

as desired.
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Last step is to prove∫
QR

|DR
n a

h(X )|2 dX . |QR | .

Equivalently, it remains to prove

(11)

∣∣∣∣∫
Rn

DR
n a

h(X ) f (X ) dX

∣∣∣∣ . |QR |1/2‖f ‖L2 .

for f ∈ L2(Rn) with support in QR .
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Recall that Ω1 (the regularized sawtooth domain above the graph
of h) is contained in Ω0, hence in particular we have

(r + h(X ),X ) ∈ Ω1 ⊂ Ω0 , X ∈ Q5R , 0 < r . R .

Let Pr be a nice parabolic approximate identity on Rn. For γ > 0
small,

|Pγrh(X )− h(X )| . γr � r ,

since h ∈ Lip(1, 1/2).
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Hence
r + Pγrh(X ) ≈ r + h(X ) ≥ r

so (r + Pγrh(X ),X ) also lies inside a slightly fattened version of
Ω1, call it Ω2, for which we still have Ω2 ⊂ Ω0.

Recall that the regularized distance function h is in R-Lip, so we
have Carleson measure estimates for the measures

|∇x ,rPrh(X )|2 r dr dX , |r∂tPrh(X )|2 r dr dX

etc. (Remark: this is why we want to replace h by Pγrh).
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Combining these observations, setting

ã(r ,X ) := a(r + Pγrh(X ),X ) ,

and using Lemma (2) (local square function bounds in Ω0 for
derivatives of a(r ,X ), we obtain

Lemma (3)∫∫
ΩR

(
|r∂t ã(r ,X )|2 + |r∂2

r ã(r ,X )|2
) dr

r
dX . |QR | .

and ∫∫
ΩR

|r2∂r∂t ã(r ,X )|2 dr

r
dX . |QR | ,

where ΩR is a Carleson box in Rn+1
+ with base Q5R .
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Note that at r = 0, we have ã(0,X ) = ah(X ).

To prove (11), we then write, with f ∈ L2(Rn) with support in QR∫
Rn

DR
n a

h f = boundary term (with r = R)

−
∫ R

0

∫
Rn

∂r

[
DR
n

(
ã(r , ·)

)
(X )Pr f (X )

]
dr dX .

The boundary term is fairly routine to handle.
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For the main term, we (again) integrate by parts in r (and again
boundary terms are not difficult).

When both r -derivatives land on DR
n ã, we move the (localized) half

order time derivative DR
n onto Pr f .

When both r -derivatives land on Pr f , we use that the kernel of DR
n

is of the form KR(X ) = ∂tVR(X ), where VR is a smoothly
truncated (at scale R) version of the parabolic fractional integral
kernel. Hence

DR
n ã = KR ∗ ã = VR ∗ (∂t ã)

and we can move the convolution kernel VR onto ∂2
r Pr f .

After the derivatives are appropriately balanced, we then use
Cauchy-Schwarz, Lemma (2), and the fact that square function
bounds hold for derivatives of Pr f , to obtain (11).
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kernel. Hence

DR
n ã = KR ∗ ã = VR ∗ (∂t ã)

and we can move the convolution kernel VR onto ∂2
r Pr f .

After the derivatives are appropriately balanced, we then use
Cauchy-Schwarz, Lemma (2), and the fact that square function
bounds hold for derivatives of Pr f , to obtain (11).
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Thank you

Thank you!
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