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SLn(R) Invariance in Analysis



The “Problem” of Coordinate Invariance

The study of Lp-improving properties of Radon-like operators raises many

challenges. One is that, particularly in intermediate dimensions, it’s not

clear what the answers should be. There are, however, a lot of

symmetries. Can symmetry alone lead us to the right ideas?

The “Sensible Approaches”

Symmetry in analysis can lend itself to multiple valid ways of working:

1. Use quantities invariant under the symmetry.

� THINK: matrices and determinants

2. Look for qualitative features invariant under the symmetry.

� THINK: matrices and null spaces

3. Work in any coordinates whatsoever, then optimize over the choice.

� THINK: Newton diagrams and “height”

The approaches have distinctly different strengths and weaknesses.
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Brascamp-Lieb Inequalities

Setup

� V ,Vj : Vector spaces of dimension d , dj , j = 1, . . . ,m;

� πj : Surjective linear maps V → Vj ;

� θj : constants in [0, 1].

Under what conditions must all nonnegative measurable functions

fj : Vj → R satisfy

∫
V

m∏
j=1

(fj ◦ πj)θj ≤ BL(π, θ)
m∏
j=1

(∫
Vj

fj

)θj

for finite constant BL(π, θ)?

Hölder’s inequality, Young’s convolution inequality, Loomis-Whitney

inequalities, etc., can all be written in this form.
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Sensible Approaches to Brascamp-Lieb

1. Use quantities invariant under the symmetry. (HARD)

2. Look for qualitative features invariant under the symmetry.

Theorem (Bennett, Carbery, Christ, Tao 2005)

BL(π, θ) <∞ if and only if

dimV ′ ≤
m∑
j=1

θj dimπj(V
′) for all V ′ ⊂ V

3. Work in any coordinates whatsoever, then optimize over the choice.

Theorem (Lieb 1990)

Gaussians saturate the inequality:

BL(π, θ) = sup
Aj∈GL(Vj )

j=1,...,m

∏m
j=1 | detVj Aj |θj(

det
∑m

j=1 θjπ
∗
j A

∗
j Ajπj

) 1
2

.
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Radon-Like Operators and

Generalizations of Brascamp-Lieb



Defining Functions and Incidence Relations

(Ω, π,Σ) is a smooth incidence relation on Rn × Rn′ of codim. k when

� DOMAIN: Ω ⊂ Rn × Rn′ is open

� DEFINING FUNCTION: π : Ω → Rk is smooth

� COORDINATE-DEPENDENT JACOBIAN: ||dxπ(x , y)||ω for

any n-tuple ω := {ωi}ni=1 of vectors in Rn is given by

||dxπ(x , y)||ω :=

 1

k!

n∑
i1,...,ik=1

∣∣∣det [(ωi1 · ∇x)π · · · (ωik · ∇x)π
]∣∣∣2
 1

2

When ω is omitted, use default coordinates.

� INCIDENCE RELATION:

Σ := {(x , y) ∈ Ω | π(x , y) = 0, ||dxπ(x , y)||, ||dyπ(x , y)|| > 0} .

� INCIDENCE RELATION SLICES: xΣ and Σy indicate slices of Σ

with fixed x and y , resp.:

xΣ :=
{
y ∈ Rn′ | (x , y) ∈ Σ

}
and Σy :=

{
x ∈ Rn | (x , y) ∈ Σ

}
.
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� NATURAL MEASURE: On each slice xΣ and Σy , σ denotes what

will be called the coarea measure (also known as the Leray or

microcanonical measure elsewhere), given by∫
xΣ

fdσ :=

∫
xΣ

f (y)
dHn′−k(y)

||dyπ(x , y)||
and

∫
Σy

fdσ :=

∫
Σy

f (x)
dHn−k(x)

||dxπ(x , y)||
for any Borel-measurable function f on the slices (Borel

measurability is assumed for convenience to avoid technical

difficulties associated with restricting Lebesgue-measurable functions

to submanifolds), where dHs is s-dimensional Hausdorff measure.

� Side Note: Both dHn′−k(y) and ||dyπ(x , y)|| are
coordinate-dependent, but the ratio is not.

Key Quantity to Consider

For fixed τ > 0, the big question is the behavior of the quantity

I (x , τ, ω) :=

∫
dσ(y)

||dxπ(x , y)||τω

as ω ranges over all volume-normalized choices of bases.
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The Main Theorem



Main Theorem Setup

� ENSEMBLE OF RADON-LIKE OPERATORS: For any integer

m ≥ 1 and each j = 1, . . . ,m, let (Ωj , πj ,Σj) be a smooth incidence

relation on Rn × Rnj with codimension kj ≤ min{n, nj} and let σj
denote the associated coarea measures on slices. Let

wj : Σj → [0,∞) be continuous, and let Tj be the generalized

Radon-like transform given by

Tj f (x) :=

∫
xΣj

fj(yj)wj(x , yj)dσj(yj)

for all nonnegative Borel-measurable fj on Rnj .

� CRITICAL SCALING LINE: Suppose p1, . . . , pm ∈ [1,∞) and

q1, . . . , qm ∈ (0,∞) satisfy the scaling condition

n =
m∑
j=1

kjqj
pj

.

This is the line that L∞ × · · · × L∞ → L∞ lies on; one can show

that estimates never hold when = is replaced by < (i.e., qj ’s could

never be larger for given pj). 6



Main Theorem Necessity

Let ||T || be the smallest positive constant (supposing one exists) such

that for all nonnegative Borel measurable functions fj ∈ Lpj (Rnj ),∫
Rn

m∏
j=1

|Tj fj(x)|qjdx ≤ ||T ||
m∏
j=1

||fj ||
qj
Lpj (Rnj )

.

There exists a constant C depending only on n and nj , kj , pj , qj for

j = 1, . . . ,m such that for any x ∈ Rn and any vectors ω1, . . . , ωn with

| det(ω1, . . . , ωn)| = 1 (where det(ω1, . . . , ωn) is the determinant of the

matrix whose columns are coordinates of ω1, . . . , ωn in the standard

coordinate system),

∏
j : pj=1

sup
yj∈xΣj

|wj(x , yj)|qj
||dxπj(x , yj)||

qj
ω

∏
j : pj>1

[∫
xΣj

|wj(x , yj)|p
′
j dσj(yj)

||dxπj(x , yj)||
p′
j −1

ω

] qj

p′
j

≤ C ||T ||

where for each j , pj and p′j are Hölder dual exponents.
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Main Theorem Sufficiency

Conversely, suppose [[T ]] is defined to be the supremum of

∏
j : pj=1

sup
yj∈xΣj

|wj(x , yj)|qj
||dxπj(x , yj)||

qj
ω

∏
j : pj>1

[∫
xΣj

|wj(x , yj)|p
′
j dσj(yj)

||dxπj(x , yj)||
p′
j −1

ω

] qj

p′
j

over all x ∈ Rn and all {ωi}ni=1 with | det(ω1, . . . , ωn)| = 1. If [[T ]] <∞
and each πj(x , yj) is a polynomial function of x with bounded degree as a

function of yj , ∫
Rn

m∏
j=1

|Tj fj(x)|qjdx ≤ ||T ||
m∏
j=1

||fj ||
qj
Lpj (Rnj )

.

holds for nonnegative fj with a finite value of ||T || satisfying
||T || ≤ C ′[[T ]]

∏m
j=1(deg πj)

qj/pj for some C ′ depending only on n, and

nj , kj , pj , qj , where deg πj := supyj deg π
1
j (·, yj) · · · deg πk

j (·, yj).
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Example: Brascamp-Lieb Inequalities Recovered

� If πj(x) are surjective linear maps from Rn to Rnj , we can define

πj(x , yj) := yj − πj(x) on Rn × Rnj . Slices xΣj are zero-dimensional:

yj = πj(x) and the multilinear object T simply becomes∫ m∏
j=1

fj(πj(x))dx .

� The measures dσj are simply counting measure and the estimate for

||T || is comparable to the exact value.

� Side Note: There are some interesting and nontrivial implications

for discrete Brascamp-Lieb inequalities which happen when the

incidence relation is changed to equal |yj − πj(x)|2 − 1 = 0.

9



Example: Spherical Averages

For each n ≥ 2, ∃ Cn <∞ such that every f ∈ L(n+1)/n(Rn) satisfies[∫
Rn

∣∣∣∣∫
Sn−1

f (x + z)dHn−1(z)

∣∣∣∣n+1

dx

]
≤ Cn||f ||L(n+1)/n(Rn).

The spherical averaging operator can be expressed via defining function

π(x , y) := 1− |x − y |2 , ||dxπ(x , y)||2ω = 4
n∑

i=1

|ωi · (x − y)|2

The endpoint L(n+1)/n → Ln+1 inequality is a consequence of the bound∫
Sn−1

dHn−1(z)(∑n
i=1 |ωi · z |2

)n/2 ≤ C

for all | det(w1, . . . ,wn)| = 1.
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Sample Computation: Circular Averages (n = 2)

∫
S1

dH1(z)(
|z · ω1|2 + |z · ω2|2

)s/2 ,
Reductions allow one to assume that ω1 and ω2 are orthogonal; after

rotation, the integral is comparable to∫ 1

−1

dt

(α2 + α−2t2)s/2

for arbitrary α > 0. Criterion is not finiteness but uniform bddness.

� If α > 1, then there is no difficulty bounding the integral uniformly.

� If α < 1, then the integrand is ≳ α−s on an interval of size ≈ α2

around t = 0. Uniform bounds can only hold when s ≤ 2.

� When s = 2, change variables t 7→ α2t: the Jacobian gives α2 in the

numerator which exactly cancels the α’s in the denominator.

� “Flat spots” on the circle would arrange it so that the set where the

integrand is ≳ α−s is much larger than α2 and reduce the range of s

on which uniformity holds. 11



Proof of the Main Theorem



Visibility Lemma (Guth 2010, Carbery-Valdimarsson 2013)

Given any finitely-supported, nonnegative, integer-valued function

M(Q) defined on the lattice of unit cubes Λ1 ⊂ Rn, ∃ an algebraic

hypersurface Z of degree at most Cn(
∑

Q M(Q))1/n such that

Vis[Z ∩ Q] ≥ M(Q) for all Q ∈ Λ1,

where Vis[Z ∩ Q] is the mollified visibility, i.e., the reciprocal of the

Euclidean volume of the convex set of vectors u for which ||u|| ≤ 1 and

1

|B(Z , ϵ)|

∫
B(Z ,ϵ)

∫
Z ′∩Q

|u · n̂(z ′)|dHn−1(z ′)dZ ′ ≤ 1.

Here n̂(z) is the unit normal to Z ′ at the point z ′.

Point

Inside each Q, Z has at least a prescribed amount of surface area with

surface normals in very different directions. The bound on the degZ is

really what matters and is approximately sharp.
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Theorem (Zhang 2018)∫
Σπ

∫
Z ′
1

· · ·
∫
Z ′
n−k

χ[−1,1](n−k)k (z ′1 − x , . . . , z ′n−k − x)

·
∣∣∣∣ dπ(x)

||dπ(x)||
∧ n̂(z ′1) ∧ · · · ∧ n̂(z ′n−k)

∣∣∣∣
dHn−1(z ′n−k) · · · dHn−1(z ′1)dHn−k(x)

≤ 2n(n−k) deg π
n−k∏
j=1

degZ ′
j .

Point

Carrying out the inner integrals measures the size of dπ in some

unnormalized, pointwise-varying system {ωx
1 , . . . , ω

x
n} with volume like

Vis[Z ∩ Q] on Q. This system doesn’t depend on π and∫
Σπ

||dπ(x)||ωxdσ(x) ≲ (deg π)
(∑

Q

M(Q)
) n−k

n
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Zhang’s Theorem is the discrete version of the following:

Lemma (Visibility Lemma, Continuous Version)

For any Borel measurable, nonnegative integrable function ψ on the box

BR := [−R,R)n, there exist Borel measurable Rn-valued functions

ωx
1 , . . . , ω

x
n on BR such that | det{ωx

i }ni=1| = 1 at all points and a

nonnegative Borel-measurable function ψ̃ on BR equal to ψ a.e. such

that every polynomial map π : Rn → Rk with 1 ≤ k ≤ n satisfies∫
Σπ∩BR

[
ψ̃(x)

] n−k
n ||dπ(x)||ωxdσ(x) ≤ Cn(deg π)

[∫
BR

ψ(x)dx

] n−k
n

The passage from discrete to continuous is mostly predictable:

� Rescale the unit scale result to all dyadic scales and approximate.

� A minor but critical technical point: there’s no real control of the ωi
x .

� Also note that because we’re integrating over sets of measure zero,

it’s not trivial that ψ̃ can disagree with ψ on a set of measure zero.

Practically speaking, this lemma plays the role analogous to that of the

change of variables formula in Christ’s continuum incidence methodology.
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What does this lemma mean?

Let f1(x), . . . , fn(x) be (arbitrary) coordinate functions that map the box

BR to some box B ′ and let ψ(x) := | det ∂f /∂x |.

� We can think of ψ−1/n(x)∇f1(x), . . . , ψ
−1/n(x)∇fn(x) as “unit-size”

covectors with respect to some exotic norm. The normalization

w.r.t. ψ guarantees that the basis is unit volume.

� Now take ω1
x , . . . , ω

n
x to be the dual basis of vectors.

� The change of variables formula implies that∫
Σπ∩BR

[ψ(x)]
n−k
n ||dπ(x)||ωxdσ(x) ≤ CnK

[∫
BR

ψ(x)dx

] n−k
n

where K counts the maximum number of times that a k-dimensional

“coordinate affine subspace” meets Σπ transversely.

Speculation

Is this a Monge-Ampère problem in disguise? Are there non-algebraic

analogues of this lemma? Extending these ideas to the smooth category

would require answers here.
15



Now combine Hölder’s inequality, the Fubini-type identity∫
BR

[ψ̃(x)]
n−kj

n

∫
xΣj

fj(yj)||dxπj(x , yj)||ωxdσj(yj) dx =∫
Rnj

fj(yj)

∫
Σ

yj
j ∩BR

[ψ̃(x)]
n−kj

n ||dxπj(x , yj)||ωxdσj(x) dyj ,

and a judicious choice of ψ to conclude that

Theorem (The Quantity)

Fix exponents r1, . . . , rm ≥ 0 satisfying k1r1 + · · ·+ kmrm = n, and for

each nonnegative integrable Borel function fj on Rnj , j = 1, . . . ,m, let

Q(f1, . . . , fm)(x) := inf
{ωi}n

i=1

| det{ωi}i=1|=1

m∏
j=1

(∫
xΣj

fj(yj)||dxπj(x , yj)||ωdσj(yj)

)rj

.

There exists a constant Cn depending only on n such that∫
[−R,R)n

Q(f1, . . . , fm)(x)dx ≤
m∏
j=1

[
Cn(deg πj)

∫
Rnj

fj

]rj
.
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Important

We are not going to apply Brascamp-Lieb inequalities at any point.

These are actually already encoded in the strange quantity Q.

The integrals appearing in Q have undesired factors of ||dxπj(x , yj)||ω.
We can eliminate these by making a bound of Q from below by Hölder:∫

xΣ

f (y)w(x , y)dσ(y) ≤
[∫

xΣ

|f (y)|p||dxπ(x , y)||ωdσ(y)
] 1

p

·

[∫
xΣ

|w(x , y)|p′
dσ(y)

||dxπ(x , y)||p
′−1

ω

] 1
p′

.

It follows that ∫
Rn

m∏
j=1

|Tj fj(x)|qjdx ≤ ||T ||
m∏
j=1

||fj ||
qj
Lpj (Rnj )

,

||T || ≲
∏

j : pj=1

sup
yj∈xΣj

|wj(x , yj)|qj
||dxπj(x , yj)||

qj
ω

∏
j : pj>1

[∫
xΣj

|wj(x , yj)|p
′
j dσj(yj)

||dxπj(x , yj)||
p′
j −1

ω

] qj

p′
j

over all choices of {ωi}ni=1. 17



The Reverse Direction





The δ-neighborhood of x0Σj is roughly where πj(x0, y) < δ. To be more

precise, we renormalize πj so that the rows of the Jacobian Dxπj(x0, y)

are orthonormal on x0Σj . This can be accomplished by replacing πj by

πj := (Dxπj(Dxπj)
T )−1/2πj . The test functions used are

fj,δ(y) := δ
− k

pj χ||πj (x0,y)||<δ

[
wj(x0, y)

||dxπj(x0, y)||

]p′
j −1

Tj fj,δ(y) ∼ δ
− k

pj

∫
x0Σj

|wj(x0, y)|p
′
j dσj(y)

||dxπj(x0, y)||p
′
j −1

for x ∈ Bδ(x0). Also

||fj,δ||ppj = δ−k

∫
|u|<δ

∫
πj (x0,y)=u

[
wj(x0, y)

||dxπj(x0, y)||

]pj (p′
j −1)

dHnj−k(y)

||dyπj(x0, y)||
du

∼ ck

∫
πj (x0,y)=0

[
wj(x0, y)

||dxπj(x0, y)||

]p′
j ||dxπj(x0, y)||dHnj−k(y)

||dyπj(x0, y)||

Work in any coordinates you like modulo linear change of variables,

then optimize over the choice.
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What’s Next



Some Natural Questions

� This brings us close but not all the way to positively understanding

what curvature is “supposed” to be, particularly in the case of the

nicest operators in intermediate dimensions.

� Algebra versus Analysis

� To what extent can the class of polynomials be replaced by

something broader? (Nash functions; turns out to be important)

� Approximating smooth operators by algebraic ones is possible

because we have good, explicit dependence of constants on degree.

� How do you compute the key quantity anyway? (Restricted strong

type is a comfortable next step.) Geometrically, what is being

quantified?

� Bounds for inequalities off the scaling line? Weighted inequalities

may be able to help.
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Thank You
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