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SL,(R) Invariance in Analysis



The “Problem” of Coordinate Invariance

The study of LP-improving properties of Radon-like operators raises many
challenges. One is that, particularly in intermediate dimensions, it's not
clear what the answers should be. There are, however, a lot of
symmetries. Can symmetry alone lead us to the right ideas?

Symmetry in analysis can lend itself to multiple valid ways of working:

Use quantities invariant under the symmetry.
: matrices and determinants
Look for qualitative features invariant under the symmetry.
: matrices and null spaces
Work in any coordinates whatsoever, then optimize over the choice.

: Newton diagrams and “height”

The approaches have distinctly different strengths and weaknesses.



Brascamp-Lieb Inequalities

V., V; : Vector spaces of dimension d,d;, j=1,...,m;
mj : Surjective linear maps V' — Vj;

¢;: constants in [0, 1].

Under what conditions must all nonnegative measurable functions
fi : Vi = R satisfy

/Hfoﬂ‘J f<BL7T€f[1</ >0j

for finite constant BL(m, 0)?

Holder's inequality, Young's convolution inequality, Loomis-Whitney
inequalities, etc., can all be written in this form.



Sensible Approaches to Brascamp-Lieb

Use quantities invariant under the symmetry. (HARD)
Look for qualitative features invariant under the symmetry.

BL(7,8) < oo if and only if

dim V/ <) " 6;dimm; (V') for all V/ C V
j=1

Work in any coordinates whatsoever, then optimize over the choice.

Gaussians saturate the inequality:
[T, | dety, A%
BL(w,0) = sup J =

A (det o, O A A )




Radon-Like Operators and
Generalizations of Brascamp-Lieb



Defining Functions and Incidence Relations

(Q,7,%) is a smooth incidence relation on R” x R” of codim. k when

Q CcR” x R is open
7 : Q — R¥ is smooth
||k (x, y)l|o for
any n-tuple w := {w;}7_; of vectors in R" is given by

(NI

llde(x, )| 1= % Z )det [(w;1~VX)7T (w,-k-VX)WH2

When w is omitted, use default coordinates.

L ={xy) €Q [7(xy) =0, |ldem(x, )l [|dy7(x, y)I| > O}

XY and XY indicate slices of ¥

with fixed x and y, resp.:

Xz::{yeR"' |(x,y)ez} andZy::{xeR" |(X7y)€Z}‘
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e NATURAL MEASURE: On each slice ¥~ and ¥, o denotes what
will be called the coarea measure (also known as the Leray or
microcanonical measure elsewhere), given by

o M n o= X M
Jr = O ™ o= L g

for any Borel-measurable function f on the slices (Borel
measurability is assumed for convenience to avoid technical
difficulties associated with restricting Lebesgue-measurable functions
to submanifolds), where d#* is s-dimensional Hausdorff measure.

o Side Note: Both dH" ~*(y) and ||d, 7 (x, y)|| are
coordinate-dependent, but the ratio is not.

Key Quantity to Consider
For fixed 7 > 0, the big question is the behavior of the quantity

do(y)

/ = [ 29V
6m9) = | oI

as w ranges over all volume-normalized choices of bases.



The Main Theorem



Main Theorem Setup

For any integer
m >1and each j=1,...,m, let (€;,7,%;) be a smooth incidence
relation on R” x R" with codimension k; < min{n, n;} and let o;
denote the associated coarea measures on slices. Let
w; @ X — [0, 00) be continuous, and let T; be the generalized
Radon-like transform given by
T = [ nm(x.)dor ()

j
for all nonnegative Borel-measurable f; on R™.

Suppose p1, ..., pm € [1,00) and
g1,---,qm € (0,00) satisfy the scaling condition

= P
This is the line that L® x .-+ x L°° — [°° lies on; one can show

that estimates never hold when = is replaced by < (i.e., g;'s could
never be larger for given p;).



Main Theorem Necessity

Let || T|| be the smallest positive constant (supposing one exists) such
that for all nonnegative Borel measurable functions f; € LPi(R"),

/RH\TJ-fJ-( |%dx<||T|\H|\f|m
Sl

There exists a constant C depending only on n and nj, k;, pj, q; for

j=1,...,msuch that for any x € R"” and any vectors w1, ...,w, with
|det(wi, ... ,wp)| =1 (where det(ws,...,w,) is the determinant of the
matrix whose columns are coordinates of wy,...,w, in the standard

coordinate system),

e

VICH U '””(X’”)de"f,(”’] < ciiT|

q —1
j:pjzl}’jexzj ‘|dX7TJ'(X1yJ')‘|‘Jj;pj>1 X%; HdXTl'J'(X,yJ')HZf

where for each j, p; and pj’- are Holder dual exponents.



Main Theorem Sufficiency

Conversely, suppose [[T]] is defined to be the supremum of

2

p/

I sup LMt 1y [ w6, )17 o ()

qj -1
jip=1%E€E | dx;(x, y;)lle X3 HdXTl'j(X,yj)Hw

over all x € R" and all {w;}?_; with |det(ws,...,w,)| =1. If [[T]] < o0
and each j(x, y;) is a polynom|a| function of x with bounded degree as a
function of y;,

/H\m e x<||T|\H|\f||m

holds for nonnegative f; with a finite value of || T|| satisfying
| TI < C[[T]] szl(degﬂj)qf/p/ for some C’ depending only on n, and
nj, ki, pj, qj, where deg ; := sup,, deg 7rJ-1(-,yj) e degﬂf(-7}/j).

Jipi>1



Example: Brascamp-Lieb Inequalities Recovered

If 7j(x) are surjective linear maps from R” to R", we can define
mi(x,yj) :=yj — mj(x) on R” x R". Slices *¥; are zero-dimensional:
y;j = mj(x) and the multilinear object T simply becomes

/ f[ f(m;(x)ax.

The measures do;j are simply counting measure and the estimate for
[| T|| is comparable to the exact value.

There are some interesting and nontrivial implications
for discrete Brascamp-Lieb inequalities which happen when the
incidence relation is changed to equal |y; — m;(x)]> — 1= 0.



Example: Spherical Averages

For each n > 2, 3 C, < oo such that every f € L(”“)/”(R") satisfies

I

The spherical averaging operator can be expressed via defining function

/ f(x 4+ 2)dH"(2)
Snfl

n+1
dX] < Cn| | f| ‘L(n+1)/n(Rn) .

w(x,y)=1=Ix=yP . lldaGo )l =4 lwi- (x =)’
i=1

The endpoint L("*1)/7 — [ "1 inequality is a consequence of the bound

n—1
/ dH"1(z) < c
s (i wi - 2[?)

for all |det(wy, ..., w,)| = 1.

10



Sample Computation: Circular Averages (n = 2)

/ dHl(z)
st (|Z'Ld1|2 + ‘Z . w2|2)5/2,

Reductions allow one to assume that w; and w, are orthogonal; after

rotation, the integral is comparable to

/1 dt
1 (02 + a2£2)5/2
for arbitrary a > 0.

If &« > 1, then there is no difficulty bounding the integral uniformly.

If o < 1, then the integrand is = a~° on an interval of size ~ a?

around t = 0. Uniform bounds can only hold when s < 2.

When s = 2, change variables t —+ o?t: the Jacobian gives a2 in the
numerator which exactly cancels the a's in the denominator.

“Flat spots” on the circle would arrange it so that the set where the
integrand is > o~ is much larger than o and reduce the range of s

on which uniformity holds. 1



Proof of the Main Theorem



Given any finitely-supported, nonnegative, integer-valued function
M(Q) defined on the lattice of unit cubes A; C R”, 3 an algebraic
hypersurface Z of degree at most C,(>_ M(Q))*/" such that

Vis[Z N Q] > M(Q) for all Q € Ay,

where Vis[Z N Q] is the mollified visibility, i.e., the reciprocal of the
Euclidean volume of the convex set of vectors u for which ||u|| < 1 and

]. / / ~r_/ —1/_/ !
_ u-n(Z)|dH" (2" )dZ" < 1.
|B(Z,€)| B(Z,€) Z/QQ‘ S ()

Here n(z) is the unit normal to Z’ at the point z’.

Inside each @, Z has at least a prescribed amount of surface area with
surface normals in very different directions. The bound on the deg Z is
really what matters and is approximately sharp.

12
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/ /
/ / / X[_Ll](n,k)k(zl — Xy oy Zn g —X)
T2 -

dﬂ-() ~ -/ ~_/
An(z) A= An(z,_y)
T (Il ' “
anfl(Z/ ) dH"™ 1( ) dH"— k( )
n—k
< 2"n=k) deg 7 H deg Z;.

Jj=1

Carrying out the inner integrals measures the size of d7 in some
, pointwise-varying system {wy,...,wX} with volume like
Vis[Z N @] on Q. This system doesn't depend on 7 and

[ 1dn()lurdo(x) 5 (degm) (S mo )

—k
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Zhang's Theorem is the discrete version of the following:

For any Borel measurable, nonnegative integrable function v on the box
Br :=[—R, R)", there exist Borel measurable R"-valued functions
wy,...,wy on Bg such that |det{w}}? ;| =1 at all points and a
nonnegative Borel-measurable function 1; on Bg equal to ¥ a.e. such
that every polynomial map 7 : R” — R¥ with 1 < k < n satisfies

n—k
n

/szR [J(X)} n;"kHdW(X)HdeU(X) < Cy(deg) [ . w(x)dx}

The passage from discrete to continuous is mostly predictable:

Rescale the unit scale result to all dyadic scales and approximate.

A minor but critical technical point: there's no real control of the w!.

Also note that because we're integrating over sets of measure zero,
it's not trivial that v can disagree with 1) on a set of measure zero.

Practically speaking, this lemma plays the role analogous to that of the

change of variables formula in Christ's continuum incidence methodology.

14



What does this lemma mean?

Let f1(x),..., fy(x) be (arbitrary) coordinate functions that map the box
Bg to some box B’ and let 1(x) := | det 9f /Ox|.

We can think of 1/~ Y/"(x)Vf(x),...,9~Y/"(x)Vf,(x) as “unit-size”
covectors with respect to some exotic norm. The normalization
w.r.t. 1 guarantees that the basis is unit volume.

Now take w,...,w?! to be the dual basis of vectors.

The change of variables formula implies that

mewun

where K counts the maximum number of times that a k-dimensional

n—k
n

n—k
n

dﬂ@mddméqK[&Mﬂw}

“coordinate affine subspace” meets ¥, transversely.

Is this a Monge-Ampére problem in disguise? Are there non-algebraic
analogues of this lemma? Extending these ideas to the smooth category

would require answers here.
15



Now combine Holder's inequality, the Fubini-type identity

[ e / 091t (x, 7)o o) o =

L 500 [, 1 x5 or o) i
RY ijﬁBR

and a judicious choice of 1 to conclude that

Fix exponents ry, ..., r,, > 0 satisfying kyry + - - + knrm = n, and for

each nonnegative integrable Borel function f; on R%, j =1,..., m, let

m ”j

QA fm)(x) = inf ] ( / . fj(yj)ndxm(x,yj)||wdoj(yj)> :
| det{wi b |=17 " !

There exists a constant C, depending only on n such that

;
Q(f, ..., fm)(x)dx < { (deg 7)) / f-] .
/[R,R)n H 7 Jee 7

16



Important
We are not going to apply Brascamp-Lieb inequalities at any point.
These are actually already encoded in the strange quantity Q.

The integrals appearing in Q have undesired factors of ||dym;(x, y;)||w.

We can eliminate these by making a bound of @ from below by Hdlder:

[ fowtendot) <| [ rnPlidatelldo)

1

¢/IMKMWMWW“
x [[der(x,y) 18
/IIWf ww<umfmﬂmm

T s 11 mpwxmwr[U;meNdﬂ)]

s NAm OO IS ;o [ Yidm e, )11

It follows that

I8

over all choices of {w;}7 ;.

17



The Reverse Direction
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The d-neighborhood of *X; is roughly where 7;(xp,y) < 6. To be more
precise, we renormalize 7 so that the rows of the Jacobian D,m;(xp,y)
are orthonormal on X% ;. This can be accomplished by replacing 7; by
7 := (Dymj(Dxm;)T)"Y/?7;. The test functions used are

mumnndﬁl

_k
75'7(5(}/) =49 P X||fj(Xo,y)H<5 |:||dX7Tj(X07y

—k w;(x0, y)|P doj(y
Tifaty) ~ o5 [ lbe)Pdol)
o, [0, )P

for x € Bs(xp). Also

slie = o= /‘ / {VMMJ)}”Wl)dHWWM "
<8 S 01=u LTG0 V)] 500 )]

Nq/ {M%m)YﬂMMmmWW”U)
oo LTG0, Y] 1m0, V)]

Work in any coordinates you like modulo linear change of variables,

then optimize over the choice.

18



What’'s Next




Some Natural Questions

This brings us close but not all the way to positively understanding
what curvature is “supposed” to be, particularly in the case of the
nicest operators in intermediate dimensions.
Algebra versus Analysis
To what extent can the class of polynomials be replaced by
something broader? (Nash functions; turns out to be important)
Approximating smooth operators by algebraic ones is possible
because we have good, explicit dependence of constants on degree.
How do you compute the key quantity anyway? (Restricted strong
type is a comfortable next step.)

Bounds for inequalities off the scaling line? Weighted inequalities
may be able to help.

19



Thank You
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