

# Testing conditions for multilinear Radon-Brascamp-Lieb inequalities

11th International Conference on Harmonic Analysis and Partial Differential Equations

Philip T. Gressman

6 June 2022

University of Pennsylvania

# $SL_n(\mathbb{R})$ Invariance in Analysis

The study of  $L^p$ -improving properties of Radon-like operators raises many challenges. One is that, particularly in intermediate dimensions, it's not clear what the answers *should be*. There are, however, a lot of symmetries. Can symmetry alone lead us to the right ideas?

#### The "Sensible Approaches"

Symmetry in analysis can lend itself to multiple valid ways of working:

- 1. Use quantities invariant under the symmetry.
  - THINK: matrices and determinants
- 2. Look for qualitative features invariant under the symmetry.
  - THINK: matrices and null spaces
- 3. Work in any coordinates whatsoever, then optimize over the choice.
  - THINK: Newton diagrams and "height"

The approaches have distinctly different strengths and weaknesses.

## **Brascamp-Lieb Inequalities**

#### Setup

- $V, V_j$ : Vector spaces of dimension  $d, d_j, j = 1, \dots, m$ ;
- $\pi_j$ : Surjective linear maps  $V \to V_j$ ;
- $\theta_j$ : constants in [0, 1].

Under what conditions must all nonnegative measurable functions  $f_j:\,V_j\to\mathbb{R}$  satisfy

$$\int_{V} \prod_{j=1}^{m} (f_j \circ \pi_j)^{\theta_j} \leq \mathsf{BL}(\pi, \theta) \prod_{j=1}^{m} \left( \int_{V_j} f_j \right)^{\theta_j}$$

for finite constant  $BL(\pi, \theta)$ ?

Hölder's inequality, Young's convolution inequality, Loomis-Whitney inequalities, etc., can all be written in this form.

### Sensible Approaches to Brascamp-Lieb

- 1. Use quantities invariant under the symmetry. (HARD)
- 2. Look for qualitative features invariant under the symmetry.

**Theorem (Bennett, Carbery, Christ, Tao 2005)** BL $(\pi, \theta) < \infty$  if and only if

$$\dim V' \leq \sum_{j=1}^m heta_j \dim \pi_j(V') ext{ for all } V' \subset V$$

3. Work in any coordinates whatsoever, then optimize over the choice.

#### Theorem (Lieb 1990)

Gaussians saturate the inequality:

$$\mathsf{BL}(\pi,\theta) = \sup_{\substack{A_j \in \mathsf{GL}(V_j)\\j=1,\dots,m}} \frac{\prod_{j=1}^m |\det_{V_j} A_j|^{\theta_j}}{\left(\det \sum_{j=1}^m \theta_j \pi_j^* A_j^* A_j \pi_j\right)^{\frac{1}{2}}}.$$

# Radon-Like Operators and Generalizations of Brascamp-Lieb

## **Defining Functions and Incidence Relations**

 $(\Omega,\pi,\Sigma)$  is a smooth incidence relation on  $\mathbb{R}^n imes\mathbb{R}^{n'}$  of codim. k when

- **DOMAIN:**  $\Omega \subset \mathbb{R}^n \times \mathbb{R}^{n'}$  is open
- **DEFINING FUNCTION:**  $\pi : \Omega \to \mathbb{R}^k$  is smooth
- COORDINATE-DEPENDENT JACOBIAN: ||d<sub>x</sub>π(x, y)||<sub>ω</sub> for any *n*-tuple ω := {ω<sub>i</sub>}<sup>n</sup><sub>i=1</sub> of vectors in ℝ<sup>n</sup> is given by

$$||d_x\pi(x,y)||_\omega := \left[rac{1}{k!}\sum_{i_1,\ldots,i_k=1}^n \left|\det\left[(\omega_{i_1}\cdot 
abla_x)\pi \quad \cdots \quad (\omega_{i_k}\cdot 
abla_x)\pi
ight]|^2
ight]^rac{1}{2}$$

When  $\omega$  is omitted, use default coordinates.

• INCIDENCE RELATION:

$$\Sigma := \{(x,y) \in \Omega \mid \pi(x,y) = 0, ||d_x\pi(x,y)||, ||d_y\pi(x,y)|| > 0\}.$$

 INCIDENCE RELATION SLICES: <sup>x</sup>Σ and Σ<sup>y</sup> indicate slices of Σ with fixed x and y, resp.:

$$^{x}\Sigma:=\left\{y\in\mathbb{R}^{n'}\ \mid (x,y)\in\Sigma
ight\}$$
 and  $\Sigma^{y}:=\left\{x\in\mathbb{R}^{n}\ \mid (x,y)\in\Sigma
ight\}.$ 

Z, Z, Z have natual Measnes induced by Coorea formula. Z<sup>3</sup> = shice of Z with constant y ZCSL XZ = Slile of Z with Constant X. Z = zero set of defining function T QC RX R || dx TT (x y) || w quantifies linear independence of  $W_i : \nabla_X T_{2} \dots, W_n \cdot \nabla_x T_{n}$ 

 NATURAL MEASURE: On each slice <sup>x</sup>Σ and Σ<sup>y</sup>, σ denotes what will be called the coarea measure (also known as the Leray or microcanonical measure elsewhere), given by

$$\int_{x\Sigma} f d\sigma := \int_{x\Sigma} f(y) \frac{d\mathcal{H}^{n'-k}(y)}{||d_y \pi(x,y)||} \text{ and } \int_{\Sigma^y} f d\sigma := \int_{\Sigma^y} f(x) \frac{d\mathcal{H}^{n-k}(x)}{||d_x \pi(x,y)||}$$

for any Borel-measurable function f on the slices (Borel measurability is assumed for convenience to avoid technical difficulties associated with restricting Lebesgue-measurable functions to submanifolds), where  $d\mathcal{H}^s$  is *s*-dimensional Hausdorff measure.

Side Note: Both dH<sup>n'-k</sup>(y) and ||d<sub>y</sub>π(x, y)|| are coordinate-dependent, but the ratio is not.

#### Key Quantity to Consider

For fixed au > 0, the big question is the behavior of the quantity

$$I(x,\tau,\omega) := \int \frac{d\sigma(y)}{||d_x\pi(x,y)||_{\omega}^{\tau}}$$

as  $\omega$  ranges over all volume-normalized choices of bases.

## The Main Theorem

### Main Theorem Setup

• ENSEMBLE OF RADON-LIKE OPERATORS: For any integer  $m \ge 1$  and each j = 1, ..., m, let  $(\Omega_j, \pi_j, \Sigma_j)$  be a smooth incidence

relation on  $\mathbb{R}^n \times \mathbb{R}^{n_j}$  with codimension  $k_j \leq \min\{n, n_j\}$  and let  $\sigma_j$  denote the associated coarea measures on slices. Let

 $w_j: \Sigma_j \to [0,\infty)$  be continuous, and let  $T_j$  be the generalized Radon-like transform given by

$$T_j f(x) := \int_{x_{\sum_j}} f_j(y_j) w_j(x, y_j) d\sigma_j(y_j)$$

for all nonnegative Borel-measurable  $f_i$  on  $\mathbb{R}^{n_j}$ .

• CRITICAL SCALING LINE: Suppose  $p_1, \ldots, p_m \in [1, \infty)$  and  $q_1, \ldots, q_m \in (0, \infty)$  satisfy the scaling condition

$$n=\sum_{j=1}^m\frac{k_jq_j}{p_j}.$$

This is the line that  $L^{\infty} \times \cdots \times L^{\infty} \to L^{\infty}$  lies on; one can show that estimates never hold when = is replaced by < (i.e.,  $q_j$ 's could never be larger for given  $p_j$ ).

6

### Main Theorem Necessity

Let ||T|| be the smallest positive constant (supposing one exists) such that for all nonnegative Borel measurable functions  $f_i \in L^{p_i}(\mathbb{R}^{n_j})$ ,

$$\int_{\mathbb{R}^n} \prod_{j=1}^m |T_j f_j(x)|^{q_j} dx \leq ||T|| \prod_{j=1}^m ||f_j||_{L^{p_j}(\mathbb{R}^{n_j})}^{q_j}.$$

There exists a constant *C* depending only on *n* and  $n_j, k_j, p_j, q_j$  for j = 1, ..., m such that for any  $x \in \mathbb{R}^n$  and any vectors  $\omega_1, ..., \omega_n$  with  $|\det(\omega_1, ..., \omega_n)| = 1$  (where  $\det(\omega_1, ..., \omega_n)$  is the determinant of the matrix whose columns are coordinates of  $\omega_1, ..., \omega_n$  in the standard coordinate system),

$$\prod_{j: p_j=1} \sup_{y_j \in {}^{\times}\Sigma_j} \frac{|w_j(x, y_j)|^{q_j}}{||d_x \pi_j(x, y_j)||_{\omega}^{q_j}} \prod_{j: p_j > 1} \left[ \int_{{}^{\times}\Sigma_j} \frac{|w_j(x, y_j)|^{p_j'} d\sigma_j(y_j)}{||d_x \pi_j(x, y_j)||_{\omega}^{p_j'-1}} \right]^{\frac{q_j}{p_j'}} \le C ||T||$$

where for each j,  $p_j$  and  $p'_i$  are Hölder dual exponents.

Conversely, suppose [[T]] is defined to be the supremum of

$$\prod_{j: p_{j}=1} \sup_{y_{j} \in {}^{x}\Sigma_{j}} \frac{|w_{j}(x, y_{j})|^{q_{j}}}{||d_{x}\pi_{j}(x, y_{j})||_{\omega}^{q_{j}}} \prod_{j: p_{j}>1} \left[ \int_{{}^{x}\Sigma_{j}} \frac{|w_{j}(x, y_{j})|^{p_{j}'} d\sigma_{j}(y_{j})}{||d_{x}\pi_{j}(x, y_{j})||_{\omega}^{p_{j}'-1}} \right]^{\frac{q_{j}}{p_{j}'}}$$

over all  $x \in \mathbb{R}^n$  and all  $\{\omega_i\}_{i=1}^n$  with  $|\det(\omega_1, \ldots, \omega_n)| = 1$ . If  $[[T]] < \infty$  and each  $\pi_j(x, y_j)$  is a polynomial function of x with bounded degree as a function of  $y_j$ ,

$$\int_{\mathbb{R}^n} \prod_{j=1}^m |T_j f_j(x)|^{q_j} dx \leq ||T|| \prod_{j=1}^m ||f_j||_{L^{p_j}(\mathbb{R}^{n_j})}^{q_j}.$$

holds for nonnegative  $f_j$  with a finite value of ||T|| satisfying  $||T|| \leq C'[[T]] \prod_{j=1}^{m} (\deg \pi_j)^{q_j/p_j}$  for some C' depending only on n, and  $n_j, k_j, p_j, q_j$ , where  $\deg \pi_j := \sup_{y_j} \deg \pi_j^1(\cdot, y_j) \cdots \deg \pi_j^k(\cdot, y_j)$ .

### Example: Brascamp-Lieb Inequalities Recovered

• If  $\pi_j(x)$  are surjective linear maps from  $\mathbb{R}^n$  to  $\mathbb{R}^{n_j}$ , we can define  $\pi_j(x, y_j) := y_j - \pi_j(x)$  on  $\mathbb{R}^n \times \mathbb{R}^{n_j}$ . Slices  ${}^{\times}\Sigma_j$  are zero-dimensional:  $y_j = \pi_j(x)$  and the multilinear object T simply becomes

$$\int \prod_{j=1}^m f_j(\pi_j(x)) dx.$$

- The measures dσ<sub>j</sub> are simply counting measure and the estimate for ||T|| is comparable to the exact value.
- Side Note: There are some interesting and nontrivial implications for discrete Brascamp-Lieb inequalities which happen when the incidence relation is changed to equal |y<sub>j</sub> - π<sub>j</sub>(x)|<sup>2</sup> - 1 = 0.

For each  $n \ge 2$ ,  $\exists C_n < \infty$  such that every  $f \in L^{(n+1)/n}(\mathbb{R}^n)$  satisfies

$$\left[\int_{\mathbb{R}^n}\left|\int_{\mathbb{S}^{n-1}}f(x+z)d\mathcal{H}^{n-1}(z)\right|^{n+1}dx\right]\leq C_n||f||_{L^{(n+1)/n}(\mathbb{R}^n)}.$$

The spherical averaging operator can be expressed via defining function

$$\pi(x,y) := 1 - |x-y|^2 \ , \ ||d_x\pi(x,y)||^2_\omega = 4\sum_{i=1}^n |\omega_i \cdot (x-y)|^2$$

The endpoint  $L^{(n+1)/n} \rightarrow L^{n+1}$  inequality is a consequence of the bound

$$\int_{\mathbb{S}^{n-1}} \frac{d\mathcal{H}^{n-1}(z)}{\left(\sum_{i=1}^{n} |\omega_i \cdot z|^2\right)^{n/2}} \leq C$$

for all  $|\det(w_1,\ldots,w_n)| = 1$ .

$$\int_{\mathbb{S}^1} \frac{d\mathcal{H}^1(z)}{\left(|z\cdot\omega_1|^2+|z\cdot\omega_2|^2\right)^{s/2}},$$

Reductions allow one to assume that  $\omega_1$  and  $\omega_2$  are orthogonal; after rotation, the integral is comparable to

$$\int_{-1}^{1} \frac{dt}{(\alpha^2 + \alpha^{-2}t^2)^{s/2}}$$

for arbitrary  $\alpha > 0$ . Criterion is not finiteness but uniform bddness.

- If  $\alpha > 1$ , then there is no difficulty bounding the integral uniformly.
- If α < 1, then the integrand is ≥ α<sup>-s</sup> on an interval of size ≈ α<sup>2</sup> around t = 0. Uniform bounds can only hold when s ≤ 2.
- When s = 2, change variables t → α<sup>2</sup>t: the Jacobian gives α<sup>2</sup> in the numerator which exactly cancels the α's in the denominator.
- "Flat spots" on the circle would arrange it so that the set where the integrand is  $\gtrsim \alpha^{-s}$  is much larger than  $\alpha^2$  and reduce the range of s on which uniformity holds.

## Proof of the Main Theorem

#### Visibility Lemma (Guth 2010, Carbery-Valdimarsson 2013)

Given any finitely-supported, nonnegative, integer-valued function M(Q) defined on the lattice of unit cubes  $\Lambda_1 \subset \mathbb{R}^n$ ,  $\exists$  an algebraic hypersurface Z of degree at most  $C_n(\sum_Q M(Q))^{1/n}$  such that

 $\overline{\operatorname{Vis}}[Z \cap Q] \ge M(Q)$  for all  $Q \in \Lambda_1$ ,

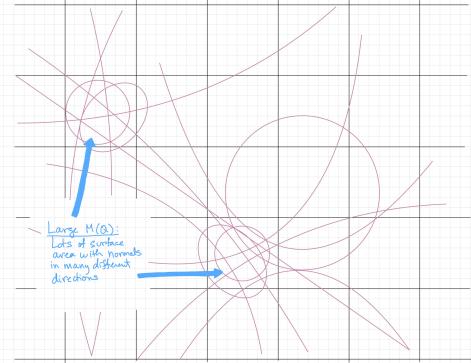
where  $\overline{\text{Vis}}[Z \cap Q]$  is the mollified visibility, i.e., the reciprocal of the Euclidean volume of the convex set of vectors u for which  $||u|| \le 1$  and

$$rac{1}{|B(Z,\epsilon)|}\int_{B(Z,\epsilon)}\int_{Z'\cap Q}|u\cdot \widehat{n}(z')|d\mathcal{H}^{n-1}(z')dZ'\leq 1.$$

Here  $\widehat{n}(z)$  is the unit normal to Z' at the point z'.

#### Point

Inside each Q, Z has at least a prescribed amount of surface area with surface normals in very different directions. The bound on the deg Z is really what matters and is approximately sharp.



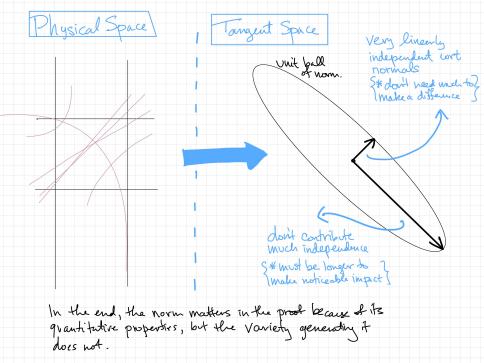
#### Theorem (Zhang 2018)

$$\begin{split} \int_{\Sigma_{\pi}} \int_{Z'_{1}} \cdots \int_{Z'_{n-k}} \chi_{[-1,1]^{(n-k)k}} (z'_{1} - x, \dots, z'_{n-k} - x) \\ \cdot \left| \frac{d\pi(x)}{||d\pi(x)||} \wedge \widehat{n}(z'_{1}) \wedge \dots \wedge \widehat{n}(z'_{n-k}) \right| \\ d\mathcal{H}^{n-1}(z'_{n-k}) \cdots d\mathcal{H}^{n-1}(z'_{1}) d\mathcal{H}^{n-k}(x) \\ &\leq 2^{n(n-k)} \deg \pi \prod_{j=1}^{n-k} \deg Z'_{j}. \end{split}$$

#### Point

Carrying out the inner integrals measures the size of  $d\pi$  in some **unnormalized**, pointwise-varying system  $\{\omega_1^x, \ldots, \omega_n^x\}$  with volume like  $\overline{\text{Vis}}[Z \cap Q]$  on Q. This system doesn't depend on  $\pi$  and

$$\int_{\Sigma_{\pi}} ||d\pi(x)||_{\omega^{ imes}} d\sigma(x) \lesssim (\deg \pi) \left(\sum_{Q} M(Q)
ight)^{rac{n-k}{n}}$$



#### Zhang's Theorem is the discrete version of the following:

#### Lemma (Visibility Lemma, Continuous Version)

For any Borel measurable, nonnegative integrable function  $\psi$  on the box  $B_R := [-R, R)^n$ , there exist Borel measurable  $\mathbb{R}^n$ -valued functions  $\omega_1^{\mathsf{x}}, \ldots, \omega_n^{\mathsf{x}}$  on  $B_R$  such that  $|\det\{\omega_i^{\mathsf{x}}\}_{i=1}^n| = 1$  at all points and a nonnegative Borel-measurable function  $\widetilde{\psi}$  on  $B_R$  equal to  $\psi$  a.e. such that every polynomial map  $\pi : \mathbb{R}^n \to \mathbb{R}^k$  with  $1 \le k \le n$  satisfies

$$\int_{\Sigma_{\pi}\cap B_{R}}\left[\widetilde{\psi}(x)\right]^{\frac{n-k}{n}}||d\pi(x)||_{\omega^{x}}d\sigma(x)\leq C_{n}(\deg\pi)\left[\int_{B_{R}}\psi(x)dx\right]^{\frac{n-k}{n}}$$

The passage from discrete to continuous is mostly predictable:

- Rescale the unit scale result to all dyadic scales and approximate.
- A minor but critical technical point: there's no real control of the ω<sup>i</sup><sub>x</sub>.
- Also note that because we're integrating over sets of measure zero, it's not trivial that  $\widetilde\psi$  can disagree with  $\psi$  on a set of measure zero.

Practically speaking, this lemma plays the role analogous to that of the change of variables formula in Christ's continuum incidence methodology.

## What does this lemma mean?

Let  $f_1(x), \ldots, f_n(x)$  be (arbitrary) coordinate functions that map the box  $B_R$  to some box B' and let  $\psi(x) := |\det \partial f / \partial x|$ .

- We can think of ψ<sup>-1/n</sup>(x)∇f<sub>1</sub>(x),...,ψ<sup>-1/n</sup>(x)∇f<sub>n</sub>(x) as "unit-size" covectors with respect to some exotic norm. The normalization w.r.t. ψ guarantees that the basis is unit volume.
- Now take  $\omega_x^1, \ldots, \omega_x^n$  to be the dual basis of vectors.
- The change of variables formula implies that

$$\int_{\Sigma_{\pi}\cap B_{R}} \left[\psi(x)\right]^{\frac{n-k}{n}} ||d\pi(x)||_{\omega^{\times}} d\sigma(x) \leq C_{n} \mathcal{K} \left[\int_{B_{R}} \psi(x) dx\right]^{\frac{n-k}{n}}$$

where K counts the maximum number of times that a k-dimensional "coordinate affine subspace" meets  $\Sigma_{\pi}$  transversely.

#### **Speculation**

Is this a Monge-Ampère problem in disguise? Are there non-algebraic analogues of this lemma? Extending these ideas to the smooth category would require answers here. Now combine Hölder's inequality, the Fubini-type identity

$$\begin{split} \int_{B_R} [\widetilde{\psi}(x)]^{\frac{n-k_j}{n}} \int_{x \sum_j} f_j(y_j) || d_x \pi_j(x, y_j) ||_{\omega^{\times}} d\sigma_j(y_j) \, dx = \\ \int_{\mathbb{R}^{n_j}} f_j(y_j) \int_{\sum_j^{y_j} \cap B_R} [\widetilde{\psi}(x)]^{\frac{n-k_j}{n}} || d_x \pi_j(x, y_j) ||_{\omega^{\times}} d\sigma_j(x) \, dy_j, \end{split}$$

and a judicious choice of  $\boldsymbol{\psi}$  to conclude that

#### Theorem (The Quantity)

Fix exponents  $r_1, \ldots, r_m \ge 0$  satisfying  $k_1r_1 + \cdots + k_mr_m = n$ , and for each nonnegative integrable Borel function  $f_j$  on  $\mathbb{R}^{n_j}$ ,  $j = 1, \ldots, m$ , let

$$Q(f_1,\ldots,f_m)(x):=\inf_{\substack{\{\omega_i\}_{i=1}^n\\|\det\{\omega_i\}_{i=1}|=1}}\prod_{j=1}^m\left(\int_{x\Sigma_j}f_j(y_j)||d_x\pi_j(x,y_j)||_\omega d\sigma_j(y_j)\right)^{r_j}.$$

There exists a constant  $C_n$  depending only on n such that

$$\int_{[-R,R)^n} Q(f_1,\ldots,f_m)(x) dx \leq \prod_{j=1}^m \left[ C_n(\deg \pi_j) \int_{\mathbb{R}^{n_j}} f_j \right]^{r_j}$$

#### Important

We are **not** going to apply Brascamp-Lieb inequalities at any point. These are actually already encoded in the strange quantity Q.

The integrals appearing in Q have undesired factors of  $||d_x \pi_j(x, y_j)||_{\omega}$ . We can eliminate these by making a bound of Q from below by Hölder:

$$\begin{split} \int_{x\Sigma} f(y)w(x,y)d\sigma(y) &\leq \left[\int_{x\Sigma} |f(y)|^p ||d_x \pi(x,y)||_\omega d\sigma(y)\right]^{\frac{1}{p}} \\ &\cdot \left[\int_{x\Sigma} \frac{|w(x,y)|^{p'} d\sigma(y)}{||d_x \pi(x,y)||_\omega^{p'-1}}\right]^{\frac{1}{p'}}. \end{split}$$

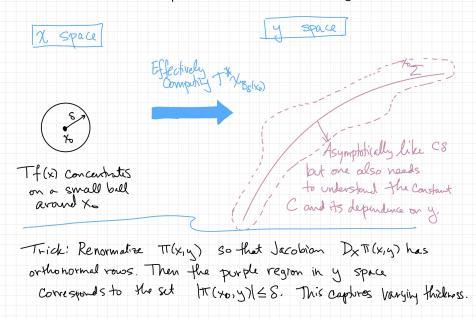
It follows that

0

$$\begin{split} \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} |T_{j}f_{j}(x)|^{q_{j}} dx &\leq ||T|| \prod_{j=1}^{m} ||f_{j}||_{L^{p_{j}}(\mathbb{R}^{n_{j}})}^{q_{j}}, \\ ||T|| &\lesssim \prod_{j: p_{j}=1} \sup_{y_{j} \in ^{x}\Sigma_{j}} \frac{|w_{j}(x, y_{j})|^{q_{j}}}{||d_{x}\pi_{j}(x, y_{j})||_{\omega}^{q_{j}}} \prod_{j: p_{j}>1} \left[ \int_{^{x}\Sigma_{j}} \frac{|w_{j}(x, y_{j})|^{p_{j}'} d\sigma_{j}(y_{j})}{||d_{x}\pi_{j}(x, y_{j})||_{\omega}^{p_{j}'-1}} \right]^{\frac{q_{j}}{p_{j}'}} \\ \text{ver all choices of } \{\omega_{i}\}_{i=1}^{n}. \end{split}$$

## The Reverse Direction

Enhanced Knapp Example Geometry



The  $\delta$ -neighborhood of  ${}^{x_0}\Sigma_j$  is roughly where  $\pi_j(x_0, y) < \delta$ . To be more precise, we renormalize  $\pi_j$  so that the rows of the Jacobian  $D_x \pi_j(x_0, y)$  are orthonormal on  ${}^{x_0}\Sigma_j$ . This can be accomplished by replacing  $\pi_j$  by  $\overline{\pi}_j := (D_x \pi_j (D_x \pi_j)^T)^{-1/2} \pi_j$ . The test functions used are

$$f_{j,\delta}(y) := \delta^{-\frac{k}{p_j}} \chi_{||\overline{\pi}_j(x_0,y)|| < \delta} \left[ \frac{w_j(x_0,y)}{||d_x \pi_j(x_0,y)||} \right]^{p_j' - 1}$$

$$T_j f_{j,\delta}(y) \sim \delta^{-rac{k}{p_j}} \int_{x_0 \Sigma_j} rac{|w_j(x_0,y)|^{p_j'} d\sigma_j(y)}{||d_x \pi_j(x_0,y)||^{p_j'-1}}$$

for  $x \in B_{\delta}(x_0)$ . Also

$$\begin{split} ||f_{j,\delta}||_{\rho_{j}}^{p} &= \delta^{-k} \int_{|u|<\delta} \int_{\overline{\pi}_{j}(x_{0},y)=u} \left[ \frac{w_{j}(x_{0},y)}{||d_{x}\pi_{j}(x_{0},y)||} \right]^{\rho_{j}(p_{j}'-1)} \frac{d\mathcal{H}^{n_{j}-k}(y)}{||d_{y}\overline{\pi}_{j}(x_{0},y)||} du \\ &\sim c_{k} \int_{\overline{\pi}_{j}(x_{0},y)=0} \left[ \frac{w_{j}(x_{0},y)}{||d_{x}\pi_{j}(x_{0},y)||} \right]^{p_{j}'} \frac{||d_{x}\pi_{j}(x_{0},y)||d\mathcal{H}^{n_{j}-k}(y)}{||d_{y}\pi_{j}(x_{0},y)||} \end{split}$$

Work in any coordinates you like modulo linear change of variables, then optimize over the choice.

## What's Next

## Some Natural Questions

- This brings us close but not all the way to positively understanding what curvature is "supposed" to be, particularly in the case of the nicest operators in intermediate dimensions.
- Algebra versus Analysis
  - To what extent can the class of polynomials be replaced by something broader? (Nash functions; turns out to be important)
  - Approximating smooth operators by algebraic ones is possible because we have good, explicit dependence of constants on degree.
- How do you compute the key quantity anyway? (Restricted strong type is a comfortable next step.) Geometrically, what is being quantified?
- Bounds for inequalities off the scaling line? Weighted inequalities may be able to help.

## **Thank You**