The nonlinear Brascamp-Lieb inequality

Neal Bez
Saitama University

Based on joint papers with
Jon Bennett, Stefan Buschenhenke, Michael Cowling, Taryn Flock and Sanghyuk Lee

10 June 2022

The Brascamp-Lieb inequality

The Brascamp-Lieb inequality

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x \leq \mathrm{B}(\mathbf{L}, \mathbf{c}) \prod_{j=1}^{m}(& \left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{c_{j}} \\
& f_{j} \in L^{1}\left(\mathbb{R}^{n_{j}}\right), f_{j} \geq 0
\end{aligned}
$$

$L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$
linear surjections
$c_{j} \in[0,1]$
(L, c): Brascamp-Lieb data
$\mathbf{L}=\left(L_{j}\right)_{j=1}^{m}, \mathbf{c}=\left(c_{j}\right)_{j=1}^{m}$
$\mathrm{B}(\mathbf{L}, \mathbf{c}) \in[0, \infty]$: Brascamp-Lieb constant best constant

$$
\mathrm{B}(\mathbf{L}, \mathbf{c})=\sup _{\int f_{j}=1} \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x
$$

$\mathrm{B}(\mathbf{L}, \mathbf{c})<\infty \Rightarrow n=\sum_{j=1}^{m} c_{j} n_{j}$

$$
f_{j} \rightsquigarrow f_{j}(R \cdot)
$$

Characterisation of finiteness

Theorem (Bennett-Carbery-Christ-Tao)
$\mathrm{B}(\mathrm{L}, \mathbf{c})<\infty$ if and only if
(i) $n=\sum_{j=1}^{m} c_{j} n_{j}$
(scaling)
(ii) $\operatorname{dim}(V) \leq \sum_{j=1}^{m} c_{j} \operatorname{dim}\left(L_{j} V\right)$ for all $V \leq \mathbb{R}^{n}$ (dimension)

Special role of gaussians

Theorem (Lieb)

$$
\mathrm{B}(\mathbf{L}, \mathbf{c})=\sup _{A_{j}>0} \frac{\prod_{j=1}^{m} \operatorname{det}\left(A_{j}\right)^{c_{j} / 2}}{\operatorname{det}\left(\sum_{j=1}^{m} c_{j} L_{j}^{*} A_{j} L_{j}\right)^{1 / 2}}
$$

Note

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x=\frac{\prod_{j=1}^{m} \operatorname{det}\left(A_{j}\right)^{c_{j} / 2}}{\operatorname{det}\left(\sum_{j=1}^{m} c_{j} L_{j}^{*} A_{j} L_{j}\right)^{1 / 2}}
$$

where

$$
f_{j}(x)=\left(\operatorname{det} A_{j}\right)^{\frac{1}{2}} \exp \left(-\pi\left\langle A_{j} x, x\right\rangle\right)
$$

The Loomis-Whitney inequality

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} f_{j}\left(\Pi_{j} x\right)^{\frac{1}{n-1}} \mathrm{~d} x \leq \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{\frac{1}{n-1}}
$$

Here $\Pi_{j} x=\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)$
$>\operatorname{ker} \Pi_{j}=\operatorname{span}\left(e_{j}\right)$

- If $\operatorname{ker} \widetilde{\Pi}_{j}=\operatorname{span}\left(v_{j}\right)$ and $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=\mathbb{R}^{n}$ then

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} f_{j}\left(\widetilde{\Pi}_{j} x\right)^{\frac{1}{n-1}} \mathrm{~d} x \leq C \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{\frac{1}{n-1}}
$$

Theorem (Guth)

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(\sum_{k=1}^{N_{j}} 1_{T_{j, k}}\right)^{\frac{1}{n-1}} \leq C \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}} \\
& T_{j, k}: 1 \text {-tube, }\left|v_{j, k}-e_{j}\right| \leq c \ll 1
\end{aligned}
$$

Visibility lemma and factorisation (see also Carbery-Valdimarsson)

Theorem (Bennett-Carbery-Tao)
$\forall \varepsilon>0, \exists C_{\varepsilon}<\infty$ s.t.

$$
\int_{B(0, R)} \prod_{j=1}^{n}\left(\sum_{k=1}^{N_{j}} 1_{T_{j, k}}\right)^{\frac{1}{n-1}} \leq C_{\varepsilon} R^{\varepsilon} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}}
$$

$$
T_{j, k}: 1 \text {-tube, }\left|v_{j, k}-e_{j}\right| \leq c \ll 1
$$

Heat-flow (Bennett-Carbery-Tao); Induction-on-scales (Guth)
k_{j}-plane version (Bennett-Carbery-Tao, Bennett-B-Flock-Lee, Zhang)

The nonlinear Brascamp-Lieb inequality

The nonlinear Brascamp-Lieb inequality

$$
\begin{array}{r}
\int_{U} \prod_{j=1}^{m} f_{j}\left(\varphi_{j}(x)\right)^{c_{j}} \mathrm{~d} x \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{c_{j}} \quad(\mathrm{NBL}) \tag{NBL}\\
f_{j} \in L^{1}\left(\mathbb{R}^{n_{j}}\right), f_{j} \geq 0
\end{array}
$$

$\varphi_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$
C^{2} submersion near 0
$U \subseteq \mathbb{R}^{n}$

Conjecture (local version)
If $\mathrm{B}\left(\mathrm{L}^{0}\right)<\infty$ where $L_{j}^{0}=\mathrm{d} \varphi_{j}(0)$, then there exists a neighbourhood $U \ni 0$ and $C<\infty$ such that (NBL) holds

Nonlinear Loomis-Whitney inequality (Bennett-Carbery-Wright)

Conjecture holds with $L_{j}^{0}=\Pi_{j}$.

- B-C-W proof: Christ's method of refinements + tensorisation
- Further proofs: Bejenaru-Herr-Tataru (induction-on-scales), Koch-Steinerberger, Carbery-Hänninen-Valdimarsson (under C^{1} regularity, holds with $C=1+\varepsilon$ on a neighbourhood U_{ε})
- Nonlinear LW yields multilinear singular convolution estimates and these were applied to wellposedness of Zakharov system on $\mathbb{R}^{2} \times \mathbb{R}$

$$
\begin{aligned}
i \partial_{t} u+\Delta u & =v u \\
\square v & =\Delta|u|^{2}
\end{aligned}
$$

by Bejenaru-Herr-Holmer-Tataru

- Further applications of nonlinear LW (type) : Bejenaru-Herr, Kinoshita, Hirayama-Kinoshita, Kinoshita-Schippa,...

Partition $U=\bigcup Q$, where cube Q has sidelength $\sqrt{\delta}$ and centre x_{Q}
Write

$$
\int_{U} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}=\sum_{Q} \int_{Q} \prod_{j=1}^{m}\left(\left(f_{j} 1_{\varphi_{j}}(Q)\right) \circ \varphi_{j}\right)^{c_{j}}
$$

Since φ_{j} is C^{2}

$$
\varphi_{j}(x)=\varphi_{j}\left(x_{Q}\right)+L_{j}^{x_{Q}}\left(x-x_{Q}\right)+O(\delta)
$$

where $L_{j}^{x}:=\mathrm{d} \varphi_{j}(x)$
Want to replace $\left(f_{j} 1_{\varphi_{j}(Q)}\right) \circ \varphi_{j}$ by $\left(f_{j} 1_{\varphi_{j}(Q)}\right) \circ L_{j}^{x_{Q}}$ (modulo translations)
Let $0<\delta \leq 1$ and

$$
L^{1}(\delta)=\left\{f \in L_{+}^{1}: \frac{1}{2} f(y) \leq f(x) \leq 2 f(y) \text { whenever }|x-y| \leq \delta\right\}
$$

E.g. $P_{c \delta} * f \in L^{1}(\delta)$ for general $f \in L_{+}^{1}$

Then (modulo translations) for $f_{j} \in L^{1}(\delta)$

$$
\begin{aligned}
\int_{U} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}} & =\sum_{Q} \int_{Q} \prod_{j=1}^{m}\left(\left(f_{j} 1_{\varphi_{j}(Q)}\right) \circ \varphi_{j}\right)^{c_{j}} \\
& \lesssim \sum_{Q} \int_{Q} \prod_{j=1}^{m}\left(\left(f_{j} 1_{\varphi_{j}(Q)}\right) \circ L_{j}^{x_{Q}}\right)^{c_{j}}
\end{aligned}
$$

where $L_{j}^{x}:=\mathrm{d} \varphi_{j}(x)$
We are assuming $\mathrm{B}\left(\mathrm{L}^{0}\right)<\infty$, to proceed we need

$$
\mathrm{B}\left(\mathbf{L}^{x}\right) \lesssim 1 \quad(x \in U)
$$

Since φ_{j} is C^{2}, \mathbf{L}^{x} will be close to \mathbf{L}^{0}
Local boundedness of BL constant (Bennett-B-Flock-Lee)
Suppose $\mathrm{B}\left(\mathrm{L}^{0}\right)<\infty$. Then $\exists \delta>0$ and $\exists C<\infty$ s.t.

$$
\mathrm{B}(\mathrm{~L}) \leq C \quad \text { whenever }\left\|\mathbf{L}-\mathbf{L}^{0}\right\| \leq \delta
$$

Partition $U=\bigcup Q$, where cube Q has sidelength $\sqrt{\delta}$ and centre x_{Q}
Then (modulo translations) for $f_{j} \in L^{1}(\delta)$

$$
\begin{aligned}
\int_{U} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}} & =\sum_{Q} \int_{Q} \prod_{j=1}^{m}\left(\left(f_{j} 1_{\varphi_{j}}(Q)\right) \circ \varphi_{j}\right)^{c_{j}} \\
& \lesssim \sum_{Q} \int_{Q} \prod_{j=1}^{m}\left(\left(f_{j} 1_{\varphi_{j}(Q)}\right) \circ \mathrm{d} \varphi_{j}\left(x_{Q}\right)\right)^{c_{j}} \\
& \lesssim \sum_{Q} \prod_{j=1}^{m}\left(\int_{\varphi_{j}(Q)} f_{j}\right)^{c_{j}}
\end{aligned}
$$

We have $\int_{\varphi_{j}(Q)} f_{j} \lesssim \delta^{n_{j} / 2} P_{\sqrt{\delta}} * f_{j}\left(\varphi_{j}\left(x_{Q}\right)\right)$ uniformly in $x_{Q} \in Q$

Induction-on-scales

We obtain

$$
\mathcal{C}(\delta) \leq C_{0} \mathcal{C}(\sqrt{\delta})
$$

for some constant $C_{0}>1$
Here

$$
\mathcal{C}(\delta)=\sup _{\substack{\int f_{j}=1 \\ f_{j} \in L^{1}(\delta)}} \int_{U} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}
$$

Iterating $\left(O\left(\log \log \left(\frac{1}{\delta}\right)\right)\right.$ times $)$ gives

$$
\mathcal{C}(\delta) \lesssim(\log (1 / \delta))^{\kappa}
$$

See Bennett-B-Flock-Lee

A tighter induction

For a given data (\mathbf{L}, \mathbf{c}), define the functional

$$
\Lambda(\mathbf{f})=\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{c_{j}} \quad\left(\int f_{j}=1\right)
$$

Setting $h_{j}^{x}(z)=f_{j}(z) g_{j}\left(L_{j} x-z\right)$, we have

$$
\begin{aligned}
\Lambda(\mathbf{f}) \Lambda(\mathbf{g}) & =\int \prod_{j} f_{j}\left(L_{j} y\right)^{c_{j}} \int \prod_{j} g_{j}\left(L_{j}(x-y)\right)^{c_{j}} \mathrm{~d} x \mathrm{~d} y \\
& =\int\left(\int \prod_{j}\left(h_{j}^{x}\left(L_{j} y\right)\right)^{c_{j}} \mathrm{~d} y\right) \mathrm{d} x \\
& =\int \Lambda\left(\mathbf{h}^{x}\right) \prod_{j}\left(f_{j} * g_{j}\left(L_{j} x\right)\right)^{c_{j}} \mathrm{~d} x \\
& \leq \sup _{x} \Lambda\left(\mathbf{h}^{x}\right) \int \prod_{j}\left(f_{j} * g_{j}\left(L_{j} x\right)\right)^{c_{j}} \mathrm{~d} x \\
& =\sup _{x} \Lambda\left(\mathbf{h}^{x}\right) \Lambda(\mathbf{f} * \mathbf{g})
\end{aligned}
$$

Ball's inequality

If $h_{j}^{x}(z)=f_{j}(z) g_{j}\left(L_{j} x-z\right)$ then

$$
\Lambda(\mathbf{f}) \leq \frac{\sup _{x} \Lambda\left(\mathbf{h}^{x}\right) \Lambda(\mathbf{f} * \mathbf{g})}{\Lambda(\mathbf{g})}
$$

- If we additionally assume that \mathbf{g} is a maximiser then

$$
\Lambda(\mathbf{f}) \leq \sup _{x} \Lambda\left(\mathbf{h}^{x}\right)
$$

- \mathbf{h}^{x} is a certain "localised" version \mathbf{f} (w.r.t. maximiser \mathbf{g})
- If g_{j} has compact (tiny) support near 0 , then $h_{j}^{x} \approx f_{j}$ near $L_{j} x$
- Strong indication we should try to induct on size of suppf
$>\operatorname{Or}, \Lambda(\mathrm{f}) \leq \Lambda(\mathrm{f} * \mathrm{~g}) \rightsquigarrow$ induct on scale of constancy of f

Let $F=\prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}$ and define

$$
\mathcal{C}(u, \delta)=\sup _{\int f_{j}=1} \int_{B(u, \delta)} F
$$

Roughly, hope for $\mathcal{C}(u, \delta) \leq\left(1+\delta^{\beta}\right) \mathcal{C}\left(u, \delta^{\alpha}\right)$, where $\alpha \in(1,2), \beta>0$
Now

$$
\mathrm{B}\left(\mathrm{~L}^{u}\right) \int_{B(u, \delta)} F(y) \mathrm{d} y=\int_{B(u, \delta)} F(y) \mathrm{d} y \int_{\mathbb{R}^{n}} \prod_{j} g_{\delta^{\alpha}, j}^{u}\left(L_{j}^{u} x\right)^{c_{j}} \mathrm{~d} x
$$

if \mathbf{g}^{u} is a gaussian maximiser for \mathbf{L}^{u}, and

$$
g_{\delta^{\alpha}, j}^{u}(w)=\delta^{-\alpha^{\prime}} g_{j}^{u}\left(\delta^{-\alpha^{\prime}} w\right) \quad\left(\alpha^{\prime}>\alpha\right)
$$

Recall $L_{j}^{u}=\mathrm{d} \varphi_{j}(u)$

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~L}^{u}\right) \int_{B(u, \delta)} \prod_{j=1}^{m} f_{j}\left(\varphi_{j}(y)\right)^{c_{j}} \mathrm{~d} y \\
& =\int_{B(u, \delta)} F(y) \mathrm{d} y \int_{\mathbb{R}^{n}} \prod_{j} g_{\delta^{\alpha}, j}^{u}\left(L_{j}^{u} x\right)^{c_{j}} \mathrm{~d} x \\
& \leq\left(1+\delta^{\beta}\right) \int_{B(u, \delta)} F(y) \mathrm{d} y \int_{B\left(0, \delta^{\alpha}\right)} \prod_{j} g_{\delta^{\alpha}, j}^{u}\left(L_{j}^{u} x\right)^{c_{j}} \mathrm{~d} x \\
& =\left(1+\delta^{\beta}\right) \int_{B(u, \delta)} F(y) \int_{B\left(y, \delta^{\alpha}\right)} \prod_{j} g_{\delta^{\alpha}, j}^{u}\left(L_{j}^{u}(x-y)\right)^{c_{j}} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

Now $L_{j}^{u}(x-y)=\varphi_{j}(u)+L_{j}^{u}(x-u)-\varphi_{j}(y)+O\left(\delta^{2}\right)$ so

$$
\cdots \leq\left(1+\delta^{\beta}\right)^{2} \int_{B(u, 2 \delta)} \int_{B\left(x, \delta^{\alpha}\right)} \prod_{j} h_{j}^{x}\left(\varphi_{j}(y)\right)^{c_{j}} \mathrm{~d} y \mathrm{~d} x
$$

where $h_{j}^{x}(z)=f_{j}(z) g_{\delta^{\alpha}, j}^{u}\left(\varphi_{j}(u)+L_{j}^{u}(x-u)-z\right)$

So, with $h_{j}^{x}(z)=f_{j}(z) g_{\delta^{\alpha}, j}^{u}\left(\varphi_{j}(u)+L_{j}^{u}(x-u)-z\right)$,

$$
\begin{aligned}
& \mathrm{B}\left(\mathbf{L}^{u}\right) \int_{B(u, \delta)} \prod_{j=1}^{m} f_{j}\left(\varphi_{j}(y)\right)^{c_{j}} \mathrm{~d} y \\
& \leq\left(1+\delta^{\beta}\right) \int_{B(u, 2 \delta)} \int_{B\left(x, \delta^{\alpha}\right)} \prod_{j} h_{j}^{x}\left(\varphi_{j}(y)\right)^{c_{j}} \mathrm{~d} y \mathrm{~d} x \\
& \leq\left(1+\delta^{\beta}\right) \int_{B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right) \prod_{j}\left(\int h_{j}^{x}\right)^{c_{j}} \mathrm{~d} x
\end{aligned}
$$

so (modulo translations)

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~L}^{u}\right) \int_{B(u, \delta)} \prod_{j=1}^{m} f_{j}\left(\varphi_{j}(y)\right)^{c_{j}} \mathrm{~d} y \\
& \leq\left(1+\delta^{\beta}\right) \sup _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right) \int \prod_{j}\left(f_{j} * g_{\delta^{\alpha}, j}^{u}\left(L_{j}^{u} x\right)\right)^{c_{j}} \mathrm{~d} x
\end{aligned}
$$

An argument like the above gives

$$
\int_{B(u, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}} \leq\left(1+\delta^{\beta}\right) \sup _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right)
$$

and thus

$$
\mathcal{C}(u, \delta) \leq\left(1+\delta^{\beta}\right) \sup _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right)
$$

- At the very start we assumed gaussian maximisers exist - not always the case!
- Lieb's theorem guarantees gaussian near-maximisers but to keep the argument tight, we need a quantitative version of Lieb's theorem
- Using

$$
\mathcal{C}(u, \delta) \leq\left(1+\delta^{\beta}\right) \max _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right)
$$

want to zoom in enough to do something like

$$
\begin{array}{r}
f_{j}\left(\varphi_{j}(x)\right) \leq \kappa f_{j}\left(\mathrm{~d} \varphi_{j}(u) x\right) \quad(x \in B(u, \delta)) \\
\text { Recall } \mathcal{C}(u, \delta)=\sup _{\int f_{j}=1} \int_{B(u, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}
\end{array}
$$

- For this, need f_{j} "locally constant" so ... need more parameters (functions κ-constant at scale μ)

Also, to keep things tight, we use
Theorem (Bennett-B-Cowling-Flock)
$\mathrm{L} \mapsto \mathrm{B}(\mathrm{L})$ is continuous

Theorem (Bennett-B-Buschenhenke-Cowling-Flock)

Suppose $\varphi_{j}: \mathbb{R} \rightarrow \mathbb{R}^{n_{j}}$ is a C^{2} submersion near 0 s.t. $\mathrm{B}\left(\mathrm{L}^{\mathbf{0}}\right)<\infty$, where $L_{j}^{0}=\mathrm{d} \varphi_{j}(0)$.
Then $\forall \varepsilon>0, \exists U \ni 0$ s.t.

$$
\int_{U} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}} \leq(1+\varepsilon) \mathrm{B}\left(\mathbf{L}^{0}\right) \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{c_{j}}
$$

- Yields rather general multilinear singular convolution estimates (when combined with Fourier duality of the BL inequality)
- Local version of Young convolution on Lie groups (addressing a question of Cowling-Martini-Müller-Parcet)
- Exciting recent developments: Duncan (an alternative viewpoint on nonlinear Ball's inequality, global nonlinear BL),...

