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1. SL(2,R) and its representations

1.1. Introduction. I begin by thanking the organisers of this conference, who offered me
the opportunity to speak here.

Harmonic analysts often analyse and synthesise functions on spaces with natural symme-
tries, such as translations or rotations; we often try to decompose in terms of functions which
behave nicely relative to these symmetries. For instance, complex exponentials behave nicely
under translations, and spherical harmonics behave nicely under rotations. Group represen-
tations has two parts. One is about understanding the functional analysis that underlies
Fourier analysis and spherical harmonic expansions and similar expansions. The other is
very specific, and is about the particular kind of special functions that arise in the study
of particular symmetries. We will see a little of both. We will also see connections with
fractional integrals, with van der Corput’s lemma, and with partial differential equations.

These three lectures will focus on:

• unitary representations of G := SL(2,R);
• matrix coefficient decay and the Kunze–Stein phenomenon;
• a proof and some open problems.

The new content of these lectures is based on four papers: [ACD18, ACD19, BCNT, C].
Harmonic analysis on the group SL(2,R), often abbreviated to G here, has a long his-

tory. Bargmann [Ba47] described its representations and Plancherel formula. Ehrenpreis
and Mautner [EM55a, EM55b] used it to clarify various conjectures in abstract harmonic
analysis (though the similarity problem is still unresolved). Kunze and Stein [KS60] devel-
oped the work of Ehrenpreis and Mautner and proved the convolution inclusion

Lp(G) ∗ L2(G) ⊆ L2(G).

In recent times, this has been used in the study of dispersive equations on spaces of nonneg-
ative curvature, such as hyperbolic spaces.

In the next two lectures we are going to use harmonic analysis on G to prove dispersive
estimates for functions on R and on Rn.

For those unfamiliar with noncommutative harmonic analysis, I point out that the defini-
tions and many of the basic theorems are similar to those in euclidean space. For instance,
we define convolution:

f1 ∗ f2(x) =

∫
G

f1(y) f2(y−1x) dy.
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Actually, L1(G) is a Banach star-algebra, when we define

f ∗(x) = f̄(x−1).

1.2. Structure of SL(2,R). We now describe SL(2,R), abbreviated to G for convenience,
and various decompositions and representations thereof. We adopt an approach learnt from
R. A. Kunze in a course in Perugia many years ago, which may be found in Astengo, Cowling
and Di Blasio [ACD18]. First, define subgroups K, M , A, N and N̄ of G as follows:

K = {kθ : θ ∈ R} M = {m±}
A =

{
as : s ∈ R+

}
N = {nb : b ∈ R} N̄ = {n̄c : c ∈ R} ,

where

kθ =

(
cos θ sin θ
− sin θ cos θ

)
m± =

(
±1 0
0 ±1

)
as =

(
s 0
0 s−1

)
nb =

(
1 b
0 1

)
n̄c =

(
1 0
c 1

)
.

We write integrals in two ways, for instance,∫
K

u(k) dk or

∫ π

−π
u(kθ) dθ.

There are a number of standard decompositions of G. The Iwasawa decomposition (which
is based on the Gram–Schmidt process, and is called the QR decomposition by applied
mathematicians and engineers) asserts that every element x of G may be expressed uniquely
in the form x = nak, where n ∈ N , a ∈ A and k ∈ K.

Another important decomposition, the Cartan decomposition, states that every element
of G may be written in the form kθaskφ, where s ≥ 1; if x ∈ K then s = 1 and there are
many choices for kθ and kφ; otherwise, the decomposition is unique up to changes in θ and φ
by adding (or subtracting) π to both or 2π to either. This result is derived using the polar
decomposition of a matrix. The Haar measure of G may be written in polar coordinates:∫

G

u(x) dx =

∫ π

−π

∫ π

−π

∫ ∞
0

u(kθaskφ) sinh(r) dθ dφ ds.

This formula gives rise to a similar formula for the measure in hyperbolic space, that implies
that the measure of the ball of radius s grows exponentially in s as s→∞.

Bargmann [Ba47] identified four types of irreducible unitary representations ofG, called the
principal series, the discrete series, the complementary series, and the trivial representation.
We describe these below. Amongst many other things, Bargmann found explicit formulae
in terms of special functions for the “generalised spherical functions”, that is the matrix
coefficients 〈ρ(·)f, f ′〉 of these representations ρ when the vectors f and f ′ are particular
normalised vectors that transform by scalars under the action of K, that is, ρ(kφ)f = einφf
and ρ(kθ)f

′ = eimθf ′. These led to asymptotic formulae of the form

〈ρ(kθarkφ)f, f ′〉 � C(ρ,m, n) exp(−λr) as r → +∞,
or of a slightly more general form; the parameter λ depends on which representation is under
consideration. These formulae were instrumental in Bargmann’s proof of the Plancherel
formula, which involves the representations of the principal and discrete series only.



HARMONIC ANALYSIS AND REPRESENTATION THEORY 3

1.3. Action of SL(2,R) on homogeneous functions on R2. Consider R2 as a space of
row vectors, and let G act on R2 by right multiplication. Then G fixes the origin and acts
transitively on R2 \ {(0, 0)}. Further, if

x =

(
a b
c d

)
∈ G

then (1, 0)x = (1, 0) if and only if a = 1 and b = 0; equivalently,

x =

(
1 0
c 1

)
∈ N̄ .

Consequently we may identify N̄\G with R2 \ {0}.
Fix ζ ∈ C and ε ∈ {0, 1}. Consider the space Vζ,ε of smooth functions on R2 \{(0, 0)} that

satisfy the homogeneity and parity conditions

f(δv) = sgnε(δ) |δ|2ζ−1 f(v) ∀v ∈ R2 \ {(0, 0)} ∀δ ∈ R \ {0}. (1)

We equip Vζ,ε with the topology of locally uniform convergence of all partial derivatives. The
partial derivatives may be taken in polar coordinates; for homogeneous functions, the radial
derivatives are easy to deal with, and questions of convergence boil down to the behaviour
of the angular derivatives on the unit circle.

Since G acts on R2 \ {(0, 0)} and commutes with scalar multiplication, G acts on Vζ,ε by
the formula

ρζ,ε(x)f(v) = f(vx) ∀v ∈ R2 \ {(0, 0)} ∀x ∈ G.
This is a group representation, that is,

ρζ,ε(x) = ρζ,ε(x)ρζ,ε(x) and ρζ,ε(e) = I,

where e is the group identity and I the identity operator.
We obtain the “compact picture” of the representation by restricting v to lie on the unit

circle {(s, t) ∈ R2 : s2 + t2 = 1}, and observing that

ρζ,ε(x)f(v) = |vx|2ζ−1 f(|vx|−1 vx).

Similarly, we obtain the “noncompact picture” by restricting v to lie on the vertical line
{(1, t) : t ∈ R}, and observing that

ρζ,ε(x)f(1, t) = f((1, t)x) = f(a+ tc, b+ td) = sgnε(a+ tc) |a+ tc|2ζ−1 f(1, x · t),
where

x =

(
a b
c d

)
and x · t =

b+ dt

a+ ct
.

Clearly a little care is required “at infinity” in this version of the representation.
The space Vζ,ε is spanned (topologically) by functions whose restrictions to the unit circle

are complex exponentials. Let fζ,µ be the function in Vζ,ε determined by the condition that

fζ,µ(cos θ, sin θ) =
1

π1/2
eiµθ ∀θ ∈ R, (2)

with the restriction that µ− ε must be even; every function in Vζ,ε is the limit of finite linear
combinations of the functions fζ,µ. It is easy to check that

fζ,µ(1, t) =
1

π1/2
(1 + it)(2ζ−1+µ)/2(1− it)(2ζ−1−µ)/2, (3)
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and so in particular, fζ,−µ(1, t) = fζ,µ(1,−t) for all t ∈ R.

Lemma 1.1. Every function in Vζ,ε is a sum
∑

µ∈2Z+ε aµ fζ,µ, where the coefficients aµ tend
to zero faster than any polynomial in µ. Conversely, every such sum is a function in Vζ,ε.

Proof. Every function in Vζ,ε is determined by its restriction to the unit circle, and the Fourier
series of smooth functions on the unit circle are exactly of this form. �

Lemma 1.2. Suppose that f ∈ Vζ,ε and g ∈ V−ζ,ε. Then∫ ∞
−∞

f(1, t) g(1, t) dt =

∫ π/2

−π/2
f(cos θ, sin θ) g(cos θ, sin θ) dθ

=
1

2

∫ π

−π
f(cos θ, sin θ) g(cos θ, sin θ) dθ.R

We define the pairing (f, g) to be any of the above integrals, then

(ρζ,ε(x)f, ρ−ζ,ε(x)g) = (f, g) ∀x ∈ G, (4)

or equivalently,
ρ−ζ,ε(x)> = ρζ,ε(x

−1) ∀x ∈ G,
where ρ−ζ,ε(x)> denotes the transpose of ρ−ζ,ε(x).

Proof. The first integral is equal to the second by the change of variables t = tan(θ), and the
second is equal to the third because fg is even.

It is obvious that (4) holds when x ∈ NA from a change of variable in the integral over
R and when x ∈ K from a change of variable in the integral over [−π, π]. By the Iwasawa
decomposition, G = NAK, and so (4) holds for all x ∈ G. This implies that

(ρ−ζ,ε(x)>ρζ,ε(x)f, g) = (f, g) ∀x ∈ G.
The bilinear form (·, ·) gives us a duality between Vζ,ε and V−ζ,ε. While V−ζ,ε is smaller
than the topological dual space of Vζ,ε, it is weak-star dense in the dual space, and the set
{(f, g) : g ∈ V−ζ,ε} determines f in Vζ,ε. Thus ρ−ζ,ε(x)>ρζ,ε(x) is the identity operator on
Vζ,ε, and hence ρ−ζ,ε(x)> = ρζ,ε(x

−1). �

Note that our normalisation of fζ,µ means that (fζ,µ, f−ζ,ν) is equal to 1 if µ + ν = 0 and
to 0 otherwise.

For future use, we note that there is a family of functions φζ on G, the zonal spherical
functions, associated to the representations ρζ,0, which are left- and right-K-invariant, and
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on A are given by the formula

φζ(ar) = (ρζ,0(ar)fζ,0, f−ζ,0)

=
1

π

∫ ∞
−∞

fζ,0((1, t)ar) f−ζ,0(1, t) dt

=
1

π

∫ ∞
−∞

fζ,0(er, e−rt) f−ζ,0(1, t) dt

=
e(2ζ−1)

π

∫ ∞
−∞

fζ,0(1, e−2rt) f−ζ,0(1, t) dt

=
e(2ζ−1)r

π

∫ ∞
−∞

1

(1 + e−4rt2)ζ−1/2

1

(1 + t2)−ζ−1/2
dt.

(5)

These functions depend analytically on ζ and satisfy the identity φζ = φ−ζ . As shown by
Bargmann [Ba47], it is possible to find series expansions for the functions φζ(ar) when r is
close to ∞. More precisely, φζ(ar) is the sum of two terms, which are asymptotic to

c(ζ)e2ζ−1 and c(−ζ)e−2ζ−1.

The remainder terms involve positive integer powers of e−r, and c is a “known” function.
When Re(ζ) is positive, only one term is significant, while if Re(ζ) = 0, both terms are

important. At 0, c(ζ) behaves like C/ζ, and by l’Hôpital’s rule, φ0(ar) behaves like 4Cre−r.

1.4. The principal series.

Corollary 1.3. Suppose that η ∈ R. The operators ρiη,ε(x) are unitary for all x ∈ G when
Viη,ε is equipped with the inner product 〈f, f ′〉 := (f, f̄ ′) and completed to a Hilbert space.

Proof. Evidently, 〈·, ·〉 is an inner product on Viη,ε. Further, (ρiη,εf
′)¯ = ρ−iη,εf̄

′, and so

〈ρiη,ε(x)f, ρiη,ε(x)f ′〉 = (ρiη,ε(x)f, ρ−iη,ε(x)f̄ ′) = (f, f̄ ′) = 〈f, f ′〉 ,
and each ρiη,ε(x) is unitary. �

This Hilbert space may be identified with the standard L2 space on the unit circle or on
the line {(1, t) : t ∈ R}. We may show similarly that the representations ρζ,ε act isometrically
on Lp spaces when p(Re(2ζ)− 1) = 2; see [ACD18].

1.5. The complementary series.

Lemma 1.4. Suppose that f and f ′ are continuous on R2 \ {(0, 0)} and satisfy the homo-
geneity condition (1), where −1/2 < Re ζ < 0. Then∫ ∞

−∞

∫ ∞
−∞

f(1, t) f ′(1, u) sgnε(u− t) |u− t|−1−2ζ dt du (6)

=

∫ π/2

−π/2

∫ π/2

−π/2
f(cos θ, sin θ) f ′(cosφ, sinφ) sgnε(sin(φ− θ)) |sin(φ− θ)|−1−2ζ dφ dθ.

If moreover f and f ′ satisfy the condition (1), then these double integrals are both equal to

1

4

∫ π

−π

∫ π

−π
f(cos θ, sin θ) f ′(cosφ, sinφ) sgnε(sin(φ− θ)) |sin(φ− θ)|−1−2ζ dφ dθ.
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For f, f ′ ∈ Vζ,ε, write (Iζ,εf, f
′) for any of the three double integrals above. Then

(Iζ,ερζ,ε(x)f, ρζ,ε(x)f ′) = (Iζ,εf, f
′) ∀x ∈ G. (7)

Proof. Since
(tan θ − tanφ) cos θ cosφ = sin(θ − φ),

we see that sgn(tanφ− tan θ) = sgn(sin(φ− θ)) when θ, φ ∈ (−π/2, π/2), and hence∫ ∞
−∞

∫ ∞
−∞

f(1, t) f ′(1, u) sgnε(u− t) |u− t|−1−2ζ dt du

=

∫ π/2

−π/2

∫ π/2

−π/2
f(1, tan θ) f ′(1, tanφ)

sgnε(tanφ− tan θ) |tanφ− tan θ|−1−2ζ sec2 θ sec2 φ dθ dφ

=

∫ π/2

−π/2

∫ π/2

−π/2
f(cos θ, sin θ) f ′(cosφ, sinφ)

sgnε(tanφ− tan θ) |tanφ− tan θ|−1−2ζ sec1+2ζ θ sec1+2ζ φ dθ dφ

=

∫ π/2

−π/2

∫ π/2

−π/2
f(cos θ, sin θ) f ′(cosφ, sinφ)

sgnε(sin(φ− θ)) |sin(θ − φ)|−1−2ζ dθ dφ;

all integrals converge absolutely. If moreover f and f ′ both satisfy the parity condition, the
last integral is equal to

1

4

∫ π

−π

∫ π

−π
f(cos θ, sin θ) f ′(cosφ, sinφ)

sgnε(sin(φ− θ)) |sin(θ − φ)|−1−2ζ dθ dφ

for reasons of parity. We write any of the three double integrals above as (Iζ,εf, f
′); at

this stage, Iζ,εf is given by various convolutions and may be a measurable function or a
distribution.

Now, as in the definition of the pairing (Lemma 1.2), we may show that for f, f ′ ∈ Vζ,ε,

(Iζ,ερζ,ε(x)f, ρζ,ε(x)f ′) = (Iζ,εf, f
′) ∀x ∈ G,

by considering the last integral when x ∈ K and the first when x ∈ NA, and using the
Iwasawa decomposition. �

Corollary 1.5. Suppose that ξ ∈ (−1/2, 0) ∪ (0, 1/2) and that ε = 0. Then 〈〈·, ·〉〉ξ, given by

〈〈f, f ′〉〉ξ := (Iξ,0f, f̄
′),

is an inner product on Vξ,ε, and the representation ρξ,0 acts unitarily on the completion of
Vξ,0 relative to this inner product.

Proof. It is evident that 〈〈f, f ′〉〉ξ is a sesquilinear pairing on Vξ,0; the question is whether it
enjoys the necessary positivity property. We know the Fourier transform of the kernel of the
(implicitly defined) operator Iξ,ε:

F(sgnε(·) |·|−1−2ξ) = c(ξ, ε) sgnε(·) |·|2ξ ,
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where

c(ξ, ε) = iεπ1/22−2ξ Γ((ε− 2ξ)/2)

Γ((1 + ε+ 2ξ)/2)
(8)

(see, e.g., [GS64, p. 173] or [SW72, p. 160]); the condition on ξ shows that c(ξ, 0) is positive.
Hence

〈〈f, f〉〉ξ := (Iξ,0f, f̄)

=

∫ ∞
−∞

c(ξ, 0)f̂(y) (f̂(y))¯ dy ≥ 0;

equality holds only if f = 0. Hence 〈〈·, ·〉〉ξ is an inner product on Vξ,0. Further, ρ acts
unitarily on the completion of this space from (7). �

This Hilbert space may be identified with a Sobolev-like space on the unit circle or a
homogeneous Sobolev space Hξ(R) on the line {(1, t) : t ∈ R}. In [ACD18, Lemma 3.6] there
are explicit computations of the action of Iζ,ε on the basis elements fζ,µ.

Kunze and Stein [KS60] showed that ρζ acts uniformly boundedly on HRe ζ(R); they were
then able to use complex interpolation to prove the Kunze–Stein phenomenon. Recently,
Astengo, Cowling and Di Blasio [ACD19] found optimal estimates for the norms of the
uniformly bounded operators ρζ(x).

1.6. The discrete series of representations. Bargmann [Ba47] showed that there are
other unitary representations of SL(2,R) which are important for harmonic analysis.

It is well known that G acts on the upper half plane {z ∈ C : Im z > 0} by fractional linear
transformations: (

a b
c d

)
· z =

az + b

c+ d
;

it can be checked that x · i = i if and only if x ∈ K, and then the mapping x 7→ x · i
identifies G/K with the upper half plane. The upper half plane is one of several models for
the 2-dimensional real hyperbolic space H2, an important model space of negative curvature.
If we take into account the fact that the elements of M act trivially on H2, then we may
identify G with the connected component of the group of isometries of H2.

By conjugation with the Cayley transform, we get an action of G on the unit disc in C:(
a b
d d

)
· z =

αz + β

β̄z + ᾱ
,

where α = (a− ib+ ic+ d)/2 and β = (−ia+ b+ c+ id)/2.
For ` ∈ {1, 2, 3, . . . }, denote by H` the Hilbert space of holomorphic functions on the unit

disk D = {z ∈ C : |z| < 1} endowed with the inner product

〈f, g〉` =
`− 1

π

∫
D

(1− |z|2)`−2f̄(z)g(x) dσ(z) (if ` > 1),

〈f, g〉1 = lim
`→1

`− 1

π

∫
D

(1− |z|2)`−2f̄(z)g(x) dσ(z) (if ` = 1).

Consider the representation ρ`,+ on H` given by

ρ`,+(x)f(z) = µ+(x, x−1 · z)`f(x−1 · z) where µ+(x, x−1 · z) = α− β̄z.
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Then ρ`,+ is irreducible and acts unitarily on H` for all x ∈ G, and we say it belongs to the
holomorphic discrete series. The functions

g+
`,m(z) = (−1)m−k

(
`− 1 +m− k

m− k

)1/2

zm−k ∀m ∈ k + N,

are an orthonormal basis of H`.
The antiholomorphic discrete series ρ`,− is defined similarly, and has a similar basis.

Bargmann showed [Ba47, eq. (10.29c)] that

〈g−`,m, ρ
−
` (x)g−`,n〉` = (−1)−m+n〈g+

`,−m, ρ
+
` (x)g+

`,−n〉`.

1.7. The trivial representation. The group SL(2,R) has a trivial representation ρ on C;
each ρ(x) is just the identity mapping.

1.8. The Plancherel formula. Let ρ be a (strongly continuous) unitary representation of G
on a Hilbert space Hρ. A matrix coefficient of ρ is a function on G of the form x 7→ 〈ρ(x)f, f ′〉,
where f, f ′ ∈ Hρ. These matrix coefficients encode the properties of ρ. For instance, when
ρ is an irreducible unitary representation, the matrix coefficients of ρ are all eigenvalues of a
differential operator on G, and the eigenvalue depends on ρ. A matrix coefficient of a unitary
representation ρ of G is a function u of the form 〈ρ(·)f, f ′〉, that is,

u(x) = 〈ρ(x)f, f ′〉 ∀x ∈ G,
where ρ ∈ Ḡ and f, f ′ ∈ Hρ. We abbreviate this formula to u = 〈ρ(·)f, f ′〉. The set of matrix
coefficients of a fixed representation is not a priori a vector space, and to allow us to use
the tools of functional analysis, we follow Arsac [Ar76] and define Aρ(G) to be the set of all
infinite linear combinations∑

j∈N

〈
ρ(·)fj, f ′j

〉
such that

∑
j∈N

‖fj‖Hρ
∥∥f ′j∥∥Hρ <∞;

the space Aρ(G) has a natural norm.
Bargmann [Ba47] found the Plancherel formula for SL(2,R). This formula has an L2-

version, or can be expressed as an inversion theorem. The inversion theorem version states
that a “suitable” function u on G may be written in the following form:

u(x) =

∫ ∞
0

uiη,0(x) dη +

∫ ∞
0

uiη,1(x) dη +
∞∑
`=1

u`,+(x) +
∞∑
`=1

u`,−(x),

where the functions involved all belong to spaces Aρ, where ρ is one of ρiη,0, ρiη,1, ρ`,+ and
ρ`,−. Note that the complementary series and trivial representation do not appear.

1.9. Spherical functions. The space L1(G)\ of integrable left- and right-K-invariant func-
tions on G forms a commutative ∗-algebra. The Gel′fand space of multiplicative linear
functionals on L1(G)\ may be identified with the set of all bounded zonal spherical functions
on G, that is, ∫

G

f ∗ f ′(x)φζ(x) dx =

∫
G

f(x)φζ(x) dx×
∫
G

f ′(x′)φζ(x
′) dx′
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for all f, f ′ in L1(G)\ and all bounded zonal spherical functions φζ . These functions φζ are
all matrix coefficients of not necessarily unitary representations of G, the so-called class one
representations, that is, that have nontrivial K-invariant vectors.

We are interested in positive star-linear functionals on L1(G)\, that is, in positive-real-
valued hermitean zonal spherical functions, that is, spherical functions such that φζ > 0 and
φ∗ζ = φζ . It may be checked that φζ is hermitean if and only if ζ is either purely real or purely
imaginary; φζ is positive-real-valued if and only if ζ ∈ R. Finally, φζ is bounded if and only
if Re ζ ∈ [−1, 1]. The symmetries mentioned above imply that φ∗ζ = φζ̄ .

Theorem 1.6. Suppose that ξ, ξ′ ∈ [0,∞). Then φξ ≤ φξ′ if and only if ξ ≤ ξ′.

Proof. Suppose that ξ ≤ ξ′. From the integral formula (5), |φζ | ≤ φRe(ζ) for all ζ ∈ C. Hence
from the maximum principle, applied pointwise, and the symmetry φ−ζ = φζ ,

φξ ≤ max{|φξ′+iη|, |φ−ξ′+iη| : η ∈ R} = max{|φξ′+iη| : η ∈ R} = φξ′ .

first if Re(z) is either 0 or 1 and then if 0 ≤ Re(z) ≤ 1 by the maximum principle, applied
pointwise. Iterating this interpolation result yields one direction of the theorem.

The converse follows from Bargmann’s formulae for the asymptotic behaviour of spherical
functions. �

Finally we introduce the generalised spherical functions. Given integers µ, ν in 2Z + ε, we
define

φµ,νζ,ε (x) = (ρζ,ε(x)fζ,µ, f−ζ,−ν) ∀x ∈ G, (9)

where fζ,µ are the functions defined in equation (2).

Then φ0,0
ζ,0 is a standard left- and right-K-invariant zonal spherical function; the generalised

spherical functions φµ,νζ,ε were considered by Ehrenpreis and Mautner [EM55a, EM55b].

2. Estimates for matrix coefficients

In this lecture, we describe various decay estimates for matrix coefficients of unitary rep-
resentations. We recall that, given a unitary representation ρ of G on a Hilbert space Hρ, a
matrix coefficient of ρ is a function on G of the form

x 7→ 〈ρ(x)f, f ′〉,
where f, f ′ ∈ Hρ.

Bargmann observed that all the generalised spherical functions associated to the discrete
series belong to L2(G); those associated to the principal series belong to L2+, by which we
mean that they belong to L2+δ(G) for all δ ∈ R+; those associated to the complementary series
belong to Lq+(G) for some q depending only on the representation. The matrix coefficients
of the trivial representation are all constant functions and do not decay at infinity at all.
The estimates that follow from his analysis do not seem to be uniform in r when we consider
different “K-types” µ and ν and different representations.

Kunze and Stein [KS60] took a great leap forwards. They showed that every matrix coef-
ficient of every representation involved in the Plancherel formula, and hence every coefficient
of the regular representation, lies in L2+(G). This is a dual formulation of the Kunze–Stein



10 COWLING

convolution theorem. They also established Lp+ estimates for the complementary series, of
the form

‖〈ρξ,0(·)f, f ′〉‖q ≤ C(ξ, q) ‖f‖Hρ ‖f
′‖Hρ ∀f, f ′ ∈ Hξ ∀q ∈ (p,+∞),

for all q ∈ (2/(1− 2ξ),+∞), when 0 < ξ < 1/2.
The asymptotic formulae found by Bargmann are very precise “at infinity”, but they only

hold for some matrix coefficients and it is hard to see the sort of uniform behaviour that the
Kunze–Stein phenomenon tells us must occur. On the other hand, Lp+ estimates hold for all
matrix coefficients of a given irreducible unitary representation, but the fact that a function
lies in some Lq-space gives no pointwise information.

One aim of these lectures is to present a new form of estimate for matrix coefficients,
which we believe has many of the best features of both of the forms of estimate above. These
estimates were inspired by similar estimates due to Herz [Hz70] and Haagerup [Ha79].

We define the averaging operators A on functions on G by

A(u)(g) =

(∫
K

∫
K

|u(kgk′)|2 dk dk′
)1/2

∀x ∈ G.

It is evident that A(u) is left- and right-K-invariant.
We aim to show estimates of the form

A (〈ρ(kθarkφ)f, f ′〉) ≤ φλ(r) ‖f‖Hρ ‖f
′‖Hρ (10)

for all f, f ′ ∈ Hρ and all r ∈ [0,+∞); the zonal spherical function φλ depends on ρ. These are
equivalent to uniform estimates for generalised spherical functions, as the following shows.

Proposition 2.1. Let ρ be a unitary representation of G on a Hilbert space Hρ which has an
orthonormal basis {fµ : µ ∈ B}, where B is a subset of Z, such that ρ(kθ)fµ = exp eiµθfµ for
all θ ∈ R. Then the following are equivalent, for all r ∈ R+,

1. for all µ, ν ∈ B,
|〈ρ(ar)fµ, fν〉| ≤ φλ(r);

2 for all f, f ′ ∈ Hρ,

A (〈π(kθ1arkθ2)f, f
′〉) ≤ φλ(r)‖f‖Hρ‖f ′‖Hρ .

Proof. It is trivial that (2) implies (1). For the converse, let f, f ′ ∈ Hρ, and write

f =
∑
µ∈B

bµfµ, f ′ =
∑
ν∈B

b′νfν ,

Then

|〈ρ(kθ1arkθ2)f, f
′〉|2

= 〈ρ(ar)ρ(kθ2)f, ρ(k−1
θ1

)f ′〉〈ρ(ar)ρ(kθ2)f, ρ(k−1
θ1

)f ′〉

=
∑

µ,µ′,ν,ν′∈B

bµb̄µ′b
′
ν d̄ν′e

iθ2(µ−µ′)eiθ1(ν−ν′)〈ρ(ar)fµ, fν〉〈ρ(ar)fµ′ , fν′〉.

Then, integrating twice,∫ π

−π

∫ π

−π
|〈ρ(kθ1arkθ2)f, f

′〉|2 dθ1 dθ2 =
∑
µ,ν∈B

|bµ|2|b′ν |2|〈ρ(ar)fµ, fν〉|2,
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as required. �

2.1. Herz’ principe de majoration. In [Hz70], Herz proved two important lemmas. We
define the right regular representation ρ of G on L2(G):

ρ(x)f(y) = f(yx) ∀x, y ∈ G.
The matrix coefficients u of ρ are given by

u(x) = 〈ρ(x)f, f ′〉 =

∫
G

f(yx) f̄ ′(y) dy =

∫
G

f(y−1x) f̄ ′(y−1) dy = f ∗ ∗ f ′(x).

Lemma 2.2. The matrix coefficients of the right regular representation of G acting on L2(G)
may be dominated, pointwise, by matrix coefficients of the representation ρ0,0 acting on the
completion of V0,0.

Proof. We write the measure on G as an integral over N̄ followed by an integral over N̄\G,
and apply the Cauchy–Schwarz inequality.

|u(x)| =
∣∣∣∣∫
N̄\G

∫
N̄

f(n̄ẏx)Tf ′(n̄ẏ) dn̄ dẏ

∣∣∣∣
≤
∫
N̄\G

(∫
N̄

|f(n̄ẏx)|2 dn̄

)1/2(∫
N̄

|Tf ′(n̄ẏ) dn̄

)1/2

dẏ

=

∫
N̄\G

F (ẏx)F ′(ẏ) dẏ,

where F and F ′ are nonnegative-real-valued functions on N̄\G, with the property that
‖F‖2 ≤ ‖f‖2 and ‖F ′‖2 ≤ ‖f ′‖2.

Since we may identify N̄\G with R2 \{0}, we may rewrite this as an integral over R2 \{0}.
This is a matrix coefficient of a representation of G on L2(R2 \ {0}):

|u(x)| =
∫
R2\{0}

F (vx)F ′(v) dv,

where the product vx is just the vector v multiplied by the matrix x.
The next step is a similar application of the Cauchy–Schwarz inequality, where we now

integrate over rays coming out of the origin. �

Lemma 2.3. If f, f ′ ∈ V0,0, and u = 〈ρ0,0(·)f, f ′〉, then

A(u) ≤ ‖f‖2 ‖f
′‖2 φ0,

where φ0 is the zonal spherical function associated to ρ0.0.

Proof. This is an application of Minkowski’s integral inequality. �

The zonal spherical function φ0 has an asymptotic expansion:

φ0(as) � Cs exp e−s as s→∞
that is anomalous in the sense that it contains a factor s as well as an exponential. Herz’s
lemmas give us estimates for root-mean-square averages of matrix coefficients of the regular
representation, and by functional analysis, of all the representations ρis,0 and ρis,1. However,
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these involve terms s exp e−s while Bargmann’s asymptotic expansions involve only expo-
nential terms when s 6= 0. So it is natural to ask whether there are decay estimates for
matrix coefficients of the representations ρis,0 and ρis,1, when s 6= 0, that do not involve the
additional polynomial term.

The solution of this exercise involves a rather delicate application of van der Corput’s
lemma, which is particularly suited to dealing with functions built of exponential functions.
Since oscillatory integrals of the type considered here arise in analysis on spaces of negative
curvature, it is likely that the technique here can be applied elsewhere.

We recall van der Corput’s lemma.

Lemma 2.4. Consider the oscillatory integral

I(λ) =

∫ b

a

eiλφ(t) dt,

where the phase function φ is a real-valued function on [a, b]. If φ(1) is monotone and |φ(1)| ≥
λ, then

I(λ) .
1

λ
.

If j ≥ 2 and |φ(j)| ≥ λ, then

I(λ) .
1

λ1/j
.

2.2. The principal series. Recall that, if ζ = iη where η ∈ R, the completion of the space
Vis,ε with respect to the inner product

〈f, g〉 := (f, ḡ)

is an L2 space on which ρiη,ε acts unitarily, and the functions fiη,µ form an orthonormal basis.

Theorem 2.5. For all η ∈ R \ {0}, all ε ∈ {0, 1}, all r ∈ R+ and all µ, ν ∈ 2Z + ε,

|〈ρiη,ε(ar)fiη,µ, fiη,ν〉| .
|η|+ 1

|η|
e−r.

Proof. In this proof, we abbreviate fiη,µ to fµ. By definition,

〈ρiη,ε(x)fµ, fν〉 = (ρiη,ε(x)fµ, f̄ν)

=

∫ ∞
−∞

fµ(e−r, ert)f−ν(1, t) dt

= e−r
∫ ∞
−∞

fµ(e−r, t)f−ν(1, e
−rt) dt

=
1

π
e−r
∫ ∞
−∞

(e−2r + t2)iη−1/2 exp(iµ arctan(ert))

(1 + e−2rt2)−iη−1/2 exp(−iν arctan(e−rt)) dt,

(11)

where we used the properties of fµ. We now split the last integral in (11) into three parts:∫
|t|<e−r+1

. . . dt+

∫
e−r+1<|t|<er−1

. . . dt+

∫
|t|>er−1

. . . dt,
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and we consider the three terms separately. First,∣∣∣∣∫
|t|<e−r+1

(e−2r + t2)iη−1/2 exp(iµ arctan(ert))(1 + e−2rt2)−iη−1/2 exp(−iν arctan(e−rt)) dt

∣∣∣∣
≤
∫
|t|<e−r+1

er dt . 1.

Similarly,∣∣∣∣∫
|t|>er−1

(e−2r + t2)iη−1/2 exp(iµ arctan(ert))(1 + e−2rt2)−iη−1/2 exp(−iν arctan(e−rt)) dt

∣∣∣∣
≤
∫
|t|>er−1

1

t

1

(1 + e−2rt2)1/2
dt

. 1.

The second term requires a more detailed analysis. We split it further, into parts where t > 0
or t < 0. We treat only the case t > 0, for the other is similar. First, observe that∫ er−1

e−r+1

(e−2r + t2)iη−1/2 exp(iµ arctan(ert))(1 + e−2rt2)−iη−1/2 exp(−iν arctan(e−rt)) dt

=

∫ er−1

e−r+1

t2iη−1

(
1 +

e−2r

t2

)iη−1/2(
1 +

t2

e2r

)−iη−1/2

exp(iµ arctan(ert)− iν arctan(e−rt)) dt

= I1 + I2,

say, where

I1 =

∫ er−1

e−r+1

t2iη−1

(
1 +

e−2r

t2

)iη (
1 +

t2

e2r

)−iη
exp(iµ arctan(ert)− iν arctan(e−rt)) dt

and

I2 =

∫ er−1

e−r+1

t2iη−1

(
1 +

e−2r

t2

)iη (
1 +

t2

e2r

)−iη
exp(iµ arctan(ert)− iν arctan(e−rt))

×

[(
1 +

e−2r

t2

)− 1
2
(

1 +
t2

e2r

)− 1
2

− 1

]
dt.

We first estimate I2. Since

|(1 + x)−1/2(1 + y)−1/2 − 1| . x+ y

for all x, y ∈ (0, e−2), we see that

|I2| .
∫ er−1

e−r+1

t−3e−2r dt+

∫ er−1

e−r+1

te−2r dt . 1.
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We now consider I1. Observe that I1 is equal to∫ er−1

e−r+1

t2iη−1 exp(iη[log(1 + e−2rt−2)− log(1 + t2e−2r)] + iµ arctan(ert)− iν arctan(e−rt)) dt

= eiµ
π
2

∫ er−1

e−r+1

t2iη−1 exp(iη[log(1 + e−2rt−2)− log(1 + t2e−2r)])

exp(−iµ arctan(e−r/t)− iν arctan(e−rt)) dt

= eiµ
π
2

∫ r−1

1−r
exp(igµ,ν,r,η(y)) dy,

where gµ,ν,r,η(y) is equal to

2yη + η[log(1 + e−2(r+y))− log(1 + e2(y−2))]− µ arctan(e−r−y)− ν arctan(ey−r);

here we set t = ey and used the identity arctan(z) = π/2− arctan(1/z). If N is the number
of times that the second derivative of the function gµ,ν,r,η changes sign, which may depend
on µ, ν, r and s, then

|I1| =
∣∣∣∣∫ r−1

1−r
exp(igµ,ν,r,η(y)) dy

∣∣∣∣
≤

∣∣∣∣∣
∫
|g′µ,ν,r,η |≥|η|

exp(igµ,ν,r,η(y)) dy

∣∣∣∣∣+

∣∣∣∣∣
∫
|g′µ,ν,r,η |<|η|

exp(igµ,ν,r,η(y)) dy

∣∣∣∣∣
.
N + 1

|η|
+ |{y ∈ [1− r, r − 1] : |g′µ,ν,r,η(y)| < |η|}|

by van der Corput’s lemma. An easy computation shows that

g′µ,ν,r,η(y) = 2η − 2η

[
e−2(r+y)

1 + e−2(r+y)
+

e2(y−r)

1 + e2(y−r)

]
+

µ

2 cosh(r + y)
− ν

2 cosh(r − y)
.

Observe that g′µ,ν,r,η is a rational function of ey whose dependence on µ, ν, r and η is only
in the coefficients, so the same holds for g′′µ,ν,r,η; therefore, the number of the zeroes of g′′µ,ν,r,η
is uniformly bounded with respect to these parameters. Thus N is bounded independent of
these parameters.

It now remains to show that

|{y ∈ [1− r, r − 1] : |g′µ,ν,r,η(y)| < |η|}| . 1. (12)

We suppose that η > 0, as the case where η < 0 is analogous.
If y ∈ [−r + 1, r − 1], then r + y ≥ 1 and y − r ≤ −1. Thus,

0 ≤ e−2(r+y)

1 + e−2(r+y)
+

e2(y−r)

1 + e2(y−r) ≤ 2e−2,

so that, if

φµ,ν,r(y) =
ν

2 cosh(r − y)
− µ

2 cosh(r + y)
,

then

{y ∈ [1− r, r − 1] : |g′µ,ν,r,η(y)| < η} ⊆ {y ∈ [1− r, r − 1] : φµ,ν,r(y) ∈ [2η/5, 3η]}
since 1− 4e−2 > 2/5. We consider two cases.
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If µν ≥ 0, then φµ,ν,r is monotone (increasing if either µ, ν > 0 or µ = 0, ν > 0; decreasing
if either µ, ν < 0 or µ < 0, ν = 0). Moreover

|{y ∈ [1− r, r − 1] : φµ,ν,r(y) ∈ [2η/5, 3η]}|
= |{y ∈ [1− r, r − 1] : φµ,ν,r(y) > 0, log(φµ,ν,r(y)) ∈ [log(2η/5), log(3η)]}|.

To prove that this quantity is bounded by a constant independent of µ, ν, r and η, it is enough
to prove that the inverse function of log ◦φµ,ν,r is Lipschitz, uniformly in µ, ν and r, or more
precisely, that

|φ′µ,ν,r(y)| ≥ c0φµ,ν,r(y)

where c0 is a constant. If, for instance, µ, ν > 0, then

|φ′µ,ν,r(y)| = φ′µ,ν,r(y) =
ν sinh(r − y)

2 cosh2(r − y)
+

µ sinh(r + y)

2 cosh2(r + y)

=
ν

2 cosh(r − y)
tanh(r − y) +

µ

2 cosh(r + y)
tanh(r + y)

≥ tanh(1)
ν

2 cosh(r − y)

≥ tanh(1)φµ,ν,r(y).

The other cases for which µν ≥ 0 can be treated analogously.
If µν < 0, then the set {y ∈ [1 − r, r − 1] : φµ,ν,r(y) ∈ [2η/5, 3η]} is empty unless µ < 0

and ν > 0. In this case, φµ,ν,r > 0. Moreover, there are uniform estimates

cosh(r + y) ≈ er+y and cosh(r − y) ≈ er−y

since r + y > 0 and r − y > 0. Therefore

|{y ∈ [1− r, r − 1] : φµ,ν,r(y) ∈ [2η/5, 3η]}|
. |{y ∈ [1− r, r − 1] : νey − µe−y ∈ [c1ηer, c2ηer]}|
= |{y ∈ [1− r, r − 1] : log(ey + ae−y) ∈ [log(c1ηer/ν), log(c2ηer/ν)]}|

where a := −µ/ν > 0 and c1 and c2 are constants. This is what we are going to estimate.
Write ψµ,ν(y) = ey + ae−y and let

y+ :=
1

2
(log a+ log 3), y− =

1

2
(log a− log 3).

Then log(ψµ,ν) is invertible in (−∞, y−] and in [y+,+∞). Moreover, since

ψ′µ,ν(y) ≥ 1

2
ψµ,ν(y) ∀y ∈ [y+,+∞)

ψ′µ,ν(y) ≤ −1

2
ψµ,ν(y) ∀y ∈ (−∞, y−],

the restrictions of log(ψµ,ν) to (−∞, y−] and to [y+,+∞) have uniformly Lipschitz inverse.
Since [y−, y+] has constant length, the proof of (12) and thus of the theorem is complete. �
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2.3. The discrete series. In [BCNT], the following theorem is proved.

Theorem 2.6. Let ` ∈ Z+ and let k = 1
2
`. Then for all r ∈ R and all m,n ∈ k + N

|〈g+
`,m, ρ

+
` (ar)g

+
`,n〉`| ≤ (cosh ζ(r))−1,

while for all r ∈ R and m,n ∈ −k − N,

|〈g−`,m, ρ
−
` (ar)g

−
`,n〉`| ≤ (cosh(r))−1.

Proof. We omit the proof, which involves a delicate study of special functions. �

2.4. The complementary series. It is not hard to see that many of the matrix coefficients
of the complementary series representations have exponential decay, and indeed to prove a
corresponding result for the complementary series. But we are going to prove a general result
later that deals with the complementary series as well as with another representation that
we have not yet defined.

2.5. The representation with many names. The group SL(2,R) is not simply connected:
topologically it is a circle. In Lie theory, one constructs a double cover G̃ of G and a covering
map from G̃ to G that is a local isomorphism. The group G̃ cannot be represented as a
group of matrices. However, it contains subgroups A, N and N̄ that are isomorphic to
the subgroups A, N and N̄ of G and a compact subgroup K̃ that is a double cover of the
rotation group K. While it is hard to write an element of G it is easy to write elements of
these subgroups.

Our next representation, written ω, is a unitary representation of G̃ but is odd, and not de-
fined on G. It is known as the Weil representation, the Segal–Shale–Weil representation, the
harmonic representation, the metaplectic representation, and the oscillator representation.
It appears in number theory, mathematical physics, and in harmonic analysis, particularly
in connection with the “phase space” viewpoint; see, e.g., [Fo89]. It acts on L2(R), and we
describe it by saying how it behaves on N , N̄ , A and K̃.

First, we describe briefly the Hermite functions. Recall that the differential operator H,
given by

Hf(y) = y2f(y)− d2

dy2
f(y)

has eigenfunctions hj, where j ∈ N, which form an orthonormal basis for L2(R). Further,
Hhj = (2j + 1)hj for each j ∈ N. It is well known that

h0(y) = e−y
2/2

and more generally hj is a polynomial of degree j multiplied by h0. Then span{hj : 0 ≤ j ≤ J}
coincides with the collection of all polynomials of degree at most J multiplied by h0. It may
be checked that f ∈ L2(R) lies in the Schwartz space if and only if the coefficients cj in its
Hermite expansion

∑
j∈N cjhj vanish faster than any power of j at infinity.

We define the fractional Fourier transform using this basis:

Fθ
∑
j∈N

cjhj :=
∑
j∈N

cj exp((2j + 1)iθ/2)hj.

The point is that Fπ is the Fourier transform, and we have included the Fourier transform
in a group of unitary operators.
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We now describe the oscillator representation ω. The elements of N act by unitary multi-
plication operators:

ω(nb)f(y) = eiby
2/2f(y).

The elements of N̄ act by unitary convolutions, easily expressed as Fourier multiplier opera-
tors:

[ω(n̄c)f ]ˆ(y) = eicy
2/2f̂(y).

The elements of A act by suitably normalised dilations:

[ω(ar)f ](y) = e−r/2f(e−ry).

Finally, K̃ acts by the fractional Fourier transform:

ω(k̃θ)f(y) = Fθf(y)

for all y ∈ R.
Observe that if f and f ′ have finite Hermite expansions

∑
j≤J cjhj and

∑
j≤J c

′
jhj, then

for all θ and φ in R,∣∣∣〈ω(k̃θark̃φf, f
′
〉∣∣∣ =

∣∣∣〈ω(k̃θark̃φf, f
′
〉∣∣∣

≤
∑
j,j′≤J

|cj||c′j′ | |〈ω(ar)hj, hj′〉|

.f,f ′ max
j,j′≤J

∫ ∞
−∞

e−r/2|pj(e−ry)|e−e−2ry2/2|pj′(y)|e−y2/2 dy

.j,j′ e−r/2

for all r ∈ R+. In light of what we know about the Haar measure on G, this implies that
these matrix coefficients belong to L4+(G).

In the next lecture, we will obtain estimates for all matrix coefficients of ω. These will
follow from the following theorem

Theorem. Suppose that ρ is a unitary representation of G on a Hilbert space Hρ, and ξ ∈
(0, 1/2). The following are equivalent:

(a) there is a dense subspace H0
ρ of Hρ such that, for all f1, f2 ∈ H0

ρ,

A(〈ρ(·)f, f2〉) .f1,f2 φξ
(b) for all f1, f2 ∈ Hρ,

A(〈ρ(·)f1, f2〉) ≤ ‖f1‖ ‖f2‖φξ
When (a) and (b) hold, all the matrix coefficients of ρ belong to the same Lq spaces as φξ.

This has several corollaries; for the complementary series and for the metaplectic repre-
sentation.

Corollary 2.7. Fix ξ ∈ (0, 1/2), and take f, f2 ∈ Hξ. Then

A (〈〈ρξ(ar)f, f2〉〉ξ) .
1

|λ|
e−r(1−2|λ|) ∀r ∈ R+.

In light of Proposition 2.1, this gives a family of uniform estimates for the hypergeometric
functions that appear in Bargmann’s interpretation of the generalised spherical functions.

Recall that ω denotes the metaplectic representation.
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Corollary 2.8. The following estimate holds for all f, f2 ∈ L2(R):

A (〈ω(ar)f, f2〉) . e−r/2 ∀r ∈ R+.

3. Some functional analysis and applications

Recently, Samei and Wiersma [SW18] found a functional analytic proof that if one matrix
coefficient of an irreducible representation satisfies an Lq+ estimate (where q ∈ [2,+∞)), then
all matrix coefficients do. A related result appears in de Laat and Siebenand [LS21].

Their elegant proof does not apply to all locally compact groups, but it does to many,
including all semisimple Lie groups. The key to their argument is understanding various
C∗-algebras associated to group representations. We present a variation on their result. This
implies uniform estimates for complementary series representations and for the metaplectic
representation.

Many of the following results on abstract harmonic analysis and C∗-algebras may be found
in standard texts such as [HR63] or [Di60].

3.1. Construction of an exotic algebra. Recall the averaging operators A on functions
on G:

A(f)(x) =

(∫
K

∫
K

|f(kxk′)|2 dk dk′
)1/2

∀x ∈ G.

Lemma 3.1. Suppose that f1, f2 ∈ Cc(G). Then

A(f1 ∗ f2) ≤ A(f1) ∗ A(f2).

Hence, if φλ is a positive-real-valued spherical function, then∫
G

A(f1 ∗ f2)(x)φλ(x) dx ≤
(∫

G

A(f1)(y)φλ(y) dy

)(∫
G

A(f2)(x)φλ(x) dx

)
.

Proof. This is an exercise in integration. Indeed, for k, k′, k′′ ∈ K,

|f1 ∗ f2(k′xk′′)| =
∣∣∣∣∫
G

f1(y) f2(y−1k′xk′′) dy

∣∣∣∣
≤
∫
G

|f1(y)| |f2(y−1k′xk′′)| dy

=

∫
G

|f1(k′yk)| |f2(k−1y−1xk′′)| dy,

whence

|f1 ∗ f2(k′xk′′)| ≤
∫
K

∫
G

|f1(k′yk)| |f2(k−1y−1xk′′)| dy dk

=

∫
G

∫
K

|f1(k′yk)| |f2(k−1y−1xk′′)| dk dy

≤
∫
G

(∫
K

|f1(k′yk)|2 dk

)1/2(∫
K

|f2(k−1y−1xk′′)|2 dk

)1/2

dy.
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We deduce that

A(f1 ∗ f2)(x)

=

(∫
K

∫
K

|f1 ∗ f2(k′xk′′)|2 dk′ dk′′
)1/2

≤
(∫

K

∫
K

∣∣∣∣∫
G

(∫
K

|f1(k′yk)|2 dk

)1/2(∫
K

|f2(k−1y−1xk′′)|2 dk

)1/2

dy

∣∣∣∣2 dk′ dk′′
)1/2

≤
∫
G

(∫
K

∫
K

∣∣∣∣(∫
K

|f1(k′yk)|2 dk

)(∫
K

|f2(k−1y−1xk′′)|2 dk

)∣∣∣∣ dk′ dk′′)1/2

dy

=

∫
G

(∫
K

∫
K

|f1(k′yk)|2 dk dk′
)1/2(∫

K

∫
K

|f2(k−1y−1xk′′)|2 dk dk′′
)1/2

dy

= A(f1) ∗ A(f2)(x).

The second part of the theorem follows immediately. �

For the next results, we fix a spherical function φλ that is bounded, positive-real-valued,
and Hermitean. For f ∈ Cc(G), we define

‖f‖λ =

∫
G

A(f)(x)φλ(x) dx. (13)

Lemma 3.2. The norm ‖·‖λ is a Banach star-algebra norm on Cc(G), that is,

(a) ‖f‖λ ≥ 0 and equality holds if and only if f = 0
(b) ‖f1 + f2‖λ ≤ ‖f1‖λ + ‖f2‖λ
(c) ‖cf‖λ = |c| ‖f‖λ
(d) ‖f1 ∗ f2‖λ ≤ ‖f1‖λ ‖f2‖λ
(e) ‖f‖ = ‖f ∗‖
for all f, f1, f2 ∈ Cc(G) and all c ∈ C.

Proof. Items (a) to (c) are obviously true. Part (d) follows from Lemma 4.1. Finally, if φλ is
hermitean, then ∫

G

A(f ∗)(x)φλ(x) dx =

∫
G

A(f)(x−1)φλ(x) dx

=

∫
G

A(f)(x)φλ(x
−1) dx

=

∫
G

A(f)(x)φλ(x) dx

for all f ∈ Cc(G), as claimed. �

We define Aλ to be the convolution algebra Cc(G), equipped with the norm ‖·‖λ. Note

that there is no reason to suppose that ‖f ∗ f ∗‖λ = ‖f‖2
λ, nor does the star-algebra Aλ have

a bounded approximate identify. We are going to construct the C∗ enveloping algebra of Aλ,
and we show that Aλ has a nondegenerate representation on a Hilbert space.

Lemma 3.3. If f ∈ Aλ, then f ′ ∗ f ∈ L2(G) and ‖f ′ ∗ f‖L2(G) ≤ ‖f‖λ ‖f ′‖L2(G) for all

f ′ ∈ L2(G). Further, if f ′ ∗ f = 0 in L2(G) for all f ′ ∈ L2(G), then f = 0 in Aλ.
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Proof. First, φ0 ≤ φλ by Theorem 1.6. From the definition and Herz’s principe de majoration,
if f1, f2 ∈ L2(G), then f ∗1 ∗ f2 is a matrix coefficient of the right regular representation of G
on L2(G), and

A(f ∗1 ∗ f2) ≤ ‖f1‖2 ‖f1‖2 φ0.

It follows that ∣∣∣∣∫
G

f2(x) f1 ∗ f3(x) dx

∣∣∣∣ =

∣∣∣∣∫
G

f ∗1 ∗ f2(x) f3(x) dx

∣∣∣∣
≤
∫
G

A(f ∗1 ∗ f2)(x)A(f3)(x) dx

≤ ‖f1‖2 ‖f2‖2

∫
G

φ0(x)A(f3)(x) dx

= ‖f1‖2 ‖f2‖2 ‖f3‖0

≤ ‖f1‖2 ‖f2‖2 ‖f3‖λ
for all f3 ∈ Aλ. By duality,

‖f1 ∗ f3‖2 ≤ ‖f1‖2 ‖f3‖λ
and Aλ may be embedded in the algebra of right convolution operators on L2(G). �

This embedding is a star-representation. Now we examine the dual space of Aλ.

Lemma 3.4. Suppose that u is a continuous function on G and φλ is bounded, positive-real-
valued, and Hermitean. Then the following are equivalent:

(a)

∣∣∣∣∫
G

u(x) f(x) dx

∣∣∣∣ ≤ C ‖f‖λ for all f ∈ Cc(G);

(b) Au ≤ Cφλ.

Proof. This is an exercise in standard inequalities in integration theory. �

Lemma 3.5. Let ρ be a unitary representation of G. Then the following are equivalent:

(a) for all f1 and f2 in a dense subspace H0
ρ of Hρ, there is a constant C(f1, f2) such that∣∣∣∣∫

G

f(x) 〈ρ(x)f1, f2〉 dx

∣∣∣∣ ≤ C(f1, f2) ‖f‖λ ∀f ∈ Cc(G);

(b) for all f1 and f2 in a dense subspace H0
ρ of Hρ, there is a constant C(f1, f2) such that

A(〈ρ(·)f1, f2〉) ≤ C(f1, f2)φλ;

(c) for all f1 and f2 in Hρ,∣∣∣∣∫
G

f(x) 〈ρ(x)f1, f2〉 dx

∣∣∣∣ ≤ ‖f1‖Hρ ‖f2‖Hρ ‖f‖λ ∀f ∈ Cc(G);

(d) for all f1 and f2 in Hρ,

A(〈ρ(·)f1, f2〉) ≤ ‖f1‖Hρ ‖f2‖Hρ φλ.
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Proof. Duality shows that (a) and (b) are equivalent and that (c) and (d) are equivalent. It
is obvious that (d) implies (b). The spectral radius formula and more functional analysis
imply that for any continuous star-representation ρ of Aλ as operators on a Hilbert space,

‖ρ(f)‖ ≤ ‖f‖λ ∀f ∈ Cc(G).

Suppose that (a) holds, and take f1 ∈ H0
ρ. Then∣∣∣∣∫

G

f(x) 〈ρ(x)f1, f1〉
∣∣∣∣ dx ≤ C(f1) ‖f‖λ ∀f ∈ Cc(G);

then the Gel′fand–Năımark–Segal (GNS) representation of Aλ associated to 〈ρ(·)f1, f1〉 is
bounded on Aλ, so we may assume that C(f1) = ‖f1‖2

Hρ
. From this, (c) follows. �

Effectively we are dealing with the enveloping C∗-algebra of the convolution algebra Cc(G)
with the norm ‖·‖λ. The algebra C∗(λ)(G) is an “exotic C∗-algebra”, in the sense that it lies
“between” the reduced C∗-algebra of G and the full C∗-algebra of G. It is also exotic in the
sense that it arise as the completion of a star-algebra with no approximate identity.

3.2. Application to the oscillator representation. In the previous lecture, we defined
the oscillator representation, and showed that there is a dense subspace H0

ω of Hω = L2(R)
such that ∣∣∣〈ω(k̃θark̃φ)f1, f2

〉∣∣∣ .f1,f2 e−r/2

for all r ∈ R+. This implies immediately that

A(〈ω(ar)f1, f2〉) .f1,f2 φ1/4(ar)

The theorem now implies that

A(〈ω(ar)f1, f2〉) ≤ ‖f1‖2 ‖f2‖2 φ1/4(ar),

or, since both sides of this inequality are left- and right-K-invariant functions,

A(
〈
ω(k̃θark̃φ)f1, f2

〉
) ≤ ‖f1‖2 ‖f2‖2 φ1/4(k̃θark̃φ)

for any real θ and φ, and hence

A(〈ω(x)f1, f2〉) ≤ ‖f1‖2 ‖f2‖2 φ1/4(x)

for all x ∈ G.
Consider n̄b ∈ N̄ (where b 6= 0). By the Cartan decomposition, for the group G̃, it is

possible to write
n̄b = k̃θark̃φ,

for some r ∈ R+ and θ, φ ∈ [−2π, 2π]. We compute r in terms of b, by first projecting from
G̃ to G: this implies that

n̄b = kθ′arkφ′ .

Take the transpose of both sides and then products:

nbn̄b = (kθ′arkφ′)
>kθ′arkφ′ = k−φ′ararkφ′ = k−φ′a2rkφ′ .

Taking traces of both sides shows that

2 + b2 = e2r + e−2r,
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and it follows that
φ1/4(n̄b) ' e−r/2 ' |b|−1/2.

We conclude that(∫ 2π

−2π

∫ 2π

−2π

|〈ω(n̄b)Fφf1,Fθf2〉|2 dθ dφ

)1/2

. |b|−1/2 ‖f1‖2 ‖f2‖2 (14)

for all f1, f2 ∈ L2(R).
If there is a little smoothness in the integrand, as a function of θ and φ, then we can replace

the L2 norms by L∞ norms. It then follows that, if f1, f2 ∈ Dom(Hα), where α > 1/2, then

|〈ω(n̄b)Fφf1,Fθf2〉| . |b|−1/2 ‖Hαf1‖2 ‖H
αf2‖2 , (15)

for all θ, φ, and r, so in particular,

|〈ω(n̄b)f1, f2〉| . |b|−1/2 ‖Hαf1‖2 ‖H
αf2‖2 . (16)

Recall that ω(n̄b) is just the Schrödinger propagator, so we have proved weak L2 dispersion
estimates for the solution of the Schrödinger equation.

The methods here extend to the oscillator representation of the metaplectic group Mp(n),
and hence give dispersion estimates for the Schrödinger equation in Rn, without much effort.
See [BCNT].

Earlier, Cauli, Nicola and Tabacco [CNT19] proved estimates like (15) and (16) in Rn.
They imposed the condition that the functions f1 and f2 belong to Feichtinger’s modulation
space M1(Rn).

3.3. Why does representation theory come in? First, our theorem is tying together two
commutative groups of operators that do not commute mutually, the Schrödinger propagators
and the fractional Fourier transform. It is a happy accident that these are both inside a Lie
group of operators, and the natural place to study both at the same time is the Lie group.
The language of representation theory lets us do this.

Second, the Lie group in question is a noncompact semisimple Lie group. These are rather
unusual, in that they present some harmonic analytic behaviour that is not seen in classical
harmonic analysis (the Kunze–Stein phenomenon, for instance). In particular, we can study
decay at infinity in a new and different way. This is what underlies the exotic C∗ algebras
that encapsulate the curious interaction between the two groups of operators.

3.4. Open problems. There are some notable open problems related to SL(2,R).
First, the one-sheeted hyperboloid

{(x, y, z) ∈ R3 : x2 + y2 − z2 = 1}
is a homogeneous space of SL(2,R). On this space, there is a natural pseudo-Riemannian
metric and associated hyperbolic operator, which is a toy model (in a 1+1-dimensional space)
for the wave operator in a negatively curved universe. Strichartz [Str73] began a program of
harmonic analysis on hyperboloids, that would have led to some understanding of the effect
of negative curvature on the behaviour of waves, but as far as I know, this program has not
been carried to completion.
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Second, there are other manifolds related to SL(2,R) where analysis and spectral theory
are of interest. A notable example is a conjecture of Selberg, which, in the language of repre-
sentation theory, says that complementary series representations do not appear in the decom-
position of the (right) regular representation of SL(2,R) on the space L2(SL(2, NZ)\SL(2,R))
for any positive integer N . For more details of this conjecture, see, for instance, [Sa95].

4. Afterthoughts

It should be pointed out that in [BCNT], two analogues of (15) in Rn are proved. One in-
volves an integration over the maximal compact subgroup of the metaplectic group Mp(2n,R);
this can also be shown by the more abstract methods here. The second involves an integra-
tion over the maximal torus Tn of the same maximal compact subgroup, and seems to need
some of the phase space ideas from mathematical physics that are used in [BCNT]. The
use of a Sobolev embedding argument like that above then gives weak L2 estimates for so-
lutions of the Schrödinger equation for functions f1 and f2 in the Hermite–Sobolev space
{f ∈ L2(Rn) : Hαf ∈ L2(Rn)} when α > n/2.

If f ∈ L2(Rn) and Hαf ∈ L2(Rn), where α is a nonnegative integer, then f ∈ L2(Rn, wα),
the weighted space of all functions f such that (1 + | · |)2αf ∈ L2(Rn); this follows from
the L2 boundedness of all the higher Riesz transforms associated to the Hermite operator,
which can be seen very easily from their action on the basis vectors. An easy complex
interpolation argument extends this to all nonnegative real α. If follows that if f ∈ L2(Rn)
and Hαf ∈ L2(Rn), where α > n/4, then f ∈ L1(Rn). For f1, f2 ∈ L1(Rn), estimates of the
form

|〈ω(n̄b)f1, f2〉| . |b|−1/2 ‖f1‖1 ‖f2‖1

follow immediately from the explicit formula for the convolution kernel of the Schrödinger
propagator. Hence it is possible to prove sharper versions of (15) and (16) by considerably
easier means. However, we do not know how to prove (14) easily.

The Hermite–Riesz transforms were first defined by Thangavelu [Th90]. Thangavelu [Th09]
showed that if u belongs to the Sobolev space W n+δ,1(Rn), then u also belongs to Feichtinger’s
modulation space M1(Rn). Together with the results of [CNT19, BCNT], this suggests that it
may be interesting to further explore the relation between Hermite–Sobolev spaces, the mod-
ulation spaces and the existence of weak L2 decay estimates for the Schrödinger propagator
along the lines discussed here.
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