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- Message: Hidden in some number theory, there might be a

problem in Fourier optimization wonderland for you.
- Some examples / current machinery available.
- Give you some ideas for discussion.

* Tellyoua story or two...




- Fourier optimization framework
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. Design “"a” Fourier optimization problem connected to your

number theory /algebraic problem (proof of concept).

.- Evolve towards designing what should be "“the correct”

- Fourier optimization problem.

. Solve the Fourier optimization problem (or at least try to find

a good approximation for the solution).







“If I woke up from a 500-year sleep, the first
~thing I would ask is whether the Riemann

hypothesis had been solved”

D.H.




13 MHLDERT'S ORKIGINAL *ROSLEMS

task ot cuce presents itscll to penctrate further along tho
path here entered, as A. Hurwitz has alreandy donoe in
two interesting papers,* ‘' Ueber arithmetisch: Eigen-
ovhiafica gewisser transeendenter funktionen.’”” I saould
like, therefore, to sketch o class of problems which, in my
opinion, shoald be attacked as here wext in urder, Thag
certivn special transeendental functions, importantin analy-
sis, take algabraic valuas for asrtain rlgebrais arguments,
Secins to us particularly remarkable and worthy of thorough
investignzion. Indeed, we expect tranicendental 'unotions
Lo assume, in genersl, tranwcendental values for even nlga-
braic arguments; and, although it ‘s well known that there
exiatlntegial wauscendental funcions which ¢ven have ra-
tional values for all algebralc arguments, we shall stil. cos-
#ider it highly probable that the cxponcntial fuuctiva e,
for example, which evidantly has alzebraic values for all ra.
tional arguments z, will on tla ecehar hand nlwave talio
transcendontal values for irrational algebraic values of the
argumens 2.  Wao can also give this statemant a geometrical
furm, as follows ;

If, i en dsosceles iriangle, the rati> of the base angle to the
nple ot the vavtow bs algebrado Sut not rativinad, the raids between
bese and side s always tratscesdental.

In spite of the simplinity af thic etatomen: axd of its
similerity to the problems solved by Hermite and Linde-
mann, I consider the proof of this theorem wvary difficulr;
as also tie proof that

The expression o, for an alg:braie base a and an irrational ai-
gobrals ciponené 2, o, y., the number 271 or e~ wm 1", alway: reg-
retents a transendental or at least cn {rrational number,

Tt iz cortain that tke eclution of these end similasr preollvens
must lead us to sntirely new methods and to a new insight
into the nature of speécial irratioral and trenscondental
numbers.

£ PropLeds or Priux Nusmners.

Essentinl progress in the theory of the distributicn of
rime numbera hasx Iatsly Feon wmade by Hadimard, de la
"allée-Poussin, Von Msngelde and others. For the com-
plate wolution, howaever, of the problems set us by Riemann’s
aper '‘ Uaber die Anzahl der Primzahlen unter ciner gege-
resen: Grosse '’ it stll remains to prove the correctness of
an eacecdiugly lmportant smtement of Hiemnau, viz., that
the zero points of the fanection {(s) defired by the se-ies

; R o L el
JOLREE R Tl

all hate the real part 3, except the well-known negative in
togial real zuson. Al ¥oon a5 this prool has been success
fully established, the next problem would consist ir testing
mora axactly Ricmavn’'s infnitc sories for the uumber of
primes below n given number aund, especially, ¢ deeide
whether tha diffevense hetencen the nawmbe of prives eclow v nunes
ber x and the integral 'ogarithm of = dees in Jact becomne Tnfnite

" Na, demalen, vola. 22, 32 -( 1883, 1388).

David Hilbert (1862 - 1943)




ii;f'-'=""f}1«9 7 m111enmum problems Clay Math Inst "‘20()0
The USD 1 OOO 'OO hst - |

Riemann hypothesis

Birch and Swinnerton-Dyer S y(

comectie. T 'l The Millenniu
- Hodge conjecture ,?rlze _f' i; b] n:

Navier-Stokes equation: existence N |
~ and regularity

Poincaré conjecture

Pvs NP

Yang+Mi__lls theory .




Prime numbers

¢ The prime numbers are-2 367

> Go'ldbaeh’s cohjecture: Every even integer (>2) is the sum of two primes.

'_ * Twm pr1me con]ecture There exist 1nf1mte1y many pairs of pr1mes of the

form p and p+2 o




~ Counting the primes...

10

¥ primes <= X

4

Difference

100

29

1,000

168

L 10,000

= E209

100,000

9,592

1,000,000

78,498

10,000,000

664,579

100,000,000

5,761,455

50,847,534




The number of primes up to 10" should be —

100 10"
~ 23n  loglo®

note that .2.3'~.1'0g 10,

~* Conjectured by Gauss at the age of 16 (around 1792 -
. 1793) and proved only 100 later by Hadamard and de la
~ Vallée Poussin.

. Probablhty that a random number x is primeis 1/ logx
For example the probablhty of a 7-digit number bea
pr1me 1s e |

' 23 7 16
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Carl Friedrich Gauss (1777 - 1855)




Gauss’ chiliads

e A table Wh‘efe Gauss Would
keep his statistics on the
pr1me numbers ’

: Source; American Institute of Mathematics
and Gottingen’s Library.
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MATHEMATIKER
1854 — 18%7

BERNHARD RIEMANN




Riemann wrote only one 8-page paper in number theory. It was
called “Uber die Anzahl der Primzahlen unter finer gegebenen
Grosse”, published in November, 1859. In this paper he considers &
the function of one complex variable, defined initially for Re(s) > 1

£(s) iy
L S T P T
2s 35 4s

Voot B
=(l+—+—+... ) (l+=—+—+... )...=
_ b 3s ' Os

|+ Before, Euler had already considered similar sums




* He presented some of its properties e.g.

| =
EH(s) =1 e 4S+.... (Re(s) > 0)

4 CRITICAL

6(s) = (1 =2")¢(s). (poleats=1) © =

-
L]
$

k)

.-r‘“--—

e Functional equation

&(s) = 35(s — DT () ()

-0 -0 -|-e--we-

il 5= oY)

| CRUTICAL

LINE

complex contmanoa

orimnal cdomam

e From the product formula, {(s) has no zeros in Re(s) > 1. From
the functional equation &(s) has the trivial zeros s = — 2, — 4,...
All the other zeros are in the critical strip 0 < Re(s) < 1.




¢+ He already knew how to estlmate the quant1ty of zeros up to
a certain helght T (1 e. with imaginary part between O and T):

= F T ;=
N(T) e log (2;;) == +_0(10g T)

27 T

CRITICAL

4 STRIP
& 3""
. 1 L

.\',:_""_'
< It

NON-TRIVIAL
ZEROS

trivial zeros

e

-6 -4 -2

L | criTicaL
BN LINE

G W

>
complex continuation original domain




The original
manuscript

Source: American
Institute of
Mathematics and
Gottingen’s Library




Source: American Institute of Mathematics and Gottingen’s Library

“One now finds indeed approximately this number of
roots within these limits, and it is very probable that all
roots are real. Certainly one would wish for a stricter
proof here; I have meanwhile temporarily put aside the
search for this, after some fleeting futile attempts, as it
appears unnecessary for the next objective of my
investigation....”




- The pubhshed version in the |
- Monatsberichte der Berlzner |
Akademie, .November of 1859.

: Source Amerlcan Instltute of Mathemat1cs and
-Gottmgen S L1brary |




Some facts:

e The fact that {(1 +ir) #0 was proved by Hadamard and de
la Vallée Poussin in 1896 and implies the prime number
theorem.

G. H. Hardy and J. E. Littlewood liked to suggest the
Riemann hypothesis (disguised) as a thesis project for their
Ph.D. students. Hardy was the first to prove that there are
infinitely many zeros on the critical line.

) = Z e J + O (xl/z logx)

log u
p=x S

e A. Selberg (1942) proved that a positive proportion of the
zeros is on the critical line. B. Conrey (1989) proved that at
least 40% of the zeros are there.

The first 10,000,000,000,000 of zeros are there...







Eiffel Tower - Paris Jean-Baptiste Joseph Fourier

72 names de French scientists (1768 - 1830)

(curiosity: 21 mathematicians)
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~ The Fourier transform

jel'my
= - 4 e VOO' —2mitx
For eachtE R we define: | /! (t);_ [ e~ " f(x) dx
.« Fourier inversion: f(x) = J e271% £(1) df

- (Plancherel) If fe LY(R)NL*R) then:

| rwra= | 1ora

4 | ”Band-l_i_fnit_ed"'fuhction:f “has compact support
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E(s) = 35(s — D™ T(3) Ls)

o 1 _ log LITG) )
E(S) g F 2 F(s/2) C(s)

g'(s) = A(n).- -~ A(n) =logp when n =pk-
) = -

~ Leth be a good function

Z h(* 7) 2;[%h<s_i%)§g,((§))ds

gl o




==
——h(0)log x
2n

~ Zeros, primes and the Fourier transform

o Under RH... ) =—+1iy (y realll)




Note: h must be good...and to try to estimate, the
r1ght -hand side must also be something
reasonable e.g. h bandlimited.




M= g () =+ Tamo w0 (1)
—27r og 27 S T | t

S =—ag(bin)  (recalls 2= |z]e”)

| _ - Unconditionally:
| e 1/2+it]

S(t) = O(log 1)

- Under RH L1tt1ewood showed in 1924 that:

sttt =0 (L) S0 = ogs
1o =y — = _ g —
ol ca ?ﬁ l'o_g ol loglogt /




Previous: Soundararajan (2009): C=0.372...

Idea:

. 1
log ‘ C(%+it) ‘ = logt — - Zf(t —y)+ O(1)
y

4 + x*

x2

fx) = log




) = 255 = D22 (3) &) = 2]

£(1/2 + if)

5 Y, Re(1/p)

E(1/2 + it

E(S/2 —it) _

E(=3/2 + if)

Using Stirling’s formula

11

p=112+iy

G—y7 \?2
dti-p2 )

1
logl'(z) = 510g2ﬂ— -+ (z—%)logz uE 0( Ll ),

we get

log‘é(%ﬂ't)‘ = logt—%zbg(
| | e

A Lir—y)
— 77 ) -




Previous work: Goldston & Gonek (2007): C=1/2
Idea:

-
S() =;Zy:f(t—y)+0(1)

X 1 4 x2

% - ” 1 X
f(x) = arctan <—>




We have written our objects as:

From the explicit formula it would be “very nice” if we could
choose a special function M such that:

(i)g<M

(i) M has compact support, say in [—A, A].

(ii1) M (0) is as close as possible to 2(0),i.¢€.
J M(x) — g(x)} dx

is minimal.
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Given f: R - R find L: R - R andM [R—>[Rsuchthat
DL f<M. '
ii) supp(L), SUPP(M oA AL

(i) Minimizing ||f L|l; and ||f— M||1

Beurlmg Selberg 1938- 1950

Theﬂrem (C L1ttmann & Vaaler 2010 11) Solutlon for f as

o dﬂw and f(x) - sgn<x>j i’ du(ﬂ)
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.' "‘00 t e 4/1 (— s1n(\/;ct) \/J_ZCOS(\/J_U)> )
2 = 7




For f € L*(R) the following are equivalent:

i) supp(T) C [-A, A

ii) f can be extended to an entire function of order 1

| f(2)] £ C, e 2rald  for all e > 0.

Raymond Paley (1907-1933) . Norbert Wiener (1894 - 1964)




Application:

| | 1 X
et A>0 and f(x) = arctan | ,
| | X 1 + x?

There is a unique entire function M, > g such that
AZ

1 | M(x+1y)| K — g2 ol
} | A-( 2 1+ Alx+iy|

o r

- ii) The Fourier transform Mz is supported on [—A, A] and

RGIES!

iii) The L'— distance between M, and f equals to

= T
Loo {Mj(x) — g(x) } dx = S




| x

R .. .. (_) . h@) _MA(z—@

53 X ;
h(é‘) --~< -§e” —

5(1) = Zf(t — 7 + 0(1) < — ZMA(t — )+ 0(1)

= 1 h 1 +h 1 . h(O)lO
o R 21 27 3 s

1 + x2

e I" /1 lu
e J h(u) Re— | — du
L b I 4 5 %

1 &AM (o (logn)  ~ (—logn
_2ﬂ-n=2 \/E <h( 27 >+h< 2m )>>+0(1)

ZﬂA

Afol A(n) -
i < < : L <1 ; 4 < Z < ™
s 1 +Ar - \/z




S E 1= i '
W@ Re— | —+— | du
e EeaTae s

r OO

Mi(u)(logt + O(og2 + | u]))) du

M=

. +0(1).
- AA

45 JAN

loo 7 A2 A
S0 < — +0(6”A+1)+0( : )

1 + At

Choose | JZ'A log log t — 3 log log logt
logt

I
i = (4 +O(1)> loglog?




Fourier optimization and number theory |l

Emanuel Carneiro

ICTP - International Centre for Theoretical Physics - Trieste, ltaly

El Escorial, June 2022
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Last night...

in "El Rey de Copas" in San Lorenzo de El Escorial

Emanuel Carneiro

Fourier optimization



Last night...

in "El Rey de Copas" in San Lorenzo de El Escorial

Our hero



Last night...

in "El Rey de Copas" in San Lorenzo de El Escorial

Matt
Emanuel Carneiro

Fourier optimization



Last night...

in "El Rey de Copas" in San Lorenzo de El Escorial

Mistery girl

Matt
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Last night...

in "El Rey de Copas" in San Lorenzo de El Escorial

Mistery girl

Matt: How about | buy you a beer?
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Last night...

in "El Rey de Copas" in San Lorenzo de El Escorial

Matt: How about | buy you a beer?
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Last night...

in "El Rey de Copas" in San Lorenzo de El Escorial

Matt: How about | buy you a beer?

Girl: Sure, but only if you can prove to me that under RH there is
always a prime in the interval [x , x + %\/}Iog x], for x large.
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Last night...

in "El Rey de Copas" in San Lorenzo de El Escorial

Matt: How about | buy you a beer?

Girl: Sure, but only if you can prove to me that under RH there is
always a prime in the interval [x , x + %\/}Iog x], for x large.

Matt: Humm...not sure | know...
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Last night...

in "El Rey de Copas" in San Lorenzo de El Escorial

Matt: How about | buy you a beer?

Girl: Sure, but only if you can prove to me that under RH there is
always a prime in the interval [x , x + %\/}Iog x], for x large.

Matt: Humm...not sure | know...
Girl: Too bad, champ...let’s try again tomorrow night.
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Last night...

in "El Rey de Copas" in San Lorenzo de El Escorial

Matt: How about | buy you a beer?

Girl: Sure, but only if you can prove to me that under RH there is
always a prime in the interval [x , x + %\/}Iog x], for x large.

Matt: Humm...not sure | know...
Girl: Too bad, champ...let’s try again tomorrow night.
Goal: Help Matt buy Catherine Zeta-Jones a beer tonight!

Emanuel Carneiro Fourier optimization El Escorial, June 2022 6/28



A classical problem
@ For f: R — R, our normalization for Fourier transform is

(1) = /R e 2" Xf(x) dx.
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A classical problem
@ For f: R — R, our normalization for Fourier transform is

(1) = /R e 2" Xf(x) dx.

@ Let F: R — R be a nonnegative function, with F(0) =1 and
supp(F) C [—1,1]. What is the minimal value of ||F|| 1 (g)?
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A classical problem
@ For f: R — R, our normalization for Fourier transform is

(1) = /R e 2" Xf(x) dx.

@ Let F: R — R be a nonnegative function, with F(0) =1 and
supp(F) C [—1,1]. What is the minimal value of ||F|| 1 (g)?

© Answer =1.
F(x) = (sin(7rX)/(7rX))2
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A classical problem
@ For f: R — R, our normalization for Fourier transform is

(1) = /R e 2" Xf(x) dx.

@ Let F: R — R be a nonnegative function, with F(0) =1 and
supp(F) C [—1,1]. What is the minimal value of ||F|| 1 (g)?

© Answer =1.
F(x) = (sin(7rX)/(7rX))2
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An ‘innocent’ variant

© Let F: R — R be such that F(0) = 1 and supp(F) C [-1,1]. What
is the minimal value of || F|[,1(z)?
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An ‘innocent’ variant

© Let F: R — R be such that F(0) = 1 and supp(F) C [-1,1]. What
is the minimal value of || F|[,1(z)?

Q@ H(x) = =B yields ||H| 11 () = 0.9259...
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An ‘innocent’ variant

© Let F: R — R be such that F(0) = 1 and supp(F) C [-1,1]. What
is the minimal value of || F|[,1(z)?

Q@ H(x) = =B yields ||H| 11 () = 0.9259...

3 T AEZE g

© Best up-to-date (Hérmander and Bernhardsson '93)

0.9243360302... < C < 0.9243360304 . ..
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An ‘innocent’ variant

© Let F: R — R be such that F(0) = 1 and supp(F) C [-1,1]. What
is the minimal value of || F|[,1(z)?

Q@ H(x) = =B yields ||H| 11 () = 0.9259...

3 T [CZ A g

© Best up-to-date (Hérmander and Bernhardsson '93)
0.9243360302... < C < 0.9243360304. ..

© There exists a unique extremizer.
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Prime gaps

@ Bertrand’s postulate (1845): is there always a prime in the interval
[x,2x]7?
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Prime gaps

@ Bertrand’s postulate (1845): is there always a prime in the interval
[x,2x]7?

@ Tchebyshev (1852): Yes. There is always a prime in [x, x + |ng]
for x large.
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Prime gaps
@ Bertrand’s postulate (1845): is there always a prime in the interval
[x,2x]7?

@ Tchebyshev (1852): Yes. There is always a prime in [x, x + |ng]
for x large.

© Hoheisel (1930): There is always a prime in [x, x + x?] for some
0<#<1,and x large.
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Prime gaps
@ Bertrand’s postulate (1845): is there always a prime in the interval
[x,2x]7?

@ Tchebyshev (1852): Yes. There is always a prime in [x, x + IO{;X]
for x large.

© Hoheisel (1930): There is always a prime in [x, x + x?] for some
0<#<1,and x large.

© Baker - Harman - Pintz (2001): There is always a prime in
[x, x + x%-52%] for x large.
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Prime gaps on RH

Cramér’s bounds (1920)

Qo
Pn+1 — Pn = O(\/Pnlog pn),

i.e. every interval [x, x + cy/x log x], for some ¢ > 0, contains a
prime when x is large.
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Prime gaps on RH
Cramér’s bounds (1920)
o
Pn+1 — Pn = O(v/Pnlog pn),

i.e. every interval [x, x + cy/x log x], for some ¢ > 0, contains a
prime when x is large.

@ Historic progress:
» Goldston '83: ¢ = 4.

» Ramaré and Saouter '03: ¢ =8/5
» Dudek’15: ¢ =1+ o(1).

Emanuel Carneiro Fourier optimization El Escorial, June 2022 10/28



Prime gaps on RH
Cramér’s bounds (1920)
o
Pn+1 — Pn = O(v/Pnlog pn),

i.e. every interval [x, x + ¢\/x log x], for some ¢ > 0, contains a
prime when x is large.

@ Historic progress:
» Goldston '83: ¢ = 4.

» Ramaré and Saouter '03: ¢ =8/5
» Dudek’15: c =1+ o(1).

© Non-asymptotic version - best result due to Dudek, Grenié,
Molteni '16: for x > 4, every interval

[x,x + cv/x log X]

contains a prime. Here ¢ = 1 + 2.
» Ramaré and Saouter '03 (c = 8/5)
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Improved estimates
joint with M. Milinovich and K. Soundararajan ’19

Theorem (Asymptotic version)
Assume RH. For x large, every interval

21
X, X + ﬁx/}logx

contains a prime.
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Improved estimates
joint with M. Milinovich and K. Soundararajan ’19

Theorem (Asymptotic version)
Assume RH. For x large, every interval

21
X, X + gx/}logx

contains a prime.
v

Theorem (Non-asymptotic version)
Assume RH. For x > 4, every interval

22
X, X + ﬁx/}logx

contains a prime.
v
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Strategy

@ Explicit formula connecting zeros of {(s) and primes.
@ Fourier optimization problems

© Brun-Titchmarsh inequality.
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Explicit formula

Lemma (Guinand-Weil Explicit Formula)

Let h(s) be analytic in the strip |Im(s)| < 1/2 + ¢ for some ¢ > 0, and
such that |h(s)| < (1 + |s])~("*+9) when [Re(s)| — oo.

S h(y) = h(%) + h( - %) . ;—ﬂﬁ(m log 7
/ h(u Re—% ig)du
-%;%(h(";i")”’(_'if"))’

where p = } + i~ are the non-trivial zeros of ((s).

Idea: to use this with 77( '°g ) localized in an interval without primes.
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Setup

For this let f be a smooth function such that supp(?) C [-1,1], let
0<A<1,let1 < g and set

9(z) = Af(Az) ; h(z) = g(2)a”
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Setup

For this let f be a smooth function such that supp(?) C [-1,1], let
0<A<1,let1 < g and set

9(z) = Af(Az) ; h(z) = g(2)a”
Then

S h(y) = h(%) + h( - %) - ;—ﬂﬁ(m log 7
/ h(u Re—1 '§u>du

—;—W;%hc‘;i") (),
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Setup I

For this let f be a smooth function such that supp(?) C [-1,1], let
0<A<1,let1 < g and set

9(z) = Af(Az) ; h(z) = g(2)a”

Then
St (1) ol 2o o
+21—W/_Zg(u)a"“Rer?/<%+i§U> du
oo

S ().
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Setup I

For this let f be a smooth function such that supp(?) C [-1,1], let
0<A<1,let1 < g and set

9(z) = Af(Az) ; h(z) = g(2)a”

Then
log a

ZQ(’Y & —g(1)a2+g( - 1)a - Lg( - log 7
2j 21 2T
/ g(u)aRe — ( + 2) du

R JTE LIS )
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Setup IV

We get

1Y a2 N\ e
'g<ﬂ)a +g( m)a

1 |~ Ioga
<0l + 5 [0 (—E7)
v
_1 > iu /1 u
ol [Lowerner (35w

L5 6 o)

9(z) = Af(Az) ; h(z)= g(z)aiz

log 7

-

_l’_

Recall that
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Localization

Assume that for a certain ¢ > 0 there is an infinite sequence of x — oo
such that [x, x + ¢v/x log x] contains no primes. Choose

[x,x 4+ cv/X log x] = [a e 28 aez”A]
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Emanuel Carneiro Fourier optimization

Localization

Assume that for a certain ¢ > 0 there is an infinite sequence of x — oo

such that [x, x + ¢v/x log x] contains no primes. Choose

[x,x 4+ cv/X log x] = [a e 28 aez”A]

Then

_ logx)  logx log? x
47TA—|og<1+C\/?>—C\/}+O< ”

and
log x

1/2
a=x<1 +c \/}> = X+ O(v/x log x).
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Emanuel Carneiro Fourier optimization

Localization

Assume that for a certain ¢ > 0 there is an infinite sequence of x — oo

such that [x, x + ¢v/x log x] contains no primes. Choose

[x,x 4+ cv/X log x] = [a e 28 aez”A]

Then

_ logx)  logx log? x
47TA—|og<1+C\/)>(>—C\/}+O< ”

and
log x

a:x<1 +c \/)?>1/2:X+O(\/)?|ogx).

Idea: Perform an asymptotic analysis as x — cc.

El Escorial, June 2022
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Asymptotic analysis: error terms

Since supp(g) C [-A, A], and the interval [ae~2™2, a€?™2] has no
primes, one can verify that

LR ()|
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Asymptotic analysis: error terms

Since supp(g) C [-A, A], and the interval [ae~2™2, a€?™2] has no
primes, one can verify that

o
LS () o (F)]- e

(2] Asa—>oowehaveg< I"ga>=0.
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Asymptotic analysis: error terms |l

@ Also, using Stirling’s formula I (s) = log s + O(|s| ") we get

/g u) a“Re— <+2>du

=/ f(y) e™(z3) log

27r/y('°fa 1 2 2 l
/ f(y)e EZIN <2|og(A +4y°) + log <4A)>dy+O(1)

~ log <41A>?<—'2°f§> +0(1) = O(1).

1y
2t oA dy + O(1)
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Main competition
Matters are reduced to

1 /2 —1/2
o9(z) a0 (5)a

Zlg )|+ 0(1)

Emanuel Carneiro Fourier optimization El Escorial, June 2022 21/28



Main competition
Matters are reduced to

1 /2 —1/2
9(z) @ va(5)e
Observe that
1 7rtA
(1) -01(2) - [ enita
=A/ ?(t)dt+A/ (e’fm—1)?(t)dt
1 —1

= AF(0) + O(A?).

Zlg )|+ 0(1)

Emanuel Carneiro Fourier optimization El Escorial, June 2022 21/28



Main competition
Matters are reduced to

1 a1/2 —1/2
o9(z) a0 (5)a
Observe that
1 7rtA
o(3)-ar(2) -0 [ e it
1 1 .
:A/ f(t)dt+A/ <e”m—1>f(t)dt
1 1

= Af(0) + O(A?).

Zlg )|+ O(1)

We may similarly estimate g(— ) and, hence, the (LHS) above is
g (,;) a’?+g ( ;,) a2 = Af(0)(a'/? + a'/?) + O(a2a'/?).
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Sum over zeros
Let N(x) denote the number of zeros with 0 < v < x. Using the fact

that N(x) = 5 log 5 — 2 + O(log x), we evaluate the sum >__ [g(7)|
using summation by parts to get
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Sum over zeros

Let N(x) denote the number of zeros with 0 < v < x. Using the fact

that N(x) = 5 log 5 — 2 + O(log x), we evaluate the sum >__ [g(7)|
using summation by parts to get

—00

_ 1/~ +1xl / +
> 19001 = 57 | 1900 tog" 57 ax -+ O(lgllc + 1) tog x[ ),

where log™x = max{log x, 0} for x > 0.
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Sum over zeros
Let N(x) denote the number of zeros with 0 < v < x. Using the fact

that N(x) = 5 log 5 — 3. + O(log X), we evaluate the sum >__[g(7)|
using summation by parts to get

—00

— 1 oo +m / +
;Ig(v)l—zw/ 1g(x)| log 2de+0(||g||oo+||g(X) log™ |x|[l1),

where log™x = max{log x, 0} for x > 0.
Recalling that g(x) = Af(Ax),
1 00
190l = 5 [ 17| tog*ly 2w dy + O(1)
¥ —0oQ

_ log(1/27wA)

5 IIflli +O(1).
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Conclusion

We get

AF(0) a2 + O(a%a'/?) < |0g(12/:7TA)

7]l + O(1),
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Conclusion
We get

Iog(1 /27TA)

Af(0)a'/? + O(A%a'/?) < Ifll1 + O(1).

Since 47A = c% + O( ) and a = x + O(v/x log x),
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Conclusion

We get

AF(0)a'/2 + O(A2a'/2) < Mnfu +0(1).

Since 47A = c% + O( ) and a = x + O(v/x log x),

Cf(O) ||fH1
< _
7} log x 2

along this sequence of x — co. This is only possible if

og x + O(1)
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Conclusion
We get

AF(0)a'/2 + O(A2a'/2) < MWH +0(1).

Since 47A = c% + O( ) and a = x + O(v/x log x),

Cf(O) ||fH1
< _
7} log x 2

along this sequence of x — co. This is only possible if

og x + O(1)

171+
< ——<0.
C < 4oy < 0-9259

as we wanted to show.
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This leads to...

@ If supp(F) c [-1, 1] we would have

o IFl
= FO)
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This leads to...

~

@ |If supp(F) c [-1, 1] we would have

o IFl
= Fo)

@ One can actually do better by (over)estimating in [—1, 1]¢:

- IFl

(FO) =B iy e (F(1), dt)

© Here B is the Brun-Titchmarsh constant in our desired scale

(X V) —(x)
B oax
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This leads to...
@ If supp(F) c [-1, 1] we would have

1F 1l
°< Foy

@ One can actually do better by (over)estimating in [—1, 1]¢:

.- IFl

(FO) =B iy e (F(1), dt)

© Here B is the Brun-Titchmarsh constant in our desired scale
, (X + V/X) — 7(x)
B = )
ol X/ log X
© By the PNT (on the left) and work of Iwaniec (on the right):

36
< —
1<Bs< 11
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Extremal problems

@ Problem 1: Given 1 < A < o0, find

C(A) := sup A/ Ft dt
(A FeAuFm [Folar)

where the supremum is taken over the class A of continuous
functions F : R — C, with F € L'(R).

@ Problem 2: Given 1 < A < o0, find

CH(A) = sup —=— A/ Ldt),
A FeA+ ||F||1 11]C )
F#0

where the supremum is taken over the class .A™ of even and
continuous functions F : R — R, with F € L'(R).
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What we can prove

@ Existence of extremizers for A > 1. No extremizers for A = 1.
@ Uniqueness in the bandlimited problem (+ variational condition).
© Good upper and lower bounds for all of these problems.

©Q A~ C(A)and A~ C™(A) are monotone decreasing with

2=Ct(1)=C(1) > C*(A) > C(A) > C*(c0) > C(o0) > 1.0799...

36 25
+ _ _— =
C (11>>21 1.1948...

F(X) — 48 X2673.3x2 +15 Xzef7.4x2

+ 520 )(24679.7X2 +1.3 efZ.SX2 +0.18 efZX2
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Conclusion 1

Theorem (Asymptotic version)
Assume RH. Then

: Pni1 = Pn _ 1 < 1 - 21
P /Bnlogpn = CF(B) ~ CF(36/11) ~ 25°
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Conclusion 2 - non-asymptotic version

@ Use version of the Brun-Titchmarsh inequality due to Montgomery
and Vaughan.
2y
logy’
for all x,y > 1. Relevant range is y ~ v/x, which corresponds to
A = 4 in the extremal problem.

@ With H(x) = 2 and X = 0.9 we use F(x) = H(x/)). Then

m(x+y)—n(x) <

F(0) =4 [y |F(1)] at 25
: =1.1405... > —.
&R 22

J(F) =

© Work the previous argument to make all error terms effective
(Mellin transform approach slightly simpler).
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Fourier optimization and number theory Il

Emanuel Carneiro

ICTP
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in "Alaska" in San Lorenzo de El Escorial
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Last night...

in "Alaska" in San Lorenzo de El Escorial

After a few successful beers...

Matt: | would like to invite you to our conference dinner on Thursday.
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Last night...

in "Alaska" in San Lorenzo de El Escorial

After a few successful beers...

Matt: | would like to invite you to our conference dinner on Thursday.

Girl: | need to know more about your passion for number theory and
analysis.
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Last night...

in "Alaska" in San Lorenzo de El Escorial

After a few successful beers...

Matt: | would like to invite you to our conference dinner on Thursday.

Girl: | need to know more about your passion for number theory and
analysis. How about proving to me that, under GRH, at least 69% of
the Dirichlet L—functions modulo a prime q do not vanish at the point
1 i
2 * 4logq

?




Themes

For a family of L-functions, under GRH:
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Themes

For a family of L-functions, under GRH:

@ Estimate the order of vanishing at the central point.
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@ Estimate the order of vanishing at any given height.
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Themes

For a family of L-functions, under GRH:
@ Estimate the order of vanishing at the central point.
@ Estimate the order of vanishing at any given height.

© Estimate the height of the first zero.
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Themes

For a family of L-functions, under GRH:
@ Estimate the order of vanishing at the central point.
@ Estimate the order of vanishing at any given height.
© Estimate the height of the first zero.

Key takeway: It is possible to approach these problems via a unified
framework of Hilbert spaces.

(joint work with A. Chirre and M. Milinovich).
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L-functions

@ A Dirichlet character x modulo g is a (non-identically zero)
function x : N — C, periodic of period q, such that

x(mn) = x(m) . x(n)

x(n) =0 if ged(n,q) > 1.

@ We then have a Dirichlet L-function:

8

L(s,x) = ) x(n)yns.

@ More generally
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Theorem

Let q be prime and assume GRH for Dirichlet L-functions modulo q.
Then, for any fixed t > 0, we have
1 2mit 1 sindrt
— <5 (1
q—2 23 orqL(SJrIogq’X) 2 < | art

X (mod g) =2
XF#X0

where o denotes the principal character (mod q). Hence, for any
e > 0, the proportion of primitive Dirichlet characters x (mod q) for

which L(% 2 ) # 0 is at least
1
) -

sin4nt
47t

when q is large.

>_1F0(b;q>

|ogq 9 X
’
1—o |1+
2 (
Murty '89: L(, x) = 0 for a proportion of at least } — e.
El Escorial, June 2022
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0.75f
O.70f
0.65f
O.GOf

0.55]

osol— ¥, . R ' A M VAR N |
0.0 0.5 1.0 1.5 2.0

Figure: A plot of the function t — 1 — % (1 + ]%‘1’”\) for small t > 0.

Example: for t = 1/8, the proportion of non-vanishing of

L( + X) # 0s at least 7= — c = 0.69449 . ..

4|0gq’
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Setup

Let F be a family of (automorphic objects). For each f € F, let
o]
L(s,f)= > Ar(n)n~*
n=1

be the associated L-function and assume that
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Setup

Let F be a family of (automorphic objects). For each f € F, let
o]
L(s,f)= > Ar(n)n~*
n=1

be the associated L-function and assume that
@ L(s, f) admits an analytic continuation to an entire function.
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Setup

Let F be a family of (automorphic objects). For each f € F, let
o]
L(s,f)= > Ar(n)n~*
n=1
be the associated L-function and assume that

@ L(s, f) admits an analytic continuation to an entire function.
@ GRH holds for this family (zeros pf = § + ivr ).
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Setup

Let F be a family of (automorphic objects). For each f € F, let

06}
sf:Z

be the associated L-function and assume that
@ L(s, f) admits an analytic continuation to an entire function.
@ GRH holds for this family (zeros pf = § + ivr ).
© Functional equation

A(s,f) =erAN(1 — s, ),

with A(s, f) = Ls(s, ) L(s, f), |ef] = 1 and L(s, f) is the dual
L-function with coefficients Az(n) = \¢(n).

» if fe F,then f e F;
» Ly (s, f) has no zeros on the critical line.
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One-level density

Katz and Sarnak (90’s): conjecture that for each natural family
{L(s,f), fe F} of L-functions there is an associated symmetry group
G = G(F), where G is either:

@ unitary U,

@ symplectic Sp,

© orthogonal O,

© even orthogonal SO(even),
@ odd orthogonal SO(odd).
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One-level density

Katz and Sarnak (90’s): conjecture that for each natural family
{L(s,f), fe F} of L-functions there is an associated symmetry group
G = G(F), where G is either:

@ unitary U,

@ symplectic Sp,

© orthogonal O,

© even orthogonal SO(even),
© odd orthogonal SO(odd).

If $ : R — R is a smooth function whose Fourier transform has
compact support, they conjecture that

= S Yo Et) = [ 00 Walxax

feF r

¢y is the analytic conductor of L(s, f), and Wg is a density function.
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For these five symmetry groups, Katz and Sarnak determined the
density functions:

Wu(x) =1;

Wsp(x) = 1 - SEZ:X'

Wo(x) = 1+ 380(x);
Wso(even) (X) = 1+ si;i;rx
Waotoan () = 1= 2227 4 go(x),

where dy(x) is the Dirac distribution at x = 0.
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A classical reference

HENRYK IWANIEC

WENZHILUO

PETER SARNAK

Low lying zeros of families of L-functions

pobT 7
I

de 'LH.E.S., tome 91 (2000), p. 55-131
<http://www.numdam.org/item?id=PMIHES_2000__91__55_0>

na
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Many examples in the literature where this has been proved

(supp(¢) = (=4, A)), e.g.
@ unitary symmetry:
» primitive Dirichlet L-functions modulo a prime g (Hughes and
Rudnick’ 03) with A =2
» further average of g in a range (Drappeau, Pratt, and Radziwitt'20)

_ 50
A—2+m
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Many examples in the literature where this has been proved

A

(supp(¢) < (=4, A)), e.g.
@ unitary symmetry:
» primitive Dirichlet L-functions modulo a prime g (Hughes and
Rudnick’ 03) with A = 2
» further average of g in a range (Drappeau, Pratt, and Radziwitt’20)
A=2+ 3%
@ orthogonal symmetry:

» Iwaniec, Luo, Sarnak '00
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Many examples in the literature where this has been proved

A

(supp(¢) = (—A, A)), e.g.
@ unitary symmetry:
» primitive Dirichlet L-functions modulo a prime g (Hughes and
Rudnick’ 03) with A = 2
» further average of g in a range (Drappeau, Pratt, and Radziwitt’20)
A=2+ 3%
@ orthogonal symmetry:
» lwaniec, Luo, Sarnak '00
© symplectic symmetry:
» lwaniec, Luo and Sarnak ‘00, Fouvry and Iwaniec '03, OzItk and
Snyder ’99.

and many more...
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Question

Assume that

Jm LY Z¢(w'°§ﬂ°f> - fR O(x) Wa(x) dx,

feF f

holds for smooth ¢ : R — R with supp(¢) (A, A).

What can you say about the order of vanishing at a given height?

Emanuel Carneiro Fourier optimization El Escorial, June 2022
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At the central point

Let ¢ be smooth with supp(¢) = (—A,A). Let ¢ = 0 and ¢(0) > 1.

#L}_Z Orq L(s, f) < #L.FZZ¢(7f|02gﬂCf>-

fer Sz feF ¢
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At the central point

Let ¢ be smooth with supp(¢) = (—A,A). Let ¢ = 0 and ¢(0) > 1.

1 1 |
7 > ord L(s, f) < e ZZ¢(W 02gﬂ0f> .
Hence

feFr S=2 feF
. 1 . 1 log c¢
limsup — ord L(s, f) < limsup — gb(% )
#F w0 #Ffezf: s=3 (s 1) #F—w H#F ;; 2m

- f 6(x) Wa(x) dx.
R
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At the central point

Let ¢ be smooth with supp(¢) = (—A,A). Let ¢ = 0 and ¢(0) > 1.

1 1 |
7 > ord L(s, f) < e ZZ¢(W 02gﬂ0f> .
Hence

feFr S=2 feF
. 1 . 1 log c¢
limsup — ord L(s, f) < limsup — gb(% )
#F w0 #Ffezf: s=3 (s 1) #F—w H#F ;; 2m

- f 6(x) Wa(x) dx.
R

Your problem is then to minimize the (RHS).
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At a given height ¢
Let ¢ be smooth with supp()

(—A,A). Let ¢ > 0and ¢(+t) > 1.
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At a given height ¢
Let ¢ be smooth with supp(¢) — (—A, A). Let ¢ > 0 and ¢(+t) = 1.

2 2mit
#_‘FZ Oqu(S—F@,f)

fer 5=z f

1 2ri emit <
= {ordL(s+|mt,f>+ordL(S—|7”t,f>}
#F fer s=3 og C¢ s=3 og C¢
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At a given height ¢

Let ¢ be smooth with supp(¢) = (—A, A). Let ¢ = 0 and ¢(+t) = 1

2 2rit
#—]__Z ordL( oG, ,f)

fer S=2 f
1 2m
= — ord L s+ f) rd L
SN OO
1 2mi
= — ordL|(s ) f) rd L
#F fe]_-{s=; ( I f s=1

Hence

lim sup % Z orq L (3 27TIt ) J‘ 6(x) Wa(x

#F -0 feF 5=z

Emanuel Carneiro Fourier optimization
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Analysis problems
Consider the class

Azra (1) i= {0 € L'R)NCR) ; supp(d) = [~A,A]; 6> 0;9(21) > 1},
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Analysis problems
Consider the class

Azra (1) i= {0 € L'R)NCR) ; supp(d) = [~A,A]; 6> 0;9(21) > 1},

@ One-delta extremal problem. For G € {U, Sp, O, SO(even), SO(odd)}
and A > 0, find:

inf X)) Wg(x)dx.
#€ A2 (0) JR¢( ) Welx)
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Analysis problems
Consider the class

Azra (1) i= {0 € L'R)NCR) ; supp(d) = [~A,A]; 6> 0;9(21) > 1},

@ One-delta extremal problem. For G € {U, Sp, O, SO(even), SO(odd)}
and A > 0, find:

inf X)) Wg(x)dx.
#€ A2 (0) JR¢( ) Welx)

@ Two-delta extremal problem. For
G € {U,Sp,0,SO(even),SO(odd)}, A > 0 and t > 0, find:

inf x) Wg(x) dx.
o 200 W)
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Analysis problems
Consider the class

Azra (1) i= {0 € L'R)NCR) ; supp(d) = [~A,A]; 6> 0;9(21) > 1},

@ One-delta extremal problem. For G € {U, Sp, O, SO(even), SO(odd)}
and A > 0, find:

inf X)) Wg(x)dx.
¢eAz,n(0) J]Raﬁ( ) We(x)

@ Two-delta extremal problem. For
G € {U,Sp,0,SO(even),SO(odd)}, A > 0 and t > 0, find:

inf x) Wg(x) dx.
¢EAZWA(I)~[R¢( ) We(x)

Problem (1) above solved by Ilwaniec, Luo and Sarnak ('00) for A = 2
and Freeman and Miller for small A (via Fredholm operators).
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Theorem

Precise answers to these problems.
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Figure: Plots of the extremal function ¢ when A = 2 and t = 1/4 (on the left)
and when t = 2 (on the right).
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Orthogonal

0.6

0.2

0.4

-0.2

Figure: Plots of P(t), the lower bound for the proportion of non-vanishing,
when G = O and A € {1,2} (blue and orange, respectively), for small { > 0.
When A = 2 the maximum value is 0.5892. .. attained at t = 0.3575.. ., and
the limitas t — oo is 3.
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Even orthogonal

0.6+

0.4

/N~

5 1.0 15 2.0

-0.2+

Figure: Plots of P(t), the lower bound for the proportion of non-vanishing,
when G = SO(even) and A € {1, 2} (blue and orange, respectively), for small
t > 0. When A = 2 the maximum value is 0.5814 . .. attained at
t=0.6247..., and the limitas t — oo is 1.
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Odd orthogonal

Figure: Plots of P(t), the lower bound for the proportion of non-vanishing,
when G = SO(odd) and A € {1,2} (blue and orange, respectively), for small
t > 0. When A = 2 the maximum value is 0.7175. .. attained at

t =0.3505..., and the limitas t — oo is 1.
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Symplectic

1.0 r
0.8 I
0.6
0.4

0.2

0.0 S SR P P
0.0 0.5 1.0 1.5 2.0

Figure: Plots of P(t), the lower bound for the proportion of non-vanishing,
when G =Spand A € {1, 1, 3,2} (blue, orange, green, and red, respectively),
for small t > 0. The maximum values are attained when t — 0™ and can be
explicitly computed. In particular, P(0%) is equal to % (for A =1),0.8604...
(for A=3%),0.8910... (for A = 2),and 0.9427 ... (for A = 2). From Theorem
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Theme 1: Paley-Wiener spaces
@ Recall the Paley-Wiener theorem: if f € L2(R) then:

A~

supp(f) = [~4,5] < f entire and |f(2)| < C.e"™2 92,
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Theme 1: Paley-Wiener spaces
@ Recall the Paley-Wiener theorem: if f € L2(R) then:

A~

supp(f) < [—%, %] < f entire and |f(2)| < C.e(™A+9)12],

@ Let H,a be the Hilbert space of entire functions of exponential
type at most 7A with norm

1/2
[Fllaten = 1Fllzm = (fR|F(x)|2dx> < .
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Theme 1: Paley-Wiener spaces
@ Recall the Paley-Wiener theorem: if f € L2(R) then:

supp() © [~2,8] — f entire and |f(2)] < C.e™A+)IZl

@ Let H,a be the Hilbert space of entire functions of exponential
type at most 7A with norm

1/2
1Fl3,n = IFl2@ = (fR |F(X)|2dx> < 0.

@ Let Hs .a be the normed vector space of entire functions of
exponential type at most 7A with norm

1/2
1l = | Fliegemg) = (f IF(x |2WG<>dx) <o
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Theme 1: Paley-Wiener spaces
@ Recall the Paley-Wiener theorem: if f € L2(R) then:

supp() © [~2,8] — f entire and |f(2)] < C.e™A+)IZl

@ Let H,a be the Hilbert space of entire functions of exponential
type at most 7A with norm

1/2
1Fl3,n = IFl2@ = (fR |F(X)|2dx> < 0.

@ Let Hs .a be the normed vector space of entire functions of
exponential type at most 7A with norm

1/2
1l = | Fliegemg) = (fw memg <o

Proposition (Equivalence of norms)
IFl#temn ~ IFl2t0a J
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Theme 2: Riesz - Fejér decompositions

@ If a polynomial P : R — C is non-negative on R then

P(x)=1Q) (e P(z)=Q(2)Q(2)

with Q of half of the degree.
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Theme 2: Riesz - Fejér decompositions

@ If a polynomial P : R — C is non-negative on R then
P(x) = Q)  (ie. P(z) = Q(2)Q(2))
with Q of half of the degree.

© Similar for trigonometric polynomials.
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Theme 2: Riesz - Fejér decompositions

@ If a polynomial P : R — C is non-negative on R then

P(x) = |Q(x)? (i.e. P(z) = Q(2)Q(Z))
with Q of half of the degree.
© Similar for trigonometric polynomials.

© Similar for entire functions: if ¢ : C — C is of exp. type 27 A and is
non-negative on R, then

o(x) = [F(x)[? (i.e. ¢(2) = F(2)F(2))

for some F exp. type 7A.
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Theme 3: Reproducing kernels

@ Let FeH, . Forany fixed we C:
Emanuel Carneiro
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Theme 3: Reproducing kernels
@ Let FeH, . Forany fixed we C:

IR
IF(w)| = J e F (1) dt
N

AJ2 2 NI
f e?mwlqt f |F(t)2dt
—AJ2 —AJ2

= A2 |Fly, .

1
2

N
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Theme 3: Reproducing kernels
@ Let FeH, . Forany fixed we C:

se
Fowl=|[ i Eat
N

AJ2 2 NI
f e?mwlqt f |F(t)2dt
—AJ2 —AJ2

= A2 |Fly, .

1
2

N

@ The map F — F(w) is a continuous linear functional.
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Theme 3: Reproducing kernels
@ Let FeH, . Forany fixed we C:

[F(w)| =

N

™™ F(t) dt

N
e

A2
‘[‘ e27‘(‘|W|dt
N

1
2

S lan
f B ()Pt
A2

= A2 |Fly, .

@ Themap F — F(w)

is a continuous linear functional.

@ There exists Kg a(W, ") € Hga such that

FW) = (F Kona (W, o .o = | Fx) KaralW.X) Wolx) dx

Emanuel Carneiro Fourier optimization
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Solution: one-delta problem

Aoxa(0) := {9 € L'(R) N C(R) ; supp(d) = [~A,A]; 6> 0;6(0) = 1}.
Find
inf f o(x) Wg(x) dx.

¢€'A27TA (0) R
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Solution: one-delta problem

A2zn(0) =

{0 L'®)ACR); supp(d) = [~A,B]; 62 0;6(0) > 1.
Find

¢€-A271-A(0) f o(x

Solution: ¢(x) = |F(x)[?, with F € Hg rn-
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Solution: one-delta problem

A2zn(0) =

{0 L'®)ACR); supp(d) = [~A,B]; 62 0;6(0) > 1.
Find

inf f x) Wg(x)dx
¢eAz,(0) ]R(b( ) Wa(x)

Solution: ¢(x) = |F(x)[?, with F € Hg .a.Then

1< [F(O)]? = [¢F, K0, )n[
< |F[3, ¢K(0,") ,K(0,-)) = |F|3, K(0,0).
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Solution: one-delta problem

Aora(0) = {6 L'(R) A C(R) ; supp(d) = [-A, A5 6> 0;6(0) = 1}.
Find
inf f o(x) Wg(x) dx

#€A2-n(0) JR

Solution: ¢(x) = |F(x)[?, with F € Hg .a.Then

1 < |F(0)[2 = [¢F, K(0,)m?
< |F|% (K(0,-) ,K(0,-)) = |F|3 K(0,0).
Hence ]
K(0,0)
with equality if and only if F(z) = ¢K(0, z).

Emanuel Carneiro Fourier optimization
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Solution: two-delta problem

Agra(t) = {6 € L'(B)NC(R); supp(3) = [~A, A]; 0> 0:6(:0) > 1},
Find

inf Xx) Wga(x) dx.
e J 200 Welo)
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Solution: two-delta problem

Azra (1) i= {0 € L'R)NC(R) ; supp(d) = [~A,A]; 6> 0;0(21) > 1},
Find

inf Xx) Wga(x) dx.
e J 200 Welo)

Lemma

Let H be a Hilbert space and 0 # v4, vo € H be two vectors such that
|vi] = ||va| and define 7 = {x € H; [{x,vq)| = 1 and [(X, vo)| = 1}.

1/2
min || x|| = £
xeJ (w112 + v, v ) '
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Solution: two-delta problem

Azra (1) i= {0 € L'R)NC(R) ; supp(d) = [~A,A]; 6> 0;0(21) > 1},
Find

inf Xx) Wga(x) dx.
e J 200 Welo)

Lemma

Let H be a Hilbert space and 0 # v4, vo € H be two vectors such that
|vi] = ||va| and define 7 = {x € H; [{x,vq)| = 1 and [(X, vo)| = 1}.

” 1/2
ol = ((Ilw P+ v, V2>')) |
Solution: 6(x) = |F(x)P.
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Solution: two-delta problem

Azra (1) i= {0 € L'R)NC(R) ; supp(d) = [~A,A]; 6> 0;0(21) > 1},
Find

inf jgb(x) Wg(x) dx.

¢€A27TA(t) R

Lemma
Let H be a Hilbert space and 0 # v4, vo € H be two vectors such that
|vi] = ||va| and define 7 = {x € H; [{x,vq)| = 1 and [(X, vo)| = 1}.

1/2
min | x|| = :
i (Iva ]2 + [Cva, va)))

Solution: ¢(x) = |F(x)[?. Note [(F, K(t, ))u| =

twu| =
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Solution: two-delta problem

Azra (1) i= {0 € L'R)NC(R) ; supp(d) = [~A,A]; 6> 0;0(21) > 1},
Find

inf jgb(x) Wg(x) dx.

peAara(t) JR

Lemma
Let H be a Hilbert space and 0 # v4, vo € H be two vectors such that
|vi] = ||va| and define 7 = {x € H; [{x,vq)| = 1 and [(X, vo)| = 1}.

1/2
min | x|| = :
i (Iva ]2 + [Cva, va)))

Solution: ¢(x) = |F(x)|?. Note [(F, K(t,-))y| = t)ou| =
2
Fl2, > .
IFlhe = R 0wk -0




Finding the reproducing kernels

F(w) = fR F(x) (kw(x) (1 4 Sin2mx )) dx = flT:(y) g2y gy

2mX
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Finding the reproducing kernels

F(w) = JR F(x) (kw(x) (1 + Si;iﬁ:x )) dx = JIIV-'(y) g2y gy

Things essentially boil to solving something like:
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Finding the reproducing kernels

F(w) = JR F(x) (kw(x) (1 + Si;izx )) dx = flT:(y) g2y gy

Things essentially boil to solving something like:

1 .
uw(y) + E(UW s1_141)(y) =€ 2™ forae ye[—%,5]
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Finding the reproducing kernels

F(w) = JR F(x) (kw(x) (1 + Si;f;x )) dx = JIIV-'(y) g2y gy

Things essentially boil to solving something like:

1 o
uw(y) + E(uw # 1[_1,1])(y) = e 2™ forae. y € [— %, %]

1 v+ .
uw(y) + EL 1 Uw(s)ds = 2™ forae. ye [-5.5]

with uy € L2(R), with supp (Uy) < [— 5,

NII>

Ik
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Theorem ((Paley-Wiener) Reproducing kernel: unitary
symmetry)

For any A > 0, we have

sinTA(z —w)

KU,WA(Waz) = W(Z—W)

Theorem (Reproducing kernel: orthogonal symmetry)

For any A > 0, we have

_sinTA(z— W) 1 (sinwAz) (sinﬂAW).

KO,TFA(W7Z) - W(Z—W) - (2—|—A) wZ TW
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Theorem (Reproducing kernel: symplectic symmetry)

(1) For0 < A < 1 we have

KSp,wA(W7 Z) =

sintA(z — W) 1 (sin wAz) (sinwaW)v

z-w Te-b8)\ =z e

(ii) For1 < A < 2, define the constants

= @RI/ _ ghif4

— gl jg2=D)i/4 4 N4 (Z—TA) 7
b= eAi/4 _ ie(2—A)i/4 _ e(2—A)i/4 _ (Z—TA) T,
and functions of a complex variable w,
c(w) = —16m2w? + 4miw 2™ F(w) = 2cos(m(2 — A)w) + 8rwsin(rAw)
- 1 — 1672w? ' - 1 — 1672w? '
2cos(TAw) — dmiw e~ AW — gr(@=A)iw sin(m(2 — A)w) (2 — A)
G = _ F ;
W) 1— 16m2w? 2rw(1 — 1672w?) 4 W)
aG(w) — bG(w bG(w) —aG(w 1
Aw) = ZEW) ZbGW) g, bGW) —aGW) . = (rA(w) + TB(w) — F(w))
ab — ab ab — ab 2

v
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Theorem (cont.)

Then
AW ( — je®miz _ 1) (e A(riz+i/4) _ g—(2—A)(rwiz+i/4)
Ksp,ma(W,2) = () 1 — )
2miz +i/2
B(w) (ie2™7 — 1) (e—2(xiz—i/4) _ g=(2—1)(riz—i/4)
, B (e — 1) (o2 )
27iz — /2
C(W) (e78iz—T) _ gn@=D)iz=)) | T(w)( — g~ =bi(z—T) | g=m(2-2)i(z-W))
27i(z — W)
. D(w) sin (m(2 — A)z) N sin (m(2 — A)(z —W))
Tz m(z—Ww) ’
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A complementary problem

Hughes and Rudnick '03 consider the problem of establishing the
existence of low-lying zeros in the family of primitive Dirichlet
L-functions modulo q . They prove that, under GRH, if the support is
[—A, A] in the one-level density theorem then

. . |7y logqg 1

lims e ST PP

el DT 2n 2A
X#X0

With A = 2 this becomes 1/4.
Given a family F, we seek an upper bound for

V¢ log ¢t

limsup min
2w

Yt
#F -0 feF

Y
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Slight modification

For an orthogonal (resp. odd orthogonal) family, we expect half
(resp. all) of the L-functions in the family to trivially vanish at the central
point due to the sign of the functional equation.

When G = O or G = SO(odd), we are going to assume that there exists
a subset | ;. » Z(f) of the zeros at the central point such that

.1

1
lim ——> > 1= (whenG=0)
#F 0 #F feF e Z(f) 2

lim #1F,2 Y11 =1 (when G = SO(odd)).
e F veZ(f)

When G € {U, Sp, SO(even)} we may simply regard Z(f) = &.
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Slight modification - part 2

With this understanding, the one-level density becomes

1 I
3 5 o(52) - [ oo

feF ~st Z(f)

where we denote
G':= G if Ge{U,Sp,SO(even)} ; O :=U ; SO(odd)’ := Sp.
We aim to bound

V¢ log Cf
2m

B(F) :=limsup min
(%) #F—o0 1EZ(F)
feF

Emanuel Carneiro Fourier optimization El Escorial, June 2022 34/36



Let a > 0 and let ¢(x) = (x® — &%) g(x), with g even, Schwartz,
non-negative and supp(g) = (—A, A). If

: log C
0> im 3 3 ¢< 2 f) W

feF v Z(f)

we can certainly conclude that 5(F) < a. Note that the (RHS) above is
- | 600 Wer(ax = | (62 - &) g(x) We () ax
R
Hence (1) is equivalent to

. (§z X2 9(x) W (x) dx1) 12/2.
(S]R WGﬂ ) ) /

The problem is the minimize the (RHS).
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Theorem

Let K = Kg: . be the reproducing kernel of the Hilbert space Hg: -
Let &y be the smallest positive real zero of the function
x — Re((1 — ix)K(i,x)). Then

¢ log ¢t
21

[iminf min

< &o-
#F—0 ¢ Z(f)
feF
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