Noetherian solvability and explicit solution of a singular integral equation with weighted Carleman shift in Besov space

Nurlan Yerkinbayev

Institute of Mathematics and Mathematical Modeling,
Almaty, Kazakhstan
Joint work with N.K. Bliev and K.S. Tulenov
WORKSHOP ON BANACH SPACES AND BANACH LATTICES II

Introduction

Let Γ be a closed Lyapunov contour from the class $C_{\nu}^{1}, \frac{2}{p}-1<\nu \leq 1$, $1<p<2$.
Let D be a region of the complex plane E bounded by a closed Lyapunov contour Γ and let $D^{+}:=D, D^{-}:=E-\overline{D^{+}}$. Throughout this work, we assume that $0 \in D^{+}$and $z=\infty \in D^{-}$.
In the present work, we study a solvability of the following singular integral equation with a Carleman shift in the Besov space $B_{p, 1}^{\frac{1}{p}}(\Gamma), 1<p<2$, $\theta=1$ and $r=\frac{1}{p}$:
$(M \varphi)(t) \equiv a(t) \varphi(t)+\frac{b(t)}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{\tau-t} d \tau+\frac{b(t) u(t)}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{\tau-\alpha(t)} d \tau=g(t)$,
where $a(t), b(t), u(t), g(t) \in B_{p, 1}^{\frac{1}{p}}(\Gamma)$. Operator M is bounded on $\frac{B_{p, 1}^{\frac{1}{p}}(\Gamma)^{1}}{{ }_{1}^{1} N \text { Blie }}$
${ }^{1}$ N. Bliev, Generalized analytic functions in fractional spaces. Boston: Longman, Published

References

嗇 V．G．Kravchenko，G．S．Litvinchuk，Introduction to the Theory of Singular Integral Operators with Shift，Kluwer Academic Publishers， Amsterdam， 1994.
（ G．S．Litvinchuk，Boundary－Value problems and singular integral equations with shift．Moscow：Nauka；1977．［In Russian］．
R．P．Castro，E．M．Rojas，Explicit solutions of Cauchy singular integral equations with weighted Carleman shift，J．Math．Anal．Appl． 371 （2010），128－133．

固 N．I．Muskhelishvili，Singular Integral Equations［in Russian］， Fizmatgiz，Moscow， 1962.

囦 S．Prëssdorf，Some Classes of Singular Equations，North－Holland Publishing Company．New York， 1978.

Besov space

Let m be an integer and $r>0$ is a real number satisfying $m>r>0$. Recall, a function φ belongs to the Besov space $B_{p, \theta}^{r}(\Gamma), 1 \leq p, \theta \leq \infty$, if $\varphi \in L_{p}(\Gamma)$ and the following seminorm is finite

$$
\|\varphi\|_{b_{p, \theta}^{r}(\Gamma)}=\left(\int_{\Gamma}|h|^{-1-\theta r}\left\|\Delta_{h}^{m} \varphi\right\|_{L_{p}(\Gamma)}^{\theta} d h\right)^{\frac{1}{\theta}}
$$

where $h \in \Gamma$ and $\Delta_{h}^{m} \varphi=\Delta_{h}\left(\Delta_{h}^{m-1} \varphi\right)\left(\Delta_{h} \varphi(t)=\varphi(t+h)-\varphi(t)\right)$ is the finite difference of order m. The space $B_{p, \theta}^{r}(\Gamma), 1 \leq p, \theta \leq \infty$ is a Banach space with the norm ${ }^{2}$

$$
\|\varphi\|_{B_{p, \theta}^{r}(\Gamma)}=\|\varphi\|_{L_{p}(\Gamma)}+\|\varphi\|_{b_{p, \theta}^{r}(\Gamma)} .
$$

[^0]
$B_{2}(\Gamma)$ and $B_{2 \times 2}(\Gamma)$ spaces

Let $B_{2}(\Gamma)$ be a set of all 2-dimensional vectors with components from $B_{p, 1}^{\frac{1}{p}}(\Gamma)$ and $B_{2 \times 2}(\Gamma)$ be a set of all 2×2 square matrices with elements from $B_{p, 1}^{\frac{1}{p}}(\Gamma)$. The set $B_{2}(\Gamma)$ can be supplied with the norm by taking as the norm of the vector $X=\left(x_{1}, x_{2}\right)$ and considering the sum of the norms of the individual components:

$$
\|X\|_{B_{2}(\Gamma)}:=\left\|x_{1}\right\|_{B_{p, 1}^{\frac{1}{p}}(\Gamma)}+\left\|x_{2}\right\|_{B_{p, 1}^{\frac{1}{p}}(\Gamma)} .
$$

In this case, the norm of the matrix $A=\left\{a_{k j}\right\}_{1}^{2} \in B_{2 \times 2}(\Gamma)$ can be defined, for example, by

$$
\|A\|_{B_{2 \times 2}(\Gamma)}:=2 \max _{j, k}\left\|a_{j k}\right\|_{B_{p, 1}^{\frac{1}{p}}(\Gamma)}
$$

Then the space $B_{2 \times 2}(\Gamma)$ with this norm will also be a Banach algebra ${ }^{3}$.

[^1]
Carleman shift and Hölder space

Let $\alpha(t)$ be a Carleman shift. In other words, it is a map which homeomorphically translates Γ onto itself with preservation or change of orientation on Γ, and satisfies the condition $\alpha[\alpha(t)]=t$.

$$
\alpha^{\prime}(\cdot) \in H_{\mu}(\Gamma) \text { and } \alpha^{\prime}(t) \neq 0, \forall t \in \Gamma .
$$

Here, $H_{\mu}(\Gamma)$ is a space of functions defined on Γ satisfying the Hölder condition with the exponent $0<\mu \leq 1$. The space $H_{\mu}(\Gamma)$ is Banach equipped with the norm ${ }^{4}$

$$
\|\varphi\|_{H_{\mu}(\Gamma)}:=\max _{t \in \Gamma}|\varphi(t)|+\sup _{t, \tau \in \Gamma} \frac{|\varphi(\tau)-\varphi(t)|}{|\tau-t|^{\mu}}
$$

[^2]
Noether operators

Let

$$
\alpha(A)=\operatorname{dim} \operatorname{ker} A, \beta(A)=\operatorname{dim} \operatorname{coker} A .
$$

The ordered pair of numbers $(\alpha(A), \beta(A))$ is called the d-characteristic of the operator A. If at least one of the numbers $\alpha(A)$ or $\beta(A)$ is finite, then the difference

$$
\operatorname{Ind} A=\alpha(A)-\beta(A)
$$

is called the index of the operator A.
The operator A is said to have a finite d-characteristic or a finite index if both of the numbers $\alpha(A)$ and $\beta(A)$ are finite.
A closed normally solvable operator A is called a Noether operator or F operator if its d-characteristic is finite. It is called a semi-Noether operator if at least one of the numbers $\alpha(A)$ or $\beta(A)$ is finite. In the class of semi-Noether operators we shall in the sequel distinguish between F_{+}-operators $(\alpha(A)<\infty)$ and F_{-}-operators $(\beta(A)<\infty)$.

Operators

Here, S is a singular integral operator defined by

$$
(S \varphi)(t)=\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{\tau-t} d \tau, \quad \forall \varphi \in B_{p, 1}^{\frac{1}{p}}(\Gamma)
$$

And, W is an operator on $B_{p, 1}^{\frac{1}{p}}(\Gamma)$ by the following formula

$$
(W \varphi)(t)=\varphi[\alpha(t)]
$$

Also, we shall be concerned with the weighted Carleman shift operator on $B_{p, 1}^{\frac{1}{p}}(\Gamma)$ which is defined by

$$
(U \varphi)(t)=u(t) \varphi[\alpha(t)]
$$

Note that $U^{2}=I$ is equivalent to $u[\alpha(t)] u(t)=1, t \in \Gamma^{5}$.

- $U S=S U$ if α preserves the orientation of $\Gamma(\gamma=+1)$, - US $=-\boldsymbol{S U}$ if α changes the orientation of $\Gamma(\gamma=-1)$.
${ }^{5}$ V.G. Kravchenko, G.S. Litvinchuk, Introduction to the Theory of Singular Integral Operators with Shift, Kluwer Academic Publishers, Amsterdam, 1994.

Operators

Let us consider the following operators

$$
J_{1}:=\frac{1}{2}(I-U) \text { and } J_{2}:=\frac{1}{2}(I+U) .
$$

Next, we obtain an analogue of Lemma 2^{6} in the space $B_{p, 1}^{\frac{1}{p}}(\Gamma)$.

Lemma

Let $\varphi \in B_{p, 1}^{\frac{1}{p}}(\Gamma)$. We have

$$
\left(J_{k} S \varphi\right)(t)=\left\{\begin{array}{l}
\left(S J_{k} \varphi\right)(t), \quad \text { if } \quad U S=S U \\
\left(S J_{3-k} \varphi\right)(t), \quad \text { if } \quad U S=-S U, \quad t \in \Gamma
\end{array}\right.
$$

[^3]Hence, multiplying by a_{α} and applying the projection operator J_{k} to both sides of the equation (1), we have

$$
\begin{cases}a a_{\alpha} \varphi_{2}+\left(a_{\alpha} b+a b_{\alpha}\right)\left(S \varphi_{2}\right)=\left(a_{\alpha} g+u a g_{\alpha}\right), & \text { if } \quad U S=S U \tag{2}\\ a a_{\alpha} \varphi_{1}+\left(a_{\alpha} b-a b_{\alpha}\right)\left(S \varphi_{1}\right)=\left(a_{\alpha} g-u a g_{\alpha}\right), & \text { if } \quad U S=-S U .\end{cases}
$$

where $a(t)=a$ and $a[\alpha(t)]=a_{\alpha}, b(t)=b$ and $b[\alpha(t)]=b_{\alpha}, \varphi_{k}=J_{k} \varphi$, $k=1,2$. We obtain a corresponding system of two SIEs with a Cauchy kernel relatively unknown vector $\rho(t)=\left\{\rho_{1}(t), \rho_{2}(t)\right\}$

$$
\left\{\begin{array}{l}
a \rho_{1}+\frac{b}{\pi i} \int_{\Gamma} \frac{\rho_{1}(\tau)}{\tau-t} d \tau+\frac{\gamma b u}{\pi i} \int_{\Gamma} \frac{\alpha^{\prime}(\tau) \rho_{2}(\tau)}{\alpha(\tau)-\alpha(t)} d \tau=g, \tag{3}\\
a_{\alpha} \rho_{2}+\frac{b_{\alpha} u_{\alpha}}{\pi i} \int_{\Gamma} \frac{\rho_{1}(\tau)}{\tau-t} d \tau+\frac{\gamma b_{\alpha}}{\pi i} \int_{\Gamma} \frac{\alpha^{\prime}(\tau) \rho_{2}(\tau)}{\alpha(\tau)-\alpha(t)} d \tau=g_{\alpha},
\end{array}\right.
$$

where the coefficient γ takes the value 1 or -1 , if respectively $\alpha(t)$ maps Γ onto itself with preservation or change of orientation on Γ.

An operator, applying of which to the vector $\left(\rho_{1}, \rho_{2}\right)$ gives the left hand side of (3), can be written as

$$
\begin{gathered}
L \equiv Q_{1} I+Q_{2} S, \\
Q_{1}=\left(\begin{array}{cc}
a & 0 \\
0 & a_{\alpha}
\end{array}\right), \quad Q_{2}=\left(\begin{array}{cc}
b & \gamma b u \\
b_{\alpha} u_{\alpha} & \gamma b_{\alpha}
\end{array}\right),
\end{gathered}
$$

I is an identity operator in $B_{2}(\Gamma)$. Operator L in (4) acts to the space $B_{p, 1}^{\frac{1}{p}}(\Gamma)^{7}$. Moreover, it belongs to $L\left(B_{2}\right)$ and can be written as

$$
\begin{equation*}
L=C P_{1}+D P_{2} \tag{5}
\end{equation*}
$$

$C=Q_{1}+Q_{2}, \quad D=Q_{1}-Q_{2}, \quad$ and $\quad P_{1}=\frac{1}{2}\left(l_{1}+S_{1}\right), \quad P_{2}=\frac{1}{2}\left(l_{1}-S_{1}\right)$,

$$
S_{1}=\left(\begin{array}{ll}
S & 0 \\
0 & S
\end{array}\right), \quad I_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Operators as L generates an algebra.
${ }^{7}$ N. Bliev, Generalized analytic functions in fractional spaces. Boston, MA: Longman; 1997. Published.

We introduce an additional SIE with a Carleman shift corresponding to (1)

$$
\begin{equation*}
K \chi \equiv a \chi+b(S \chi)-b u(W S \chi)=0 \tag{6}
\end{equation*}
$$

It is easy to see that if $\rho_{1}(t)=\chi(t), \rho_{2}(t)=-\chi[\alpha(t)]$, then using the procedure described above, you can obtain the corresponding system (4) from (6). Allied operators are understood in the sense of the following identities

$$
\int_{\Gamma}(M \varphi)(t) \psi(t) d t=\int_{\Gamma} \varphi(t)\left(M^{\prime} \psi\right)(t) d t
$$

The mentioned union equations have the form

$$
\begin{equation*}
M^{\prime} \psi \equiv a \psi-\frac{1}{\pi i} \int_{\Gamma} \frac{b(\tau) \psi(\tau)}{\tau-t} d \tau-\frac{\gamma}{\pi i} \int_{\Gamma} \frac{b[\alpha(\tau)] u[\alpha(\tau)] \alpha^{\prime}(\tau) \psi[\alpha(\tau)]}{\tau-t} d \tau \tag{7}
\end{equation*}
$$

$K^{\prime} \omega \equiv a \omega-\frac{1}{\pi i} \int_{\Gamma} \frac{b(\tau) \omega(\tau)}{\tau-t} d \tau+\frac{\gamma}{\pi i} \int_{\Gamma} \frac{b[\alpha(\tau)] u[\alpha(\tau)] \alpha^{\prime}(\tau) \omega[\alpha(\tau)]}{\tau-t} d \tau$.

It is clear that equation (8) is accompanying to the union equation (7). The system of SIE without shift corresponding to the equations (7) and (8) have forms

$$
\left\{\begin{array}{l}
a \omega_{1}-\frac{1}{\pi i} \int_{\Gamma} \frac{b(\tau) \omega_{1}(\tau)}{\tau-t} d \tau-\frac{1}{\pi i} \int_{\Gamma} \frac{b[\alpha(\tau)] u[\alpha(\tau)] \omega_{2}(\tau)}{\tau-t} d \tau=0, \tag{9}\\
a_{\alpha} \omega_{2}-\frac{\gamma \alpha^{\prime}(t)}{\pi i} \int_{\Gamma} \frac{b(\tau) u(\tau) \omega_{1}(\tau)}{\alpha(\tau)-\alpha(t)} d \tau-\frac{\gamma \alpha^{\prime}(t)}{\pi i} \int_{\Gamma} \frac{b[\alpha(\tau)] \omega_{2}(\tau)}{\alpha(\tau)-\alpha(t)} d \tau=0 .
\end{array}\right.
$$

It is easy to verify that the system (9) is union with the corresponding system of equations (3). The following result is necessary.

Lemma

(1) If a Carleman shift α preserves orientation on Γ, then the operators M in (1) and K in (6) have the following connection.

$$
\vartheta M-K \vartheta=T_{1}
$$

where $\vartheta(t)=\alpha(t)-t \neq 0, T_{1}$ is a completely continuous operator.
(2) If α changes orientation on Γ, then

$$
S M-K S=T_{2}
$$

where T_{2} is a completely continuous operator.

Lemma

Operators M and K is simultaneously Noetherian or non-Noetherian. In the case both are Noetherian operators, we have

$$
\operatorname{IndM}=\operatorname{Ind} K
$$

Theorem

Operator $L=C P_{1}+D P_{2}$ is F_{+}(or F_{-})-operator if and only if $\operatorname{det} C \neq 0, \operatorname{det} D \neq 0, t \in \Gamma$.

Theorem

In order for SIE (1) with a Carleman shift to be Noetherian, it suffices to satisfy the following conditions
(1) $a a_{\alpha}-a_{\alpha} b-a b_{\alpha} \neq 0, a a_{\alpha}+a_{\alpha} b+a b_{\alpha} \neq 0$, if $\alpha(t)$ is an orientation-preserving shift;
(1) $a a_{\alpha}-a_{\alpha} b+a b_{\alpha} \neq 0, a a_{\alpha}+a_{\alpha} b-a b_{\alpha} \neq 0$, if $\alpha(t)$ is an orientation-changing shift.

Theorem

If the Noetherian conditions are satisfied, then the index for SIE (1) with a Carleman shift is calculated by the following formulas:
(1) If $\alpha(t)$ is an orientation-preserving shift, then

$$
\text { IndM }=\frac{1}{4 \pi}\left\{\arg \left[\frac{a a_{\alpha}-a_{\alpha} b-a b_{\alpha}}{a a_{\alpha}+a_{\alpha} b+a b_{\alpha}}\right]\right\}_{\Gamma} ;
$$

(1) If $\alpha(t)$ is an orientation-changing shift, then

$$
\operatorname{Ind} M=\frac{1}{2 \pi}\left\{\arg \left[a a_{\alpha}-a_{\alpha} b+a b_{\alpha}\right]\right\}_{\Gamma} .
$$

Explicit solutions of the singular integral equation

Let us introduce the following functions

$$
G(t)=\left\{\begin{array}{lll}
\frac{a a_{\alpha}-a_{\alpha} b-a b_{\alpha}}{a a_{\alpha}+a_{\alpha} \alpha+a b_{\alpha}}, & \text { if } \quad U S=S U \\
\frac{a a_{\alpha}-a_{\alpha} b+a b_{\alpha}}{a a_{\alpha}+a_{\alpha} b-a b_{\alpha}}, & \text { if } \quad U S=-S U,
\end{array}\right.
$$

and

$$
\begin{gathered}
H(t)= \begin{cases}\frac{a_{\alpha} g+u a g_{\alpha}}{a a_{\alpha}+a_{\alpha} b+a b_{\alpha}}, & \text { if } \quad U S=S U, \\
\frac{a_{\alpha} g-u a g_{\alpha}}{a a_{\alpha}+a_{\alpha} b-a b_{\alpha}}, & \text { if } \quad U S=-S U .\end{cases} \\
\Phi_{k}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi_{k}(\tau)}{\tau-z} d \tau \in B_{p, 1}^{\frac{2}{p}}\left(D^{ \pm}\right) \hookrightarrow C\left(\overline{D^{ \pm}}\right)^{8},
\end{gathered}
$$

where $\varphi_{k}(t)=J_{k} \varphi(t)(k=1,2),. \varphi(t) \in B_{p, 1}^{\frac{1}{p}}(\Gamma)$.

[^4]
Explicit solutions of the singular integral equation

Since Sokhotski-Plemelj formula

$$
\begin{gathered}
\varphi_{k}(t)=\Phi_{k}^{+}(t)-\Phi_{k}^{-}(t) \\
\left(S \varphi_{k}\right)(t)=\Phi_{k}^{+}(t)+\Phi_{k}^{-}(t)
\end{gathered}
$$

holds for the boundary value on 「 of such Cauchy type integrals, we can rewrite the equation (1) in the form of a boundary value problem:

$$
\begin{equation*}
\Phi^{+}(t)=G(t) \Phi^{-}(t)+H(t) \tag{10}
\end{equation*}
$$

The index of $G(t)$ by Γ will be denoted by \varkappa.

$$
\varkappa=\operatorname{Ind} G(t)=\frac{1}{2 \pi} \int_{\Gamma} d[\arg G(t)]=\frac{1}{2 \pi i} \int_{\Gamma} d[\log G(t)] .
$$

We can easily obtain an expression for the boundary values of the canonical function:

$$
\chi(z)= \begin{cases}\chi^{+}(z)=e^{\Pi(z)}, \quad \text { if } \quad z \in D^{+} \\ \chi^{-}(z)=z^{-\varkappa} e^{\Pi(z)}, \quad \text { if } \quad z \in D^{-}\end{cases}
$$

where

$$
\Pi(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\log \left[\tau^{-\varkappa} G(\tau)\right]}{\tau-z} d \tau
$$

Theorem

Equation (1) has a solution in $B_{p, 1}^{\frac{1}{p}}(\Gamma)$ if and only if equation (2) has a solution. Moreover, if $\varphi_{k}(k=1,2)$ is a solution of (2), then equation (1) has a solution and it is given by the formula

$$
\varphi(t)= \begin{cases}\frac{g(t)-2 b(t)\left(S_{\Gamma} \varphi_{2}\right)(t)}{a(t)}, & \text { if } \quad U S=S U . \\ \frac{g(t)-2 b(t)\left(S_{\Gamma} \varphi_{1}\right)(t)}{a(t)}, & \text { if } \quad U S=-S U .\end{cases}
$$

Theorem

Equation (1) has solutions and they are given by

$$
\begin{gathered}
\varphi(t)=\frac{g(t)-2 b(t)\left(S_{\Gamma} \varphi_{k}\right)(t)}{a(t)}, \quad k=1,2, \\
\left(S \varphi_{k}\right)(t)=\Phi_{k}^{+}(t)+\Phi_{k}^{-}(t)
\end{gathered}
$$

where $k=1$ in case of $S U=U S$, and $k=2$ if $S U=-U S$.
Case $\varkappa \geq 0$. In this case solutions are given by

$$
\begin{align*}
\Phi^{ \pm}(z) & =\chi^{ \pm}(z) \Psi^{ \pm}(z)+\chi^{ \pm}(z) P_{\varkappa-1}(z) \tag{11}\\
\Psi(z) & =\frac{1}{\pi i} \int_{\Gamma} \frac{H(\tau)}{\chi^{+}(\tau)} \frac{d \tau}{\tau-z} \in B_{p, 1}^{\frac{1}{p}}\left(D^{ \pm}\right)
\end{align*}
$$

and $P_{\varkappa-1} \equiv 0$ if $\varkappa=0$, and $P_{\varkappa-1}(z)$ is a polynomial of degree no greater than $n-1$ with arbitrary complex coefficients $c_{0}, c_{1}, \ldots, c_{\varkappa-1}$ for $\varkappa>0$. If $\varkappa=0$, then problem (1) has a unique solution.

Theorem

Case $\varkappa<0$. For this case, we assume:

$$
\int_{\Gamma} \frac{H(\tau) t^{\varkappa-1}}{\chi^{+}(\tau)} d \tau=0, \varkappa=1,2, \ldots, \varkappa
$$

Then, we have that $P_{\varkappa-1}(z) \equiv 0$ in equality (11).

Thank you for your attention!

[^0]: ${ }^{2}$ O.V. Besov, V.P. Il'in, and S.M. Nikol'skii, Integral representations of function and embedding theorems, 1, 2., John Willey, New York, 1978; 1979.

[^1]: ${ }^{3}$ S. Prëssdorf, Some Classes of Singular Equations, North - Holland Publishing Company. New York, 1978.

[^2]: ${ }^{4}$ O.V. Besov, V.P. II'in, and S.M. Nikol'skii, Integral representations of function and embedding theorems, 1, 2., John Willey, New York, 1978; 1979.

[^3]: ${ }^{6}$ L.P. Castro, E.M. Rojas, Explicit solutions of Cauchy singular integral equations with weighted Carleman shift, J. Math. Anal. Appl. 371 (2010), 128-133.

[^4]: ${ }^{8}$ N. Bliev, Generalized analytic functions in fractional spaces. Boston, MA: Longman; 1997. Published.

