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Introduction

Let Γ be a closed Lyapunov contour from the class C 1
ν ,

2
p − 1 < ν ≤ 1,

1 < p < 2.
Let D be a region of the complex plane E bounded by a closed Lyapunov
contour Γ and let D+ := D, D− := E − D+. Throughout this work, we
assume that 0 ∈ D+ and z = ∞ ∈ D−.
In the present work, we study a solvability of the following singular integral

equation with a Carleman shift in the Besov space B
1
p

p,1(Γ), 1 < p < 2,

θ = 1 and r = 1
p :

(Mφ)(t) ≡ a(t)φ(t) +
b(t)

πi

∫
Γ

φ (τ)

τ − t
dτ +

b(t)u(t)

πi

∫
Γ

φ (τ)

τ − α(t)
dτ = g(t),

(1)

where a(t), b(t), u(t), g(t) ∈ B
1
p

p,1 (Γ). Operator M is bounded on

B
1
p

p,1 (Γ)
1

1N. Bliev, Generalized analytic functions in fractional spaces. Boston: Longman,
Published
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Besov space

Let m be an integer and r > 0 is a real number satisfying m > r > 0.
Recall, a function φ belongs to the Besov space B r

p,θ(Γ), 1 ≤ p, θ ≤ ∞, if
φ ∈ Lp(Γ) and the following seminorm is finite

||φ||brp,θ(Γ) =
(∫

Γ
|h|−1−θr ||∆m

h φ||θLp(Γ)dh
) 1

θ
,

where h ∈ Γ and ∆m
h φ = ∆h(∆

m−1
h φ) (∆hφ(t) = φ(t + h)− φ(t)) is the

finite difference of order m. The space B r
p,θ(Γ), 1 ≤ p, θ ≤ ∞ is a Banach

space with the norm 2

||φ||Br
p,θ(Γ)

= ||φ||Lp(Γ) + ||φ||brp,θ(Γ).

2O.V. Besov, V.P. Il’in, and S.M. Nikol’skĭi, Integral representations of function and
embedding theorems, 1, 2., John Willey, New York, 1978; 1979.
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B2 (Γ) and B2×2(Γ) spaces

Let B2 (Γ) be a set of all 2-dimensional vectors with components from

B
1
p

p,1(Γ) and B2×2(Γ) be a set of all 2× 2 square matrices with elements

from B
1
p

p,1(Γ). The set B2(Γ) can be supplied with the norm by taking as
the norm of the vector X = (x1, x2) and considering the sum of the norms
of the individual components:

∥X∥B2(Γ)
:= ∥x1∥

B
1
p
p,1(Γ)

+ ∥x2∥
B

1
p
p,1(Γ)

.

In this case, the norm of the matrix A = {akj}21 ∈ B2×2 (Γ) can be defined,
for example, by

∥A∥B2×2(Γ)
:= 2max

j ,k
∥ajk∥

B
1
p
p,1(Γ)

.

Then the space B2×2(Γ) with this norm will also be a Banach algebra3.
3S. Prëssdorf, Some Classes of Singular Equations, North – Holland Publishing

Company. New York, 1978.
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Carleman shift and Hölder space

Let α(t) be a Carleman shift. In other words, it is a map which
homeomorphically translates Γ onto itself with preservation or change of
orientation on Γ, and satisfies the condition α [α (t)] = t.

α′ (·) ∈ Hµ (Γ) and α′(t) ̸= 0, ∀t ∈ Γ.

Here, Hµ (Γ) is a space of functions defined on Γ satisfying the Hölder
condition with the exponent 0 < µ ≤ 1. The space Hµ (Γ) is Banach
equipped with the norm 4

∥φ∥Hµ(Γ) := max
t∈Γ

|φ(t)|+ sup
t,τ∈Γ

|φ(τ)− φ(t)|
|τ − t|µ

.

4O.V. Besov, V.P. Il’in, and S.M. Nikol’skĭi, Integral representations of function and
embedding theorems, 1, 2., John Willey, New York, 1978; 1979.
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Noether operators

Let
α (A) = dim kerA, β (A) = dim cokerA.

The ordered pair of numbers (α(A), β(A)) is called the d –characteristic
of the operator A. If at least one of the numbers α(A) or β(A) is finite,
then the difference

IndA = α(A)− β(A)

is called the index of the operator A.
The operator A is said to have a finite d-characteristic or a finite index if
both of the numbers α(A) and β(A) are finite.
A closed normally solvable operator A is called a Noether operator or F –
operator if its d-characteristic is finite. It is called a semi-Noether operator
if at least one of the numbers α(A) or β(A) is finite. In the class of
semi-Noether operators we shall in the sequel distinguish between
F+-operators (α(A) <∞) and F−–operators (β(A) <∞).
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Operators

Here, S is a singular integral operator defined by

(Sφ)(t) =
1

πi

∫
Γ

φ (τ)

τ − t
dτ , ∀φ ∈ B

1
p

p,1(Γ).

And, W is an operator on B
1
p

p,1(Γ) by the following formula

(Wφ)(t) = φ[α(t)].

Also, we shall be concerned with the weighted Carleman shift operator on

B
1
p

p,1(Γ) which is defined by

(Uφ)(t) = u(t)φ[α(t)].

Note that U2 = I is equivalent to u[α(t)]u(t) = 1, t ∈ Γ5.

US = SU if α preserves the orientation of Γ(γ = +1),

US = −SU if α changes the orientation of Γ(γ = −1).
5V.G. Kravchenko, G.S. Litvinchuk, Introduction to the Theory of Singular Integral

Operators with Shift, Kluwer Academic Publishers, Amsterdam, 1994.
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Operators

Let us consider the following operators

J1 :=
1

2
(I − U) and J2 :=

1

2
(I + U).

Next, we obtain an analogue of Lemma 26 in the space B
1
p

p,1(Γ).

Lemma

Let φ ∈ B
1
p

p,1(Γ). We have

(JkSφ)(t) =

{
(SJkφ)(t), if US = SU,

(SJ3−kφ)(t), if US = −SU, t ∈ Γ.

6L.P. Castro, E.M. Rojas, Explicit solutions of Cauchy singular integral equations
with weighted Carleman shift, J. Math. Anal. Appl. 371 (2010), 128–133.
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Hence, multiplying by aα and applying the projection operator Jk to both
sides of the equation (1), we have{

aaαφ2 + (aαb + abα)(Sφ2) = (aαg + uagα), if US = SU,

aaαφ1 + (aαb − abα)(Sφ1) = (aαg − uagα), if US = −SU.
(2)

where a(t) = a and a[α(t)] = aα, b(t) = b and b[α(t)] = bα, φk = Jkφ,
k = 1, 2. We obtain a corresponding system of two SIEs with a Cauchy
kernel relatively unknown vector ρ (t) = {ρ1 (t) , ρ2 (t)}

aρ1 +
b
πi

∫
Γ

ρ1(τ)
τ−t dτ +

γbu
πi

∫
Γ

α′(τ)ρ2(τ)
α(τ)−α(t)dτ = g ,

aαρ2 +
bαuα
πi

∫
Γ

ρ1(τ)
τ−t dτ +

γbα
πi

∫
Γ

α′(τ)ρ2(τ)
α(τ)−α(t)dτ = gα,

(3)

where the coefficient γ takes the value 1 or -1, if respectively α(t) maps Γ
onto itself with preservation or change of orientation on Γ.
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An operator, applying of which to the vector (ρ1, ρ2) gives the left hand
side of (3), can be written as

L ≡ Q1I + Q2S , (4)

Q1 =

(
a 0
0 aα

)
, Q2 =

(
b γbu

bαuα γbα

)
,

I is an identity operator in B2(Γ) . Operator L in (4) acts to the space

B
1
p

p,1(Γ)
7. Moreover, it belongs to L(B2) and can be written as

L = CP1 + DP2, (5)

C = Q1+Q2, D = Q1−Q2, and P1 =
1

2
(I1 + S1) , P2 =

1

2
(I1 − S1) ,

S1 =

(
S 0
0 S

)
, I1 =

(
I 0
0 I

)
,

Operators as L generates an algebra.
7N. Bliev, Generalized analytic functions in fractional spaces. Boston, MA: Longman;

1997. Published.
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We introduce an additional SIE with a Carleman shift corresponding to (1)

Kχ ≡ aχ+ b(Sχ)− bu(WSχ) = 0. (6)

It is easy to see that if ρ1 (t) = χ (t), ρ2 (t) = −χ[α(t)], then using the
procedure described above, you can obtain the corresponding system (4)
from (6). Allied operators are understood in the sense of the following
identities ∫

Γ

(Mφ) (t)ψ (t) dt =

∫
Γ

φ (t)
(
M ′ψ

)
(t) dt.

The mentioned union equations have the form

M ′ψ ≡ aψ − 1

πi

∫
Γ

b (τ)ψ (τ)

τ − t
dτ − γ

πi

∫
Γ

b[α(τ)]u[α(τ)]α′ (τ)ψ [α (τ)]

τ − t
dτ ,

(7)

K ′ω ≡ aω − 1

πi

∫
Γ

b (τ)ω (τ)

τ − t
dτ +

γ

πi

∫
Γ

b [α (τ)] u[α(τ)]α′ (τ)ω [α (τ)]

τ − t
dτ .

(8)
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It is clear that equation (8) is accompanying to the union equation (7).
The system of SIE without shift corresponding to the equations (7) and
(8) have forms

aω1 − 1
πi

∫
Γ

b(τ)ω1(τ)
τ−t dτ − 1

πi

∫
Γ

b[α(τ)]u[α(τ)]ω2(τ)
τ−t dτ = 0,

aαω2 − γα′(t)
πi

∫
Γ

b(τ)u(τ)ω1(τ)
α(τ)−α(t) dτ − γα′(t)

πi

∫
Γ

b[α(τ)]ω2(τ)
α(τ)−α(t) dτ = 0.

(9)

It is easy to verify that the system (9) is union with the corresponding
system of equations (3). The following result is necessary.
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Lemma

1 If a Carleman shift α preserves orientation on Γ, then the operators M
in (1) and K in (6) have the following connection.

ϑM − Kϑ = T1,

where ϑ(t) = α(t)− t ̸= 0, T1 is a completely continuous operator.

2 If α changes orientation on Γ, then

SM − KS = T2,

where T2 is a completely continuous operator.

Lemma

Operators M and K is simultaneously Noetherian or non-Noetherian. In
the case both are Noetherian operators, we have

IndM = IndK .
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Theorem

Operator L = CP1 + DP2 is F+ (or F−)-operator if and only if

detC ̸= 0, detD ̸= 0, t ∈ Γ.

Theorem

In order for SIE (1) with a Carleman shift to be Noetherian, it suffices to
satisfy the following conditions

(i) aaα − aαb − abα ̸= 0, aaα + aαb + abα ̸= 0, if α(t) is an
orientation-preserving shift;

(ii) aaα − aαb + abα ̸= 0, aaα + aαb − abα ̸= 0, if α(t) is an
orientation-changing shift.
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Theorem

If the Noetherian conditions are satisfied, then the index for SIE (1) with a
Carleman shift is calculated by the following formulas:

(i) If α(t) is an orientation-preserving shift, then

IndM =
1

4π

{
arg

[
aaα − aαb − abα
aaα + aαb + abα

]}
Γ

;

(ii) If α(t) is an orientation-changing shift, then

IndM =
1

2π

{
arg

[
aaα − aαb + abα

]}
Γ
.
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Explicit solutions of the singular integral equation

Let us introduce the following functions

G (t) =

{
aaα−aαb−abα
aaα+aαb+abα

, if US = SU,
aaα−aαb+abα
aaα+aαb−abα

, if US = −SU,

and

H(t) =

{
aαg+uagα

aaα+aαb+abα
, if US = SU,

aαg−uagα
aaα+aαb−abα

, if US = −SU.

Φk(z) =
1

2πi

∫
Γ

φk (τ)

τ − z
dτ ∈ B

2
p

p,1(D
±) ↪→ C (D±)8,

where φk(t) = Jkφ(t) (k = 1, 2.), φ(t) ∈ B
1
p

p,1(Γ).

8N. Bliev, Generalized analytic functions in fractional spaces. Boston, MA: Longman;
1997. Published.
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Explicit solutions of the singular integral equation

Since Sokhotski-Plemelj formula

φk(t) = Φ+
k (t)− Φ−

k (t),

(Sφk)(t) = Φ+
k (t) + Φ−

k (t),

holds for the boundary value on Γ of such Cauchy type integrals, we can
rewrite the equation (1) in the form of a boundary value problem:

Φ+(t) = G (t)Φ−(t) + H(t). (10)

The index of G (t) by Γ will be denoted by κ.

κ = IndG (t) =
1

2π

∫
Γ

d [argG (t)] =
1

2πi

∫
Γ

d [logG (t)].

We can easily obtain an expression for the boundary values of the
canonical function:

χ(z) =

{
χ+(z) = eΠ(z), if z ∈ D+,

χ−(z) = z−κeΠ(z), if z ∈ D−,
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where

Π(z) =
1

2πi

∫
Γ

log[τ−κG (τ)]

τ − z
dτ ,

Theorem

Equation (1) has a solution in B
1
p

p,1(Γ) if and only if equation (2) has a
solution. Moreover, if φk (k = 1, 2) is a solution of (2), then equation (1)
has a solution and it is given by the formula

φ(t) =

{
g(t)−2b(t)(SΓφ2)(t)

a(t) , if US = SU.
g(t)−2b(t)(SΓφ1)(t)

a(t) , if US = −SU.
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Theorem

Equation (1) has solutions and they are given by

φ(t) =
g(t)− 2b(t)(SΓφk)(t)

a(t)
, k = 1, 2,

(Sφk)(t) = Φ+
k (t) + Φ−

k (t)

where k = 1 in case of SU = US , and k = 2 if SU = −US .
Case κ ≥ 0. In this case solutions are given by

Φ±(z) = χ±(z)Ψ±(z) + χ±(z)Pκ−1(z), (11)

Ψ(z) =
1

πi

∫
Γ

H(τ)

χ+(τ)

dτ

τ − z
∈ B

1
p

p,1(D
±),

and Pκ−1 ≡ 0 if κ = 0, and Pκ−1(z) is a polynomial of degree no greater
than n − 1 with arbitrary complex coefficients c0, c1, ..., cκ−1 for κ > 0. If
κ = 0, then problem (1) has a unique solution.
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Theorem

Case κ < 0. For this case, we assume:∫
Γ

H(τ)tκ−1

χ+(τ)
dτ = 0,κ = 1, 2, ...,κ

Then, we have that Pκ−1(z) ≡ 0 in equality (11).
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Thank you for your attention!
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