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Further directions
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Historical Motivation

Question

Let X be a Banach space. What information about the linear
isomorphisms of X can be gained from the linear isometries?

Partial Answer: Not much!

(Bellenot, ’86) Let X be a separable Banach space with norm ‖ · ‖.
Then for all c > 1 there exists an equivalent norm |||·||| on X such
that the only isometries on (X , |||·|||) are {1,−1} and
‖ · ‖ ≤ |||·||| ≤ c‖ · ‖.
(Jarosz, ’88) For any Banach space (X , ‖ · ‖) there exists an
equivalent renorming |||·||| such that the only isometries on (X , |||·|||)
are {1,−1}.
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Proof Strategy

Renorm Banach space X with an equivalent locally uniformly rotund (LUR)
renorming.

Add ”pimples” to unit ball in order to do away with unwanted symmetries.

Can we do the same with arbitrary Banach lattices?

Complication: having an LUR lattice renorming is equivalent to being order
continuous, so need a different approach when X is not order continuous.

AM spaces

A Banach lattice X is called an AM space if for any disjoint x , y ∈ X , we have
‖x + y‖ = max(‖x‖, ‖y‖).

Any AM space is a sublattice of a C(K) space for some compact Hausdorff K .

Any sublattice X of C(K) is of the following form: there is an indexing set I
and a set of tuples: {(si , ti , λi ) : i ∈ I} with each si 6= ti and λi ≥ 0 such that
X = {x ∈ C(K) : ∀i ∈ I, x(ti ) = λix(si )}
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Intro to tegular AM spaces
Properties of regular AM spaces
Renorming regular AM spaces

Main result

Theorem 1

Suppose (X , ‖ · ‖) is a separable AM-space, and C > 1. Then X can
be equipped with an equivalent lattice norm |||·||| so that
‖ · ‖ ≤ |||·||| ≤ C‖ · ‖, and the identity map is the only lattice
isometry on (X , |||·|||).

If X has no more than one atom, then |||·||| can be chosen to be an
AM-norm.

Proof outline:

Renorm X so that it is a regular AM space, equipped with
underlying compact Hausdorff K and easily identifiable dual space.

To create new norm, add ”weights” to elements in K to kill any
extent isometries.

Use dual space to show that only identity remains.
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C-regular AM spaces

Given C > 1, a sublattice X of C (K ) is a C−regular AM space if

K =
∐n

1 Ki for some n ∈ N, or K =
∐∞

1 Kn ∪ {∞} and X ⊆ C0(K )
with x(∞) = 0 for all x ∈ X .

If t ∈ Km, s ∈ Kn with x(t) = λx(s) for all x ∈ X , then λ = C n−m.

X separates points in Kn for every n.

Inspiration/application for construction: Benyamini’s proof that
G -spaces are linearly isomorphic to C (K ) spaces for some K uses
2-regular spaces.

Proposition

Suppose X is a separable AM space and C > 1. Then there exists a C−regular
space Y and a lattice isomorphism U : X → Y such that ‖U‖ · ‖U−1‖ ≤ C .
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Structure

Let X be a C -regular AM space, with associated underlying K =
∐

Kn ∪ {∞}.
For m 6= n ∈ N, let D(m, n) :=

{t ∈ Km : ∃s ∈ Kn such that ∀x ∈ X , x(t) = C n−mx(s)}

D(m, n) is homeomorphic to D(n,m).

D(m, n) and D(n,m) induce a map φmn : D(m, n)→ D(n,m) such that
for all f ∈ X , f (s) = C n−mf (φmn(s).

Let K ′n = Kn\(∪m<nD(n,m)), and let K ′ = ∪nK
′
n

Atoms: characterized by ”hereditarily” isolated points k ∈ K ′n for some n,
such that φnm(k) is also isolated whenever k ∈ D(n,m). Induces θk ∈ X+,
where θk(φnm(s)) = Cm−n, and θk(t) = 0 otherwise.
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Regular AM extensions

Let X be a C -regular AM space with underlying sets Kn. A function
f ∈ C (KM ∪ ... ∪KN) is consistent if x(s) = C n−mx(φmn(s)) for all
s ∈ Km,N ≤ m, n ≤ M.

Proposition

If x ∈ C (KL ∪ ... ∪ KN) is consistent, then there exists an extension
x̃ ∈ X of x such that for all j > N, supKj

|x̃ | ≤ maxi≤N Ci−j supKi
|x |.

If, furthermore, y ∈ X+ such that 0 ≤ x ≤ y on KL ∪ ... ∪ KN , then
x̃ can be selected in such a way that 0 ≤ x̃ ≤ y .
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If x ∈ C (KL ∪ ... ∪ KN) is consistent, then there exists an extension
x̃ ∈ X of x such that for all j > N, supKj

|x̃ | ≤ maxi≤N Ci−j supKi
|x |.

If, furthermore, y ∈ X+ such that 0 ≤ x ≤ y on KL ∪ ... ∪ KN , then
x̃ can be selected in such a way that 0 ≤ x̃ ≤ y .
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Point separation in regular AM spaces

Lemma: Suppose m ≤ n, t ∈ K ′m, s ∈ K ′n, and U ⊂ K ′m, V ⊂ K ′n are
disjoint open sets with the property that t ∈ U ⊂ U ⊂ K ′m and
s ∈ V ⊂ V ⊂ K ′n. Then for α, β ∈ [0,∞), there exists x ∈ X+ so that:

1 For j < m, x |Kj = 0.

2 x(t) = α, x(s) = β, x ≤ α on U, and x ≤ β on V .

3 If m < n, then x |Km\U = 0.

4 If m < n, then for m < j < n, 0 ≤ x |Kj ≤ Cm−jα.

5 On Kn, 0 ≤ x ≤ Cm−nα ∨ β.

6 For j > n, 0 ≤ x |Kj ≤ (Cm−jα) ∨ (C n−jβ).
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Duals of regular AM spaces

Lemma 2

Suppose X is a regular AM space. Then X ∗ is lattice isometric to
M(K ′).

Denote by A1 the set of normalized atoms in X ∗. Equip A1 with the
weak∗ topology. Then the map j : K ′ → Al , with t 7→ δt , is a
topological homeomorphism.
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Norm redefinition

Denote the atoms in X by (θi )i∈I . each θi corresponds to
”hereditarily isolated” point ai ∈ K ′. Given C < 2, let c < 3

√
C ,

Let A = {n ∈ N,K ′n is infinite }, and
B = {n ∈ N,K ′n is non-empty finite }.
For n ∈ B, list elements of K ′n = {t1n, ..., tpnn}, and for n ∈ A, pick
countable dense subset of distinct elements t1n, t2n, ....

for each n ∈ A, pick decreasing c > λ1n > λ2n > ..., with
limk λkn = 1, For n ∈ B, pick decreasing c > λ1n > λ2n > ... > 1.

For t ∈ K ′, let µ(t) = λin if t = tin, and let µ(t) = 1 otherwise.
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norm definition (cntd)

Case |I | = 0: For x ∈ X , let

|||x ||| = sup
t∈K ′

µ(t)|x(t)|

Case |I | = 1: Let θa be the atom in X determined a ∈ K ′ P1 be
projection mapping x to the part of x disjoint from a and any
φmn(a), and let X1 = ker(P1).. Now let

|||x ||| = max(|||(I − P1)(x)|||1, ‖P1(x)‖).

Mary Angelica Tursi Renorming AM Spaces



Preliminaries
Results

Further directions

Intro to tegular AM spaces
Properties of regular AM spaces
Renorming regular AM spaces

norm definition (cntd)

Case |I | = 0: For x ∈ X , let

|||x ||| = sup
t∈K ′

µ(t)|x(t)|

Case |I | = 1: Let θa be the atom in X determined a ∈ K ′ P1 be
projection mapping x to the part of x disjoint from a and any
φmn(a), and let X1 = ker(P1).. Now let

|||x ||| = max(|||(I − P1)(x)|||1, ‖P1(x)‖).

Mary Angelica Tursi Renorming AM Spaces



Preliminaries
Results

Further directions

Intro to tegular AM spaces
Properties of regular AM spaces
Renorming regular AM spaces

norm definition (cntd)

Case |I | > 1: For I = N or I = {1, ...,m}, let P = {(i , j) ∈ I 2 : i < j}, let
π : P → N be an injection

For (i , j) ∈ P, let ‖ · ‖i,j be the norm on R2 whose unit ball is the octagon with
vertices(

±
(

1−
c − 1

c(2π(i , j) + 1)

)
,±1

)
and

(
± 1,±

(
1−

c − 1

2cπ(i , j)

))
Denote atoms by (θai )i∈I , can now generate renorming |||·|||, with

|||x ||| = max
{

sup
t∈K ′

µ(t)|x(t)|, sup
(i,j)∈P

∥∥(µ(ai )x(ai ), µ(aj )x(aj )
)∥∥

i,j

}
NB: the formal identity map (R2, ‖ · ‖i1,j1 )→ (R2, ‖ · ‖i2,j2 ) is an isometry iff
i1 = i2 and j1 = j2.

Mary Angelica Tursi Renorming AM Spaces



Preliminaries
Results

Further directions

Intro to tegular AM spaces
Properties of regular AM spaces
Renorming regular AM spaces

norm definition (cntd)

Case |I | > 1: For I = N or I = {1, ...,m}, let P = {(i , j) ∈ I 2 : i < j}, let
π : P → N be an injection

For (i , j) ∈ P, let ‖ · ‖i,j be the norm on R2 whose unit ball is the octagon with
vertices(

±
(

1−
c − 1

c(2π(i , j) + 1)

)
,±1

)
and

(
± 1,±

(
1−

c − 1

2cπ(i , j)

))

Denote atoms by (θai )i∈I , can now generate renorming |||·|||, with

|||x ||| = max
{

sup
t∈K ′

µ(t)|x(t)|, sup
(i,j)∈P

∥∥(µ(ai )x(ai ), µ(aj )x(aj )
)∥∥

i,j

}
NB: the formal identity map (R2, ‖ · ‖i1,j1 )→ (R2, ‖ · ‖i2,j2 ) is an isometry iff
i1 = i2 and j1 = j2.

Mary Angelica Tursi Renorming AM Spaces



Preliminaries
Results

Further directions

Intro to tegular AM spaces
Properties of regular AM spaces
Renorming regular AM spaces

norm definition (cntd)

Case |I | > 1: For I = N or I = {1, ...,m}, let P = {(i , j) ∈ I 2 : i < j}, let
π : P → N be an injection

For (i , j) ∈ P, let ‖ · ‖i,j be the norm on R2 whose unit ball is the octagon with
vertices(

±
(

1−
c − 1

c(2π(i , j) + 1)

)
,±1

)
and

(
± 1,±

(
1−

c − 1

2cπ(i , j)

))
Denote atoms by (θai )i∈I , can now generate renorming |||·|||, with

|||x ||| = max
{

sup
t∈K ′

µ(t)|x(t)|, sup
(i,j)∈P

∥∥(µ(ai )x(ai ), µ(aj )x(aj )
)∥∥

i,j

}

NB: the formal identity map (R2, ‖ · ‖i1,j1 )→ (R2, ‖ · ‖i2,j2 ) is an isometry iff
i1 = i2 and j1 = j2.

Mary Angelica Tursi Renorming AM Spaces



Preliminaries
Results

Further directions

Intro to tegular AM spaces
Properties of regular AM spaces
Renorming regular AM spaces

norm definition (cntd)

Case |I | > 1: For I = N or I = {1, ...,m}, let P = {(i , j) ∈ I 2 : i < j}, let
π : P → N be an injection

For (i , j) ∈ P, let ‖ · ‖i,j be the norm on R2 whose unit ball is the octagon with
vertices(

±
(

1−
c − 1

c(2π(i , j) + 1)

)
,±1

)
and

(
± 1,±

(
1−

c − 1

2cπ(i , j)

))
Denote atoms by (θai )i∈I , can now generate renorming |||·|||, with

|||x ||| = max
{

sup
t∈K ′

µ(t)|x(t)|, sup
(i,j)∈P

∥∥(µ(ai )x(ai ), µ(aj )x(aj )
)∥∥

i,j

}
NB: the formal identity map (R2, ‖ · ‖i1,j1 )→ (R2, ‖ · ‖i2,j2 ) is an isometry iff
i1 = i2 and j1 = j2.

Mary Angelica Tursi Renorming AM Spaces



Preliminaries
Results

Further directions

Intro to tegular AM spaces
Properties of regular AM spaces
Renorming regular AM spaces

Norm properties

Suppose T is an isometry over (X , |||·|||).

For any t ∈ K ′, |||µ(t)δt ||| = 1.

For any atom θi with i ∈ I , T (θi ) = θi .

Suppose m, n ∈ N, t ∈ K ′n, and the sequence (ti ) ⊂ K ′m\{t}
converges to s. Then the following are equivalent:

1 (1) m ≥ n, and s = φnm(t).
2 (2) w∗ − limi µ(ti )δti = αµ(t)δt for some α > 0.

Moreover, if (1) holds, then (2) holds with α = C n−m/µ(t).

Suppose we are given t ∈ K ′n and a sequence (ti ) ⊂ K ′\{t}. Then
the following are equivalent:

1 (1) There exists m ≥ n so that for i large enough, ti ∈ K ′m.
Furthermore, (ti ) converges to s = φnm(t).

2 (2) µ(ti )δti
w∗→ αµ(t)δt for some α > 0.

Moreover, if (1) holds, then, in (2), α = C n−m/µ(t).
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sketch of proof

PROOF

Let T be an isometry on (X , |||·|||). T ∗ sends atoms to atoms, and
normalized atoms in X ∗ are of the form µ(k)δk , with k ∈ K ′.

If k is hereditarily isolated, then T ∗(µ(k)δk) = µ(k)δk .

Since T ∗ is isometric and interval preserving, we have ψ : K ′ → K ′

T ∗(µ(k)δk) = µ(ψ(k))δψ(k). Must show that ψ = Id .

If k not hereditarily isolated, must have sequence (ui ) ∈ K ′ so that

µ(ui )δui
w∗→ αµ(k)δk . T ∗ is itself w∗-continuous, so α = 1 and

µ(k) = µ(ψ(k)).

If k = tin, the above implies that ψ(k) = k.

For k 6= tni use density of kni and w∗ continuity of T ∗.
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If k is hereditarily isolated, then T ∗(µ(k)δk) = µ(k)δk .

Since T ∗ is isometric and interval preserving, we have ψ : K ′ → K ′

T ∗(µ(k)δk) = µ(ψ(k))δψ(k). Must show that ψ = Id .

If k not hereditarily isolated, must have sequence (ui ) ∈ K ′ so that

µ(ui )δui
w∗→ αµ(k)δk . T ∗ is itself w∗-continuous, so α = 1 and

µ(k) = µ(ψ(k)).

If k = tin, the above implies that ψ(k) = k.

For k 6= tni use density of kni and w∗ continuity of T ∗.
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What if we don’t want to kill all isometries?

Let B be a separable Banach space. The linear isometries ISO(B) on B
form a Polish group with composition as the group operation.

Given a Banach space B and Polish group G ⊆ ISO(B, ‖ · ‖), when can B
be renormed with an equivalent norm |||·||| so that G = ISO(B, |||·|||)?

(Galego, Ferenczi, Rosendal, ca. 2010-2015): Suppose (B, ‖ · ‖) is a
separable real Banach space.

1 Let B have an LUR-norm ‖ · ‖ and G ⊆ ISO(B, ‖ · ‖) with −1 ∈ G .
Suppose there exists a normalized vector x0 such that
infg 6=1 ‖gx0 − x0‖ > 0. Then B admits an equivalent norm |||·||| such that
G = ISO(B, |||·|||).

2 Let G be a closed subgroup of S∞. Then there exists a reonorming |||·||| of
c0 so that G × {−1, 1} is topologically isomorphic to ISO(c0, |||·|||).

3 For any Polish group G , there exists a separable Banach space B such
that {−1, 1} × G is topologically isomorphic to ISO(B, |||·|||).
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Question:

Given a Banach lattice E and Polish subgroup G ⊆ ISOL(E , ‖ · ‖) of
lattice isometries, when can E be renormed with an equivalent lattice
norm |||·||| so that G = ISOL(E , |||·|||)?

Some partial answers:

When E has a smooth, LUR lattice norm, a lattice analogue results like in
the case of Banach spaces with LUR norms.

Theorem: (Oikhberg, T.) Suppose X is a locally compact Polish space.
Let G be a SOT-closed subgroup of the group ISOL(C0(X ), ‖ · ‖) of lattice
isometries. Suppose also that every orbit of G on X is nowhere dense and
that G is equicontinuous on X . Then for all C > 1, there exists a
renorming ‖| · ‖| on C0(X ) such that G = ISOL(C0(X ), ‖| · ‖|) and
‖ · ‖ ≤ ‖| · ‖| ≤ C‖ · ‖.
Can we do the same (or something approaching it) for AM spaces in
general?
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