Renorming AM Spaces

Mary Angelica Tursi

Joint work with T. Oikhberg BSBL Workshop II

May 12, 2022

イロト イポト イヨト イヨト

э.

Preliminaries Results Further directions

History

Historical Motivation

Question

• Let X be a Banach space. What information about the linear *isomorphisms* of X can be gained from the linear *isometries*?

・ロト ・ 一下・ ・ ヨト・

= nar

History

Historical Motivation

Question

- Let X be a Banach space. What information about the linear *isomorphisms* of X can be gained from the linear *isometries*?
- Partial Answer: Not much!

・ロト ・ 一下・ ・ ヨト・

= nar

Historical Motivation

Question

- Let X be a Banach space. What information about the linear *isomorphisms* of X can be gained from the linear *isometries*?
- Partial Answer: Not much!
- (Bellenot, '86) Let X be a separable Banach space with norm $\|\cdot\|$. Then for all c > 1 there exists an equivalent norm $\|\cdot\|$ on X such that the only isometries on $(X, \|\cdot\|)$ are $\{1, -1\}$ and $\|\cdot\| \le \|\cdot\| \le c \|\cdot\|$.

ヘロン 人間 とくほう 人口 と

Historical Motivation

Question

- Let X be a Banach space. What information about the linear *isomorphisms* of X can be gained from the linear *isometries*?
- Partial Answer: Not much!
- (Bellenot, '86) Let X be a separable Banach space with norm $\|\cdot\|$. Then for all c > 1 there exists an equivalent norm $\|\cdot\|$ on X such that the only isometries on $(X, \|\cdot\|)$ are $\{1, -1\}$ and $\|\cdot\| \le \|\cdot\| \le c \|\cdot\|$.
- (Jarosz, '88) For any Banach space (X, || · ||) there exists an equivalent renorming |||·||| such that the only isometries on (X, |||·|||) are {1,-1}.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ のへで

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Preliminaries Results Further directions	History

• Renorm Banach space X with an equivalent locally uniformly rotund (LUR) renorming.

イロト 不得 トイヨト イヨト

= nar

Preliminaries Results Further directions	History

- Renorm Banach space X with an equivalent locally uniformly rotund (LUR) renorming.
- Add "pimples" to unit ball in order to do away with unwanted symmetries.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

≡ nar

- Renorm Banach space X with an equivalent locally uniformly rotund (LUR) renorming.
- Add "pimples" to unit ball in order to do away with unwanted symmetries.

Can we do the same with arbitrary Banach lattices?

イロト 不得 トイヨト イヨト

= nar

- Renorm Banach space X with an equivalent locally uniformly rotund (LUR) renorming.
- Add "pimples" to unit ball in order to do away with unwanted symmetries.

Can we do the same with arbitrary Banach lattices?

• Complication: having an LUR *lattice* renorming is equivalent to being order continuous, so need a different approach when X is not order continuous.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

э.

- Renorm Banach space X with an equivalent locally uniformly rotund (LUR) renorming.
- Add "pimples" to unit ball in order to do away with unwanted symmetries.

Can we do the same with arbitrary Banach lattices?

• Complication: having an LUR *lattice* renorming is equivalent to being order continuous, so need a different approach when X is not order continuous.

AM spaces

• A Banach lattice X is called an AM space if for any disjoint $x, y \in X$, we have $||x + y|| = \max(||x||, ||y||)$.

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

- Renorm Banach space X with an equivalent locally uniformly rotund (LUR) renorming.
- Add "pimples" to unit ball in order to do away with unwanted symmetries.

Can we do the same with arbitrary Banach lattices?

• Complication: having an LUR *lattice* renorming is equivalent to being order continuous, so need a different approach when X is not order continuous.

AM spaces

- A Banach lattice X is called an AM space if for any disjoint $x, y \in X$, we have $||x + y|| = \max(||x||, ||y||)$.
- Any AM space is a sublattice of a C(K) space for some compact Hausdorff K.

- Renorm Banach space X with an equivalent locally uniformly rotund (LUR) renorming.
- Add "pimples" to unit ball in order to do away with unwanted symmetries.

Can we do the same with arbitrary Banach lattices?

• Complication: having an LUR *lattice* renorming is equivalent to being order continuous, so need a different approach when X is not order continuous.

AM spaces

- A Banach lattice X is called an AM space if for any disjoint $x, y \in X$, we have $||x + y|| = \max(||x||, ||y||)$.
- Any AM space is a sublattice of a C(K) space for some compact Hausdorff K.
- Any sublattice X of C(K) is of the following form: there is an indexing set \mathcal{I} and a set of tuples: $\{(s_i, t_i, \lambda_i) : i \in \mathcal{I}\}$ with each $s_i \neq t_i$ and $\lambda_i \geq 0$ such that $X = \{x \in C(K) : \forall i \in \mathcal{I}, x(t_i) = \lambda_i x(s_i)\}$

	Intro to tegular AM spaces
Results	Properties of regular AM spaces
Further directions	Renorming regular AM spaces

Theorem 1

Suppose (X, || · ||) is a separable AM-space, and C > 1. Then X can be equipped with an equivalent lattice norm |||·||| so that || · || ≤ |||·||| ≤ C || · ||, and the identity map is the only lattice isometry on (X, ||·||).

・ 同 ト ・ ヨ ト ・ ヨ ト

	Intro to tegular AM spaces
Results	Properties of regular AM spaces
urther directions	Renorming regular AM spaces

Theorem 1

- Suppose (X, || · ||) is a separable AM-space, and C > 1. Then X can be equipped with an equivalent lattice norm |||·||| so that || · || ≤ |||·||| ≤ C || · ||, and the identity map is the only lattice isometry on (X, |||·||).
- If X has no more than one atom, then ∥·∥ can be chosen to be an AM-norm.

イロン 不得 とくほう くほう 二日

	Intro to tegular AM spa
Results	Properties of regular AN
Further directions	Renorming regular AM :

Theorem 1

- Suppose (X, || · ||) is a separable AM-space, and C > 1. Then X can be equipped with an equivalent lattice norm |||·||| so that || · || ≤ |||·||| ≤ C || · ||, and the identity map is the only lattice isometry on (X, |||·||).
- If X has no more than one atom, then ∥... can be chosen to be an AM-norm.

Proof outline:

Theorem 1

- Suppose (X, || · ||) is a separable AM-space, and C > 1. Then X can be equipped with an equivalent lattice norm |||·||| so that || · || ≤ |||·||| ≤ C || · ||, and the identity map is the only lattice isometry on (X, |||·||).
- If X has no more than one atom, then ∥... can be chosen to be an AM-norm.

Proof outline:

• Renorm X so that it is a *regular AM space*, equipped with underlying compact Hausdorff K and easily identifiable dual space.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem 1

- Suppose (X, || · ||) is a separable AM-space, and C > 1. Then X can be equipped with an equivalent lattice norm |||·||| so that || · || ≤ |||·||| ≤ C || · ||, and the identity map is the only lattice isometry on (X, |||·||).
- If X has no more than one atom, then $\|\cdot\|$ can be chosen to be an AM-norm.

Proof outline:

- Renorm X so that it is a *regular AM space*, equipped with underlying compact Hausdorff K and easily identifiable dual space.
- To create new norm, add "weights" to elements in K to kill any extent isometries.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Theorem 1

- Suppose (X, || · ||) is a separable AM-space, and C > 1. Then X can be equipped with an equivalent lattice norm |||·||| so that || · || ≤ |||·||| ≤ C || · ||, and the identity map is the only lattice isometry on (X, ||·||).
- If X has no more than one atom, then $\|\cdot\|$ can be chosen to be an AM-norm.

Proof outline:

- Renorm X so that it is a *regular AM space*, equipped with underlying compact Hausdorff K and easily identifiable dual space.
- To create new norm, add "weights" to elements in K to kill any extent isometries.
- Use dual space to show that only identity remains.

・ロト ・ 同ト ・ ヨト ・ ヨト

Preliminaries Results rther directions Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces

C-regular AM spaces

イロト イロト イヨト イヨト

э

Preliminaries Results urther directions Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces

C-regular AM spaces

Given C > 1, a sublattice X of C(K) is a C-regular AM space if

Mary Angelica Tursi Renorming AM Spaces

イロト イボト イヨト イヨト

3

Preliminaries **Results** Further directions Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces

C-regular AM spaces

Given C > 1, a sublattice X of C(K) is a C-regular AM space if

• $K = \coprod_{1}^{n} K_{i}$ for some $n \in \mathbb{N}$, or $K = \coprod_{1}^{\infty} K_{n} \cup \{\infty\}$ and $X \subseteq C_{0}(K)$ with $x(\infty) = 0$ for all $x \in X$.

ヘロト ヘヨト ヘヨト

C-regular AM spaces

Given C > 1, a sublattice X of C(K) is a C-regular AM space if

- $K = \coprod_{1}^{n} K_{i}$ for some $n \in \mathbb{N}$, or $K = \coprod_{1}^{\infty} K_{n} \cup \{\infty\}$ and $X \subseteq C_{0}(K)$ with $x(\infty) = 0$ for all $x \in X$.
- If $t \in K_m$, $s \in K_n$ with $x(t) = \lambda x(s)$ for all $x \in X$, then $\lambda = C^{n-m}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

C-regular AM spaces

Given C > 1, a sublattice X of C(K) is a C-regular AM space if

- $K = \coprod_{1}^{n} K_{i}$ for some $n \in \mathbb{N}$, or $K = \coprod_{1}^{\infty} K_{n} \cup \{\infty\}$ and $X \subseteq C_{0}(K)$ with $x(\infty) = 0$ for all $x \in X$.
- If $t \in K_m$, $s \in K_n$ with $x(t) = \lambda x(s)$ for all $x \in X$, then $\lambda = C^{n-m}$.
- X separates points in K_n for every n.
- Inspiration/application for construction: Benyamini's proof that G-spaces are linearly isomorphic to C(K) spaces for some K uses 2-regular spaces.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

C-regular AM spaces

Given C > 1, a sublattice X of C(K) is a C-regular AM space if

- $K = \coprod_{1}^{n} K_{i}$ for some $n \in \mathbb{N}$, or $K = \coprod_{1}^{\infty} K_{n} \cup \{\infty\}$ and $X \subseteq C_{0}(K)$ with $x(\infty) = 0$ for all $x \in X$.
- If $t \in K_m$, $s \in K_n$ with $x(t) = \lambda x(s)$ for all $x \in X$, then $\lambda = C^{n-m}$.
- X separates points in K_n for every n.
- Inspiration/application for construction: Benyamini's proof that G-spaces are linearly isomorphic to C(K) spaces for some K uses 2-regular spaces.

Proposition

Suppose X is a separable AM space and C > 1. Then there exists a C-regular space Y and a lattice isomorphism $U: X \to Y$ such that $||U|| \cdot ||U^{-1}|| \le C$.

・ロト ・ 一下・ ・ ヨト・

 $\{t \in K_m : \exists s \in K_n \text{ such that } \forall x \in X, x(t) = C^{n-m}x(s)\}$

イロト 不得 トイヨト イヨト

э.

 $\{t \in K_m : \exists s \in K_n \text{ such that } \forall x \in X, x(t) = C^{n-m}x(s)\}$

- D(m, n) is homeomorphic to D(n, m).
- D(m, n) and D(n, m) induce a map $\phi_{mn} : D(m, n) \to D(n, m)$ such that for all $f \in X$, $f(s) = C^{n-m} f(\phi_{mn}(s))$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

 $\{t \in K_m : \exists s \in K_n \text{ such that } \forall x \in X, x(t) = C^{n-m}x(s)\}$

- D(m, n) is homeomorphic to D(n, m).
- D(m, n) and D(n, m) induce a map $\phi_{mn} : D(m, n) \to D(n, m)$ such that for all $f \in X$, $f(s) = C^{n-m} f(\phi_{mn}(s))$.

Let $K'_n = K_n \setminus (\cup_{m < n} D(n, m))$, and let $K' = \cup_n K'_n$

・ロト ・ 同ト ・ ヨト ・ ヨト

 $\{t \in K_m : \exists s \in K_n \text{ such that } \forall x \in X, x(t) = C^{n-m}x(s)\}$

- D(m, n) is homeomorphic to D(n, m).
- D(m, n) and D(n, m) induce a map $\phi_{mn} : D(m, n) \to D(n, m)$ such that for all $f \in X$, $f(s) = C^{n-m} f(\phi_{mn}(s))$.

Let $K'_n = K_n \setminus (\cup_{m < n} D(n, m))$, and let $K' = \cup_n K'_n$

Atoms: characterized by "hereditarily" isolated points k ∈ K'_n for some n, such that φ_{nm}(k) is also isolated whenever k ∈ D(n, m). Induces θ_k ∈ X₊, where θ_k(φ_{nm}(s)) = C^{m-n}, and θ_k(t) = 0 otherwise.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Regular AM extensions

• Let X be a C-regular AM space with underlying sets K_n . A function $f \in C(K_M \cup ... \cup K_N)$ is consistent if $x(s) = C^{n-m}x(\phi_m n(s))$ for all $s \in K_m, N \le m, n \le M$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Regular AM extensions

• Let X be a C-regular AM space with underlying sets K_n . A function $f \in C(K_M \cup ... \cup K_N)$ is consistent if $x(s) = C^{n-m}x(\phi_m n(s))$ for all $s \in K_m, N \le m, n \le M$.

Proposition

• If $x \in C(K_L \cup ... \cup K_N)$ is consistent, then there exists an extension $\tilde{x} \in X$ of x such that for all j > N, $\sup_{K_i} |\tilde{x}| \le \max_{i \le N} C_{i-j} \sup_{K_i} |x|$.

ヘロト ヘヨト ヘヨト

Regular AM extensions

• Let X be a C-regular AM space with underlying sets K_n . A function $f \in C(K_M \cup ... \cup K_N)$ is consistent if $x(s) = C^{n-m}x(\phi_m n(s))$ for all $s \in K_m, N \le m, n \le M$.

Proposition

- If $x \in C(K_L \cup ... \cup K_N)$ is consistent, then there exists an extension $\tilde{x} \in X$ of x such that for all j > N, $\sup_{K_i} |\tilde{x}| \le \max_{i \le N} C_{i-j} \sup_{K_i} |x|$.
- If, furthermore, $y \in X_+$ such that $0 \le x \le y$ on $K_L \cup ... \cup K_N$, then \tilde{x} can be selected in such a way that $0 \le \tilde{x} \le y$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Point separation in regular AM spaces

Lemma: Suppose $m \leq n, t \in K'_m$, $s \in K'_n$, and $U \subset K'_m$, $V \subset K'_n$ are disjoint open sets with the property that $t \in U \subset \overline{U} \subset K'_m$ and $s \in V \subset \overline{V} \subset K'_n$. Then for $\alpha, \beta \in [0, \infty)$, there exists $x \in X_+$ so that:

< ロ > < 同 > < 三 > < 三 >

Point separation in regular AM spaces

Lemma: Suppose $m \le n, t \in K'_m, s \in K'_n$, and $U \subset K'_m, V \subset K'_n$ are disjoint open sets with the property that $t \in U \subset \overline{U} \subset K'_m$ and $s \in V \subset \overline{V} \subset K'_n$. Then for $\alpha, \beta \in [0, \infty)$, there exists $x \in X_+$ so that: a) For $j < m, x|_{K_j} = 0$. a) $x(t) = \alpha, x(s) = \beta, x \le \alpha$ on U, and $x \le \beta$ on V. b) If m < n, then $x|_{K_m \setminus U} = 0$. c) If m < n, then for $m < j < n, 0 \le x|_{K_j} \le C^{m-j}\alpha$. c) On $K_n, 0 \le x \le C^{m-n}\alpha \lor \beta$. c) For $j > n, 0 \le x|_{K_i} \le (C^{m-j}\alpha) \lor (C^{n-j}\beta)$.

ヘロ ト ヘ 同 ト ヘ 三 ト ー

Preliminaries Results Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces

Duals of regular AM spaces

Lemma 2

• Suppose X is a regular AM space. Then X* is lattice isometric to M(K').

イロト イボト イヨト イヨト

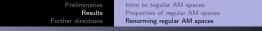
Preliminaries Results Further directions Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces

Duals of regular AM spaces

Lemma 2

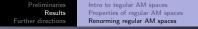
- Suppose X is a regular AM space. Then X* is lattice isometric to M(K').
- Denote by A_1 the set of normalized atoms in X^* . Equip A_1 with the weak^{*} topology. Then the map $j : K' \to A_I$, with $t \mapsto \delta_t$, is a topological homeomorphism.

< ロ > < 同 > < 三 > < 三 >



 Denote the atoms in X by (θ_i)_{i∈I}. each θ_i corresponds to "hereditarily isolated" point a_i ∈ K'. Given C < 2, let c < ³√C,

イロト イボト イヨト イヨト



- Denote the atoms in X by $(\theta_i)_{i \in I}$. each θ_i corresponds to "hereditarily isolated" point $a_i \in K'$. Given C < 2, let $c < \sqrt[3]{C}$,
- Let $A = \{n \in \mathbb{N}, K'_n \text{ is infinite }\}$, and $B = \{n \in \mathbb{N}, K'_n \text{ is non-empty finite }\}$.

ヘロト ヘヨト ヘヨト

- Denote the atoms in X by $(\theta_i)_{i \in I}$. each θ_i corresponds to "hereditarily isolated" point $a_i \in K'$. Given C < 2, let $c < \sqrt[3]{C}$,
- Let $A = \{n \in \mathbb{N}, K'_n \text{ is infinite }\}$, and $B = \{n \in \mathbb{N}, K'_n \text{ is non-empty finite }\}$.
- For $n \in B$, list elements of $K'_n = \{t_{1n}, ..., t_{p_n n}\}$, and for $n \in A$, pick countable dense subset of distinct elements $t_{1n}, t_{2n}, ...$
- for each $n \in A$, pick decreasing $c > \lambda_{1n} > \lambda_{2n} > ...$, with $\lim_k \lambda_{kn} = 1$, For $n \in B$, pick decreasing $c > \lambda_{1n} > \lambda_{2n} > ... > 1$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

- Denote the atoms in X by $(\theta_i)_{i \in I}$. each θ_i corresponds to "hereditarily isolated" point $a_i \in K'$. Given C < 2, let $c < \sqrt[3]{C}$,
- Let $A = \{n \in \mathbb{N}, K'_n \text{ is infinite }\}$, and $B = \{n \in \mathbb{N}, K'_n \text{ is non-empty finite }\}$.
- For $n \in B$, list elements of $K'_n = \{t_{1n}, ..., t_{p_n n}\}$, and for $n \in A$, pick countable dense subset of distinct elements $t_{1n}, t_{2n}, ...$
- for each $n \in A$, pick decreasing $c > \lambda_{1n} > \lambda_{2n} > ...$, with $\lim_k \lambda_{kn} = 1$, For $n \in B$, pick decreasing $c > \lambda_{1n} > \lambda_{2n} > ... > 1$.
- For $t \in K'$, let $\mu(t) = \lambda_{in}$ if $t = t_{in}$, and let $\mu(t) = 1$ otherwise.

・ロト ・ 一下・ ・ ヨト・

Preliminaries Intro to tegular AM spaces Results Properties of regular AM spaces Further directions Renorming regular AM spaces

norm definition (cntd)

• Case
$$|I| = 0$$
: For $x \in X$, let

$$|\hspace{-0.15cm}|\hspace{-0.15cm}| x|\hspace{-0.15cm}| = \sup_{t\in {\mathcal K}'} \mu(t) |x(t)|$$

イロン イロン イヨン イヨン

э

Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces

norm definition (cntd)

• Case |I| = 0: For $x \in X$, let

$$|\hspace{-0.15cm}|\hspace{-0.15cm}| x|\hspace{-0.15cm}| = \sup_{t\in K'} \mu(t) |x(t)|$$

Case |I| = 1: Let θ_a be the atom in X determined a ∈ K' P₁ be projection mapping x to the part of x disjoint from a and any φ_{mn}(a), and let X₁ = ker(P₁).. Now let

$$|||x||| = \max(|||(I - P_1)(x)|||_1, ||P_1(x)||).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces

norm definition (cntd)

• Case |I| > 1: For $I = \mathbb{N}$ or $I = \{1, ..., m\}$, let $\mathcal{P} = \{(i, j) \in I^2 : i < j\}$, let $\pi : \mathcal{P} \to \mathbb{N}$ be an injection

イロト イポト イヨト イヨト

э.

norm definition (cntd)

- Case |I| > 1: For $I = \mathbb{N}$ or $I = \{1, ..., m\}$, let $\mathcal{P} = \{(i, j) \in I^2 : i < j\}$, let $\pi : \mathcal{P} \to \mathbb{N}$ be an injection
- For $(i,j) \in \mathcal{P}$, let $\|\cdot\|_{i,j}$ be the norm on \mathbb{R}^2 whose unit ball is the octagon with vertices

$$\left(\pm\left(1-rac{c-1}{c(2\pi(i,j)+1)}
ight),\pm1
ight) ext{ and } \left(\pm1,\pm\left(1-rac{c-1}{2c\pi(i,j)}
ight)
ight)$$

イロト 不得 トイヨト イヨト

= nar

norm definition (cntd)

- Case |I| > 1: For $I = \mathbb{N}$ or $I = \{1, ..., m\}$, let $\mathcal{P} = \{(i, j) \in I^2 : i < j\}$, let $\pi : \mathcal{P} \to \mathbb{N}$ be an injection
- For $(i,j) \in \mathcal{P}$, let $\|\cdot\|_{i,j}$ be the norm on \mathbb{R}^2 whose unit ball is the octagon with vertices

$$\left(\pm\left(1-rac{c-1}{c(2\pi(i,j)+1)}
ight),\pm1
ight) ext{ and }\left(\pm1,\pm\left(1-rac{c-1}{2c\pi(i,j)}
ight)
ight)$$

• Denote atoms by $(\theta_{a_i})_{i\in I}$, can now generate renorming $|||\cdot|||$, with

$$|||x||| = \max\Big\{\sup_{t\in K'} \mu(t)|x(t)|, \sup_{(i,j)\in \mathcal{P}} \left\|\left(\mu(a_i)x(a_i), \mu(a_j)x(a_j)\right)\right\|_{i,j}\Big\}$$

イロト 不同 トイヨト イヨト

I nar

norm definition (cntd)

- Case |I| > 1: For $I = \mathbb{N}$ or $I = \{1, ..., m\}$, let $\mathcal{P} = \{(i, j) \in I^2 : i < j\}$, let $\pi : \mathcal{P} \to \mathbb{N}$ be an injection
- For $(i,j) \in \mathcal{P}$, let $\|\cdot\|_{i,j}$ be the norm on \mathbb{R}^2 whose unit ball is the octagon with vertices

$$\left(\pm\left(1-\frac{c-1}{c(2\pi(i,j)+1)}\right),\pm1\right) \text{ and } \left(\pm1,\pm\left(1-\frac{c-1}{2c\pi(i,j)}\right)\right)$$

• Denote atoms by $(\theta_{a_i})_{i\in I}$, can now generate renorming $|||\cdot|||$, with

$$|||x||| = \max\left\{\sup_{t\in\mathcal{K}'}\mu(t)|x(t)|,\sup_{(i,j)\in\mathcal{P}}\left\|\left(\mu(a_i)x(a_i),\mu(a_j)x(a_j)\right)\right\|_{i,j}\right\}$$

• NB: the formal identity map $(\mathbb{R}^2, \|\cdot\|_{i_1, j_1}) \to (\mathbb{R}^2, \|\cdot\|_{i_2, j_2})$ is an isometry iff $i_1 = i_2$ and $j_1 = j_2$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

	Preliminaries Results Further directions	Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces
Norm properties		

・ 同 ト ・ ヨ ト ・ ヨ ト

	Preliminaries Results Further directions	Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces
Norm properties		

• For any
$$t \in K'$$
, $|||\mu(t)\delta_t||| = 1$.

イロン イロン イヨン イヨン

	Preliminaries Results Further directions	Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces
Norm properties		

- For any $t \in K'$, $|||\mu(t)\delta_t||| = 1$.
- For any atom θ_i with $i \in I$, $T(\theta_i) = \theta_i$.

(I) < (I)

	Preliminaries Results Further directions	Intro to tegular AM spaces Properties of regular AM spaces Renorming regular AM spaces
Norm properties		

- For any $t \in K'$, $|||\mu(t)\delta_t||| = 1$.
- For any atom θ_i with $i \in I$, $T(\theta_i) = \theta_i$.
- Suppose $m, n \in \mathbb{N}$, $t \in K'_n$, and the sequence $(t_i) \subset K'_m \setminus \{t\}$ converges to s. Then the following are equivalent:

< 回 > < 三 > < 三 >

	Intro to tegular AM spaces
Results	Properties of regular AM spaces
Further directions	Renorming regular AM spaces

Norm properties

Suppose T is an isometry over $(X, ||| \cdot |||)$.

- For any $t \in K'$, $|||\mu(t)\delta_t||| = 1$.
- For any atom θ_i with $i \in I$, $T(\theta_i) = \theta_i$.
- Suppose $m, n \in \mathbb{N}$, $t \in K'_n$, and the sequence $(t_i) \subset K'_m \setminus \{t\}$ converges to s. Then the following are equivalent:

1
$$m \ge n$$
, and $s = \phi_{nm}(t)$.

2) (2) w^{*} - lim_i
$$\mu(t_i)\delta_{t_i} = \alpha \mu(t)\delta_t$$
 for some $\alpha > 0$.

< 回 > < 三 > < 三 > -

э

	Intro to tegular AM spaces
Results	Properties of regular AM spaces
Further directions	Renorming regular AM spaces

Norm properties

Suppose T is an isometry over $(X, ||| \cdot |||)$.

- For any $t \in K'$, $|||\mu(t)\delta_t||| = 1$.
- For any atom θ_i with $i \in I$, $T(\theta_i) = \theta_i$.
- Suppose $m, n \in \mathbb{N}$, $t \in K'_n$, and the sequence $(t_i) \subset K'_m \setminus \{t\}$ converges to s. Then the following are equivalent:

$$1) m \ge n, \text{ and } s = \phi_{nm}(t).$$

2) (2) w^{*} - lim_i
$$\mu(t_i)\delta_{t_i} = \alpha \mu(t)\delta_t$$
 for some $\alpha > 0$.

Moreover, if (1) holds, then (2) holds with $\alpha = C^{n-m}/\mu(t)$.

くぼう くほう くほう

	Intro to tegular AM spaces
Results	Properties of regular AM spaces
Further directions	Renorming regular AM spaces

Norm properties

Suppose T is an isometry over $(X, ||| \cdot |||)$.

- For any $t \in K'$, $|||\mu(t)\delta_t||| = 1$.
- For any atom θ_i with $i \in I$, $T(\theta_i) = \theta_i$.
- Suppose $m, n \in \mathbb{N}$, $t \in K'_n$, and the sequence $(t_i) \subset K'_m \setminus \{t\}$ converges to s. Then the following are equivalent:

) (1)
$$m \ge n$$
, and $s = \phi_{nm}(t)$.

(2) w^{*} - lim_i
$$\mu(t_i)\delta_{t_i} = \alpha \mu(t)\delta_t$$
 for some $\alpha > 0$.

Moreover, if (1) holds, then (2) holds with $\alpha = C^{n-m}/\mu(t)$.

- Suppose we are given t ∈ K'_n and a sequence (t_i) ⊂ K'\{t}. Then the following are equivalent:
 - (1) There exists $m \ge n$ so that for *i* large enough, $t_i \in K'_m$. Furthermore, (t_i) converges to $s = \phi_{nm}(t)$.

2 (2)
$$\mu(t_i)\delta_{t_i} \stackrel{w*}{\to} \alpha \mu(t)\delta_t$$
 for some $\alpha > 0$.

Moreover, if (1) holds, then, in (2), $\alpha = C^{n-m}/\mu(t)$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Preliminaries Results Further directions Renorming regular AM spaces Renorming regular AM spaces

PROOF

Mary Angelica Tursi Renorming AM Spaces

イロト イヨト イヨト イヨト

æ

PROOF

 Let T be an isometry on (X, |||·|||). T* sends atoms to atoms, and normalized atoms in X* are of the form μ(k)δ_k, with k ∈ K'.

イロト イボト イヨト イヨト

э

PROOF

- Let T be an isometry on (X, |||·|||). T* sends atoms to atoms, and normalized atoms in X* are of the form μ(k)δ_k, with k ∈ K'.
- If k is hereditarily isolated, then $T^*(\mu(k)\delta_k) = \mu(k)\delta_k$.

< ロ > < 同 > < 三 > < 三 >

PROOF

- Let T be an isometry on (X, |||·|||). T* sends atoms to atoms, and normalized atoms in X* are of the form μ(k)δ_k, with k ∈ K'.
- If k is hereditarily isolated, then $T^*(\mu(k)\delta_k) = \mu(k)\delta_k$.
- Since T^* is isometric and interval preserving, we have $\psi : \mathcal{K}' \to \mathcal{K}'$ $T^*(\mu(k)\delta_k) = \mu(\psi(k))\delta_{\psi(k)}$. Must show that $\psi = Id$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

PROOF

- Let T be an isometry on (X, |||·|||). T* sends atoms to atoms, and normalized atoms in X* are of the form μ(k)δ_k, with k ∈ K'.
- If k is hereditarily isolated, then $T^*(\mu(k)\delta_k) = \mu(k)\delta_k$.
- Since T^* is isometric and interval preserving, we have $\psi : \mathcal{K}' \to \mathcal{K}'$ $T^*(\mu(k)\delta_k) = \mu(\psi(k))\delta_{\psi(k)}$. Must show that $\psi = Id$.
- If k not hereditarily isolated, must have sequence $(u_i) \in K'$ so that $\mu(u_i)\delta_{u_i} \stackrel{w*}{\to} \alpha \mu(k)\delta_k$. T^* is itself w*-continuous, so $\alpha = 1$ and $\mu(k) = \mu(\psi(k))$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

PROOF

- Let T be an isometry on (X, |||·|||). T* sends atoms to atoms, and normalized atoms in X* are of the form μ(k)δ_k, with k ∈ K'.
- If k is hereditarily isolated, then $T^*(\mu(k)\delta_k) = \mu(k)\delta_k$.
- Since T^* is isometric and interval preserving, we have $\psi : \mathcal{K}' \to \mathcal{K}'$ $T^*(\mu(k)\delta_k) = \mu(\psi(k))\delta_{\psi(k)}$. Must show that $\psi = Id$.
- If k not hereditarily isolated, must have sequence $(u_i) \in K'$ so that $\mu(u_i)\delta_{u_i} \stackrel{w*}{\to} \alpha \mu(k)\delta_k$. T^* is itself w*-continuous, so $\alpha = 1$ and $\mu(k) = \mu(\psi(k))$.
- If $k = t_{in}$, the above implies that $\psi(k) = k$.

・ロト ・ 一下・ ・ ヨト・

-

PROOF

- Let T be an isometry on (X, |||·|||). T* sends atoms to atoms, and normalized atoms in X* are of the form μ(k)δ_k, with k ∈ K'.
- If k is hereditarily isolated, then $T^*(\mu(k)\delta_k) = \mu(k)\delta_k$.
- Since T^* is isometric and interval preserving, we have $\psi : \mathcal{K}' \to \mathcal{K}'$ $T^*(\mu(k)\delta_k) = \mu(\psi(k))\delta_{\psi(k)}$. Must show that $\psi = Id$.
- If k not hereditarily isolated, must have sequence $(u_i) \in K'$ so that $\mu(u_i)\delta_{u_i} \stackrel{w*}{\to} \alpha \mu(k)\delta_k$. T^* is itself w*-continuous, so $\alpha = 1$ and $\mu(k) = \mu(\psi(k))$.
- If $k = t_{in}$, the above implies that $\psi(k) = k$.
- For $k \neq t_{ni}$ use density of k_{ni} and w^* continuity of T^* .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-

What if we don't want to kill all isometries?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

What if we don't want to kill all isometries?

• Let *B* be a separable Banach space. The linear isometries ISO(B) on *B* form a **Polish group** with composition as the group operation.

イロト 不得 トイヨト イヨト

= nar

What if we don't want to kill all isometries?

- Let *B* be a separable Banach space. The linear isometries ISO(B) on *B* form a **Polish group** with composition as the group operation.
- Given a Banach space B and Polish group G ⊆ ISO(B, ||·||), when can B be renormed with an equivalent norm |||·||| so that G = ISO(B, ||·||)?

What if we don't want to kill all isometries?

- Let *B* be a separable Banach space. The linear isometries ISO(B) on *B* form a **Polish group** with composition as the group operation.
- Given a Banach space B and Polish group G ⊆ ISO(B, ||·||), when can B be renormed with an equivalent norm |||·||| so that G = ISO(B, ||·||)?

(Galego, Ferenczi, Rosendal, ca. 2010-2015): Suppose $(B,\|\cdot\|)$ is a separable real Banach space.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What if we don't want to kill all isometries?

- Let *B* be a separable Banach space. The linear isometries ISO(B) on *B* form a **Polish group** with composition as the group operation.
- Given a Banach space B and Polish group G ⊆ ISO(B, ||·||), when can B be renormed with an equivalent norm |||·||| so that G = ISO(B, ||·||)?

(Galego, Ferenczi, Rosendal, ca. 2010-2015): Suppose $(B,\|\cdot\|)$ is a separable real Banach space.

• Let *B* have an LUR-norm $\|\cdot\|$ and $G \subseteq ISO(B, \|\cdot\|)$ with $-1 \in G$. Suppose there exists a normalized vector x_0 such that $\inf_{g\neq 1} \|gx_0 - x_0\| > 0$. Then *B* admits an equivalent norm $\|\|\cdot\|$ such that $G = ISO(B, \|\|\cdot\|)$.

What if we don't want to kill all isometries?

- Let *B* be a separable Banach space. The linear isometries ISO(B) on *B* form a **Polish group** with composition as the group operation.
- Given a Banach space B and Polish group G ⊆ ISO(B, ||·||), when can B be renormed with an equivalent norm |||·||| so that G = ISO(B, ||·||)?

(Galego, Ferenczi, Rosendal, ca. 2010-2015): Suppose $(B,\|\cdot\|)$ is a separable real Banach space.

- Let *B* have an LUR-norm $\|\cdot\|$ and $G \subseteq ISO(B, \|\cdot\|)$ with $-1 \in G$. Suppose there exists a normalized vector x_0 such that $\inf_{g \neq 1} \|gx_0 - x_0\| > 0$. Then *B* admits an equivalent norm $\|\|\cdot\|\|$ such that $G = ISO(B, \|\|\cdot\|\|)$.
- **2** Let G be a closed subgroup of S_{∞} . Then there exists a reonorming $\|\|\cdot\|\|$ of c_0 so that $G \times \{-1, 1\}$ is topologically isomorphic to $ISO(c_0, \|\|\cdot\|\|)$.
- **(a)** For any Polish group *G*, there exists a separable Banach space B such that $\{-1, 1\} \times G$ is topologically isomorphic to $ISO(B, \|\cdot\|)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Question:

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○

Question:

Given a Banach lattice E and Polish subgroup G ⊆ ISO_L(E, || · ||) of lattice isometries, when can E be renormed with an equivalent lattice norm |||·||| so that G = ISO_L(E, |||·||)?

イロト 不得 トイヨト イヨト

э.

Question:

Given a Banach lattice E and Polish subgroup G ⊆ ISO_L(E, || · ||) of lattice isometries, when can E be renormed with an equivalent lattice norm |||·||| so that G = ISO_L(E, |||·|||)?

Some partial answers:

• When *E* has a smooth, LUR lattice norm, a lattice analogue results like in the case of Banach spaces with LUR norms.

ヘロ ト ヘ 同 ト ヘ 三 ト ー

э.

Question:

Given a Banach lattice E and Polish subgroup G ⊆ ISO_L(E, || · ||) of lattice isometries, when can E be renormed with an equivalent lattice norm |||·||| so that G = ISO_L(E, |||·|||)?

Some partial answers:

- When *E* has a smooth, LUR lattice norm, a lattice analogue results like in the case of Banach spaces with LUR norms.
- **Theorem**: (Oikhberg, T.) Suppose X is a locally compact Polish space. Let G be a SOT-closed subgroup of the group $ISO_L(C_0(X), \|\cdot\|)$ of lattice isometries. Suppose also that every orbit of G on X is nowhere dense and that G is equicontinuous on X. Then for all C > 1, there exists a renorming $\||\cdot\||$ on $C_0(X)$ such that $G = ISO_L(C_0(X), \||\cdot\||)$ and $\|\cdot\| \le \||\cdot\|| \le C \|\cdot\|$.

・ ロ ト ・ 何 ト ・ 三 ト ・ 三 ト - -

-

Question:

Given a Banach lattice E and Polish subgroup G ⊆ ISO_L(E, || · ||) of lattice isometries, when can E be renormed with an equivalent lattice norm |||·||| so that G = ISO_L(E, |||·|||)?

Some partial answers:

- When *E* has a smooth, LUR lattice norm, a lattice analogue results like in the case of Banach spaces with LUR norms.
- Theorem: (Oikhberg, T.) Suppose X is a locally compact Polish space. Let G be a SOT-closed subgroup of the group ISO_L(C₀(X), || · ||) of lattice isometries. Suppose also that every orbit of G on X is nowhere dense and that G is equicontinuous on X. Then for all C > 1, there exists a renorming || · ||| on C₀(X) such that G = ISO_L(C₀(X), || · ||) and || · || ≤ || · || ≤ C || · ||.
- Can we do the same (or something approaching it) for AM spaces in general?

イロン 不得 とくほど 不足 とうほう