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What is the Hilbert transform?
Given some function f , its Hilbert transform, denoted by H(f ), is calculated through the
integral

(Hf )(t) = p.v .
1

π

∫
R

f (s)

t − s
ds = lim

ε→0+

1

π

∫
|s−t|≥ε

f (s)

t − s
ds.

The Hilbert transform is named after David Hilbert (1862-1943). Its
first use dates back to 1905 in Hilbert’s work concerning analytical functions in
connection to the Riemann problem. In 1928 it was proved by Marcel Riesz (1886-1969)
that the Hilbert transform is a bounded linear operator on Lp(R) for 1 < p <∞. This
result was generalized for the Hilbert transform in several dimensions (and singular
integral operators in general) by Antoni Zygmund (1900-1992) and Alberto Calderón
(1920-1998). 1 2 3

1M. Riesz, Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires, Acta Math. 49 (1927),
465–497.

2A. P. Caldeón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952),
85–139.

3King, Frederick W. (2009a), Hilbert Transforms, 1, Cambridge: Cambridge University Press, p. 898.
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Boundedness of the Hilbert transform on Lp

Theorem

If 1 < p <∞, then the Hilbert transform on Lp(R) is a bounded linear operator,
meaning that there exists a constant cp > 0 such that

∥Hf ∥Lp(R) ≤ cp∥f ∥Lp(R)

for all f ∈ Lp(R).

This theorem is due to [1, M. Riesz (1927, VII)]; see also [4,Titchmarsh (1948, Theorem
101)]. The best constant cp is given by cp = tan( π

2p
) for 1 < p ≤ 2 and cp = cot( π

2p
) for

2 ≤ p <∞. This result is due to [5, Pichorides 1972]. 4 5

4Titchmarsh, E (1948), Introduction to the theory of Fourier integrals (2nd ed.), Oxford University:
Clarendon Press (published 1986), ISBN 978-0-8284-0324-5.

5Pichorides, S. (1972), On the best value of the constants in the theorems of Riesz, Zygmund, and
Kolmogorov, Studia Mathematica, 44: 165-179
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Boundedness of the Hilbert transform on ℓp
The discrete Hilbert transform is an operator Hd which maps the sequence {x(n)}n∈Z to
the sequence {(Hdx)(n)} defined by(

Hdx
)
(n) :=

1

π

∑
k∈Z
k ̸=n

x(k)

n − k
.

Boundedness of the discrete Hilbert transform Hd on ℓp(Z) is due to [6, E. Titchmarsh
(1927)]. Using a representation of the discrete Hilbert transform, [7, Rodrigo Banuelos,
Mateusz Kwasnicki (2019)] proved that its ℓp norm, 1 < p <∞, is bounded above by
the Lp-norm of the continuous Hilbert transform. Together with the already known
lower bound, this resolves the long-standing conjecture that the norms of these
operators are equal. 6 7

6E. C. Titchmarsh, Reciprocal formulae involving series and integrals, Math. Z. 26 (1927), 496.
7Rodrigo Banuelos, Mateusz Kwasnicki (2019), On the ℓp-norm of the discrete Hilbert transform, Duke

Math. J. 168(3): 471–504.
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The Hilbert transform on L1 and L∞

If f ∈ L1(R), then it does not necessarily imply that Hf ∈ L1(R). For example, let
f = χ[0,1] ∈ L1(R). Then its Hilbert transform is given by

(Hf )(t) =
1

π
log

∣∣∣∣ t

t − 1

∣∣∣∣
and clearly Hf does not belong to L1(R).
Similarly, the Hilbert transform is not bounded on L∞(R). It may even not defined for all
functions in L∞(R).
Therefore, the Hilbert transform is bounded on Lp(R) if and only if 1 < p <∞.
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The Hilbert transform on Lp

Theorem

H : Lp(R) → Lp(R) is bounded ⇔ 1 < p <∞ ⇔ Lp is reflexive ⇒ Lp is separable.

Therefore, it is natural to ask the following questions:
(1) Given a Banach space X of functions on R, chosen from a suitably large
class of such spaces containing Lp, is there a simple method for determining
whether or nor H defines a continuous mapping from X into itself?
(2) Do the spaces X , for which H : X → X is continuous, have any other, more
intrinsic, property in common?
(3) In particular, is reflexivity/separability of X necessary and/or sufficient in
order that H : X → X is bounded?
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Preliminaries

Let (I , µ) denote the measure space I = R+,R, where R+ := (0,∞) and R is the set of
real numbers, equipped with Lebesgue measure µ. Let L(I , µ) be the space of all
measurable real-valued functions on I equipped with Lebesgue measure µ i.e. functions
which coincide almost everywhere are considered identical. Define L0(I ) to be the subset
of L(I , µ) which consists of all functions f such that µ({t : |f (t)| > s}) is finite for
some s > 0.
For f ∈ L0(I ) (where I = R+ or R), we denote by f ∗ the decreasing rearrangement of
the function |f |. That is,

f ∗(t) = inf{s ≥ 0 : µ({|f | > s}) ≤ t}, t > 0.

Boundedness of the Hilbert transform on ℓp (1 < p < ∞) space 8/51



Symmetric spaces

Definition

We say that (E , ∥ · ∥E ) is a symmetric (quasi-)Banach function space on I if the
following holds:

(a) E (I ) is a subset of L0(I );

(b) (E (I ), ∥ · ∥E(I )) is a (quasi-)Banach space;

(c) If f ∈ E (I ) and if g ∈ L0(I ) are such that |g(t)| ≤ |f (t)| for almost all t > 0, then
g ∈ E (I ) and ∥g∥E(I ) ≤ ∥f ∥E(I );

(d) If f ∈ E (I ) and if |f | and |g | are equi-measurable, then implies that g ∈ E (I ) and
∥g∥E(I ) = ∥f ∥E(I ).

8 9
8C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, 129. Academic

Press, 1988.
9S. Krein, Y. Petunin, and E. Semenov, Interpolation of linear operators, Amer. Math. Soc., Providence,

R.I., (1982).
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Boyd indices

It is well known that Lp(I ), (0 < p ≤ ∞) is a basic example of (quasi-)Banach
symmetric spaces of functions. Let E be a symmetric Banach function space. For s > 0,
the dilation operator Ds : E → E is defined by setting

Ds f (t) = f (t/s), t > 0, f ∈ E .

The upper and lower Boyd indices of E are numbers βE and β
E
defined by

βE := lim
s↓0+

log ∥Ds∥E→E

log s
, β

E
:= lim

s→∞

log ∥Ds∥E→E

log s
.

Moreover, they satisfy 0 ≤ β
E
≤ βE ≤ 1 (see [8, Definition III.5.12 and Proposition

III.5.13, p. 149]). As is easily checked, if E = Lp, 1 ≤ p ≤ ∞, then β
E
= βE = 1/p.
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Lorentz spaces

Let 1 ≤ p <∞ and let φ be an increasing concave function φ : [0,∞) → [0,∞) for
which lim

t→0+
φ(t) = 0 (or simply φ(0+) = 0). For the function φ, the Lorentz space

Λφ,p(I ) is defined by setting

Λφ,p(I ) :=

{
f ∈ L0(I ) :

∫
R+

f ∗(s)pdφ(s) <∞
}

equipped with the norm

∥f ∥Λφ,p(I ) :=
∫
R+

f ∗(s)pdφ(s). (1)

Λφ,1(I ) = Λφ(I ). For more details on Lorentz spaces, we refer the reader to [8, Chapter
II.5] and [9, Chapter II.5].
In particular, if φ(t) = log(1 + t), t > 0, then we denote Λφ(I ) by Λlog(I ).
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Marcinkiewicz spaces

Let ϕ : [0,∞) → [0,∞) be an increasing concave function for which lim
t→0+

φ(t) = 0 (or

simply φ(0+) = 0). Define the Marcinkiewicz space Mϕ(I ) as follows

Mϕ(I ) :=

{
f ∈ L0(I ) : sup

t>0

1

ϕ(t)

∫ t

0

f ∗(s)ds <∞
}

with the norm

∥f ∥Mϕ(I ) := sup
t>0

1

ϕ(t)

∫ t

0

f ∗(s)ds.

These spaces are examples of symmetric Banach function spaces.
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Weak L1-space

Further, define the space L1,∞(R+) (resp. L1,∞(R) ) by setting

L1,∞(R+) = {f ∈ L0(R+) : sup
t>0

tf ∗(t) <∞},

and equip L1(R+) with the functional ∥ · ∥L1,∞ defined by the formula

∥f ∥L1,∞ := sup
t>0

tf ∗(t).

It is well-known that this space is a quasi-Banach symmetric space and is called weak-L1
space.
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Calderón operator and Hilbert transform

For each f ∈ Λlog(R+), define the operator S : Λlog(R+) → (L1,∞ + L∞)(R+) by

(Sf )(t) :=
1

t

∫ t

0

f (s)ds +

∫ ∞

t

f (s)
ds

s
, f ∈ Λlog(R+). (2)

It is obvious that S is linear operator and (Sf )(t) is a decreasing function of t.
If f ∈ Λlog(R), then the classical Hilbert transform H is defined by the principal-value
integral

(Hf )(t) = p.v .
1

π

∫
R

f (s)

t − s
ds, f ∈ Λlog(R).
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Boyd’s results (Necessary condition)

In his thesis [10, Chapter II] (see also [11]) Boyd posed a problem of finding necessary
and sufficient conditions for the Hilbert transformation (H to be bounded from one
symmetric Banach space E into another F .

Theorem (Boyd, 1966, Necessary condition)

If the Hilbert transform H : E (R) → F (R) is bounded, then E ⊆ F .

10

11

10D.W. Boyd, The Hilbert Transformation on rearrangement invariant Banach spaces, Thesis, University of
Toronto (1966).

11D. Boyd, The Hilbert transform on rearrangement-invariant spaces, Can. J. Math. 19 (1967), 599-616.
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Boyd’s results (Necessary and Sufficient condition)

Theorem (Boyd, 1966, Necessary and Sufficient condition, but E = F )

The Hilbert transform H : E (R) → E (R) is bounded if and only if

0 < β
E
≤ βE < 1.

Theorem (Boyd, 1966, Necessary and Sufficient condition)

The Hilbert transform H : E (R) → F (R) is bounded if and only if S : E (R+) → F (R+).

Here, operator S is defined by formula (2).
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It is shown in [12, I. Halperin] that, for p > 1, Λφ,p(R) is is not always reflexive, and
that Λϕ(R) and Mϕ(R) are never reflexive. In fact, Mϕ(R) is non-separable. If we take
ϕ(t) = tα

α
for 0 < α < 1, t > 0, then H : Λϕ(R) → Λϕ(R) and H : Mϕ(R) → Mϕ(R) are

bounded. Therefore, neither reflexivity nor separability of X is necessary for boundedness
H from X into itself. Taking φ(t) = log(1 + t), t > 0 for p > 1, Λφ,p(R), we obtain
that H is not bounded from Λφ,p(R) into itself. Hence, reflexivity is insufficient for that
H : X → X is bounded.

Theorem (Boyd, 1966)

If 1 < p <∞, then H : Λφ,p(R) → Λφ,p(R) is bounded if and only if Λφ,p(R) is
uniformly convex.

Lemma (13, Halperin, 1954)

The space Λφ,p(R) is uniformly convex if and only if sup
t>0

φ(t)
φ(2t)

< 1.

12 13
12I. Halperin, Reflexivity in the Lλ function spaces, Duke Math. J., 21 (1954), 205-208.
13I. Halperin, Uniform convexity in function spaces, Duke Math. J., 21 (1954), 195-204.
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Andersen’s result

Let E (Z+) be a symmetric Banach space of sequences. In 1976, K.F. Andersen obtained
Boyd’s results in discrete case.

Theorem (Andersen, App.Anal.,1976)

The Hilbert transform Hd : E (Z) → E (Z) is bounded if and only if

0 < β
E
≤ βE < 1.

Here, Hd is defined by (
Hdx

)
(n) :=

1

π

∑
k∈Z
k ̸=n

x(k)

n − k
, x ∈ Λlog(Z+). (3)
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Kolmogorov’s result

In 1928, A. Kolmogorov obtained the following result [14, Theorem III.4.9 (b), p. 139].

Theorem (Kolmogorov, Fundamenta Math., 1928)

The Hilbert transform
H : L1(R) → L1,∞(R)

is bounded.

14

14C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, 129. Academic
Press, 1988.
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Komori’s result

In 2001 Y. Komori obtained a discrete version of the Kolmogorov’s result for the discrete
Hilbert transform.

Theorem (Komori, Far East J. Math. Sci., 2001)

The discrete Hilbert transform

Hd : ℓ1(Z) → ℓ1,∞(Z)

is bounded.
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Problems

Problem (1)

Given a symmetric quasi-Banach function space E = E (R), determine the least
symmetric quasi-Banach function space F = F (R) such that H : E (R) → F (R) is
bounded.

Problem (2)

Given a symmetric quasi-Banach sequence space E = E (Z), determine the least
symmetric quasi-Banach sequence space F = F (Z) such that Hd : E (Z) → F (Z) is
bounded.

15

15J. Soria, P. Tradacete, Optimal rearrangement invariant range for Hardy-type operators , Proc. of the Royal
Soc. of Edinburgh, 146A (2016), 865–893.
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Optimal range of the Calderón operator

Definition

Let E be a quasi-Banach symmetric space on R+. Let E (R+) ⊂ Λlog(R+) and let S be
the operator defined in (2). Define

F (R+) := {f ∈ (L1,∞ + L∞)(R+) : ∃g ∈ E (R+), f
∗ ≤ Sg ∗} (4)

such that
∥f ∥F (R+) := inf{∥g∥E(R+) : f

∗ ≤ Sg ∗} <∞.
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Optimal range of the Hilbert transform. Resolutions of

Problems 1 and 2

The following result provides solution to the Problem 1.

Theorem (Sukochev/T/Zanin, JFA, 2019)

Let E be a quasi-Banach symmetric space on R. If E (R+) ⊂ Λlog(R+), then

(i) (F (R), ∥ · ∥F (R)) is a quasi-Banach symmetric space.

(ii) Moreover, (F (R), ∥ · ∥F (R)) is the least (smallest) symmetric quasi-Banach space
(range) such that the Hilbert transform H : E (R) → F (R) is bounded.

The discrete version of this result was obtained in [T, Arch. Math., 2019].
16

16D. E. Edmunds, Z. Mihula, V. Musil, and L. Pick, Boundedness of classical operators on
rearrangement-invariant spaces, J. Funct. Anal. 278:4 (2020), 108341.
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Corollary (Sukochev/T/Zanin, JFA, 2019)

Let E be a quasi-Banach symmetric space on R. If E (R+) ⊂ Λlog(R+), then the Hilbert
transform

H : E (R) → G (R)

is bounded if and only if F (R) ⊆ G (R), where F (R) is the space defined in (4).
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An example with trivial Boyd indices

Let us denote
(L1,∞(R))0 := {f ∈ L1,∞(R) : lim

t→0+
tf ∗(t) = 0}.

The following result shows that the optimal range for the Hilbert transform on L1(R) is,
in fact, (L1,∞(R))0. In particular, this result refines the classical Kolmogorov’s theorem
[17, Theorem III.4.9 (b), p. 139].

Corollary (Sukochev/T/Zanin, JFA, 2019)

If E (R) = L1(R), then
F (R) = (L1,∞(R))0.

17 18
17C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, 129. Academic

Press, 1988.
18J. Soria, P. Tradacete, Characterization of the restricted type spaces R(X ), Math. Ineq. Applic. 18 (2015),

295–319.
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Lorentz case

Theorem (Sukochev/T/Zanin, Bull. de Sci. Math., 2021)

If E (R) = Λϕ(R), then F (R) = Λψ(R) holds for the function ψ(t) := inf
s>1

ϕ(st)
1+log(s)

satisfying lim
t→∞

ψ(t)
t

= 0 and S
(
ψ(t)
t

)
≤ cϕ,ψ

ϕ(t)
t
, t > 0.

In other words,
H : Λϕ(R) → F (R)

is bounded if and only if Λψ(R) ⊆ F (R).
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Marcinkiewicz case

Question. Given a Marcinkiewicz space E = Mφ(R) ⊆ Λlog(R), determine or
characterize the least (smallest) Marcinkiweicz space F = Mψ(R) such that
H : Mφ(R) → Mψ(R) is bounded.

Theorem (Bekbayev/Sukochev/T/Zanin, Unpublished)

If E (R) = Mφ(R), then
F (R) = Mψ(R),

where, ψ′(t) := (Sφ′)(t), t > 0.
In other words,

H : Mφ(R) → F (R)

is bounded if and only if Mψ(R) ⊆ F (R).
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Example with trivial Boyd indices

Example If φ(t) = log(1 + t), t > 0, then φ′(t) = 1
1+t

, t > 0. We have

(Sϕ′)(t) =
1

t

∫ t

0

1

1 + s
ds +

∫ ∞

t

1

s(1 + s)
ds =

log(1 + t)

t
+ log(1 +

1

t
).

Hence, ψ(t) ≍ t log( e
t
) on (0, 1] and ψ(t) ≍ t log(e + t) on (1,∞). Therefore, by the

above theorem we obtain that the Hilbert transform

H : M1,∞(R) → Mψ(R),

where ψ is as above, is bounded.
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Triangular truncation operator
Define the triangular truncation (with respect to a continuous chain) as usual: if the
operator A is an integral operator on the Hilbert space L2(a, b), −∞ ≤ a < b ≤ ∞,
with the integral kernel K , i.e.

(Af )(t) =

∫ b

a

K (t, s)f (s)ds, t > 0, f ∈ L2(a, b),

then T (A) is an integral operator with truncated integral kernel

((T (A))f )(t) =

∫ b

a

sgn(t − s)K (t, s)f (s)ds, t ∈ (a, b), f ∈ L2(a, b).

Strictly speaking, it is the operator P := id−T
2

which should be called (upper) triangular

truncation operator (and the operator id− P = id+T
2

is lower triangular truncation
operator). However, we ignore this difference and call both T and P the triangular
truncation operators. 19

19I.C. Gohberg and M.G. Krěin, Theory and Applications of Volterra operators on Hilbert spaces, Transl.
Math. Monogr., 24, Amer. Math. Soc., Providence, R.I., 1970.
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Discrete Calderón operator

Define the discrete version of the operator Sd : Λlog(Z+) → ℓ∞(Z+) by

(
Sdx

)
(n) :=

1

n + 1

n∑
k=0

x(k) +
+∞∑

k=n+1

x(k)

k
, x ∈ Λlog(Z+). (5)
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For an operator superficially similar to T , J. Arazy (see [20,Theorem 4.1]) characterized
all ideals E matching completely the above Boyd’s results for the case when the Boyd
indices of E are not trivial. However, even if E is an interpolation space for the couple
(Lp,Lq), 1 < p < q <∞, the techniques employed by Arazy, Gohberg and Krein, and
in many other relevant papers, do not yield insight into whether E(H) is the optimal
range space for the operator T restricted to E(H). Thus, finding the optimal range
space for the operator T is of particular interest even in the simplest case, namely when
the ideal E has non-trivial Boyd indices. 20

20J. Arazy, Some remarks on interpolation theorems and the boundedness of the triangular projection in
unitary matrix spaces, Integr. Equ. Oper. theory, 1:4 (1978), 453–495
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Problem

A classical Macaev’s result (see [21]) and the Gohberg-Krein Theorem suggest that the
natural receptacle for the operator T restricted to the trace class L1(H) is the
quasi-Banach ideal L1,∞(H) and this motivates our consideration of quasi-Banach ideals.

Problem

Given a symmetric quasi-Banach sequence space E = E (Z), determine the least
symmetric quasi-Banach sequence space F = F (Z) such that T : E(H) → F(H).

21

21V.I. Macaev, Volterra operators obtained from self-adjoint operators by perturbation, Dokl. Akad. Nauk
SSSR, 139 (1961), 810–813 (in Russian).
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Let H denote a fixed separable Hilbert space and let B(H) be the algebra of all linear
bounded operators on H . Let us denote by K (H) the ideal of compact operators on H
and s(A) :=

{
s(n,A)

}
n∈Z+

is the sequence of singular values of a compact operator A,

i.e. s(n,A) := λ(n, |A|), n ∈ Z+, (|A| := (A∗A)1/2).

Definition

Let X be a linear subset in B(H) equipped with a complete norm ∥ · ∥X . We say that X
is a symmetric operator space (in B(H)) if for A ∈ X and for every B ∈ B(H) with
s(n,B) ≤ s(n,A), n ∈ Z+, we have B ∈ X and ∥B∥X ≤ ∥A∥X .

Recall the construction of a symmetric operator space (or non-commutative symmetric
space) E(H).
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Let E be a symmetric (quasi-)Banach sequence space on Z+. Set

E(H) =
{
A ∈ K (H) : s(A) ∈ E (Z+)

}
.

We equip E(H) with a natural quasi-norm

∥A∥E(H) = ∥s(A)∥E(Z+), A ∈ E(H).

The following fundamental theorem was proved in the following theorem. It shows that
the (quasi-)norm introduced above is, in fact, a (quasi-)norm.

Theorem (Kalton, Sukochev, J. Reine Angew. Math., 2008)

Let E be a symmetric sequence space on Z+. Set

E(H) =
{
A ∈ K (H) : s(A) ∈ E (Z+)

}
.

Then, so defined (E(H), ∥ · ∥E(H)) is a symmetric operator space.

22
22F. Sukochev, Completeness of quasi-normed symmetric operator spaces, Indag. Math. (N.S.) 25:2 (2014),

376–388.Connection with the Triangular truncation operator 34/51



If E = ℓp(Z+), 1 ≤ p <∞, then we obtain

Lp(H) :=
{
A ∈ K (H) : s(A) ∈ ℓp(Z+)

}
,

which is so called Schatten-von Neumann class of all compact operators A : H → H
with finite norm

∥A∥Lp(H) :=
( ∞∑

k=1

s(k ,A)p
)1/p

.

If p = ∞, then we set L∞(H) := B(H) with the uniform norm, i.e. ∥A∥L∞(H) := ∥A∥,
A ∈ B(H). Moreover, when p = 2 the space L2(H) (usually it is called Hilbert-Schmidt
class) becomes Hilbert space with the inner product

< A,B >:= Tr(B∗A), A,B ∈ L2(H),

where B∗ is adjoint operator of B and Tr is the usual trace. The weak-L1 ideal L1,∞(H)
is defined as

L1,∞(H) := {A ∈ K (H) : s(A) ∈ ℓ1,∞(Z+)}.
Connection with the Triangular truncation operator 35/51



The Lorentz ideal Λφ(H) (see [23, Example 1.2.7, p. 25]) is

Λφ(H) := {A ∈ K (H) : s(A) ∈ Λφ(Z+)} .

If φ(t) := log(1 + t) (t > 0), then the corresponding Lorentz ideal Λlog(H) is defined by

Λlog(H) :=

{
A ∈ K (H) : ∥A∥Λlog(H) =

∞∑
n=0

s(n,A)

n + 1
<∞

}
.

This ideal contains all Schatten-von Neumann classes Lp(H) (1 ≤ p <∞). It
corresponds to the double index (∞, 1) on the Lorentz scale and is known as the
Macaev ideal (see [24]).
23 24

23S. Lord, F. Sukochev, D. Zanin, Singular traces. Theory and applications, De Gruyter Studies in
Mathematics, 46. De Gruyter, Berlin, 2013.

24I.C. Gohberg and M.G. Krěin, Introduction to the theory of linear non-selfadjoint operators, Transl. Math.
Monogr., 18, Amer. Math. Soc., Providence, R.I., 1969.
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Abstarct operator T

Theorem (Sukochev/T/Zanin, JFA, 2019)

Let T : L2(H) → L2(H) be a self-adjoint contraction. Suppose that T admits a
bounded linear extension from L1(H) to L1,∞(H), that is

∥T ∥L1(H)→L1,∞(H) ≲ 1. (6)

Then
s(T (A)) ≤ cabsSd(s(A)), A ∈ Λlog(H),

where Sd is the discrete operator defined in (5).
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Theorem (Sukochev/T/Zanin, JFA, 2019)

For all V ∈ L1(H), we have

∥T (V )∥L1,∞(H) ≤ 20∥V ∥L1(H). (7)
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Theorem (Sukochev/T/Zanin, JFA, 2019)

Let E (Z+) ⊂ Λlog(Z+) be a quasi-Banach symmetric space of sequences and E(H) be
the corresponding non-commutative quasi-Banach ideal. The following are equivalent

(i) Sd : E (Z+) → F (Z+);

(ii) T : E(H) → F(H).
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First restatement of the motivational question

Question

For which functions f we have that f (A)− f (B) ∈ L1 whenever are self-adjoint
operators on H such that A− B ∈ L1, and, in addition,

∥f (A)− f (B)∥L1 ≤ const(f )∥A− B∥L1?

Such functions f are called operator Lipshitz functions from L1 to L1.
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M.G. Krein’s Conjecture

Considering the special case, when operators A,B are operators on one-dimensional
Hilbert space C, we see that if a function f is operator Lipschitz, then f is necessarily
Lipschitz function, and therefore, the following conjecture arises naturally.
Conjecture (M.G. Krein 1964) Every Lipschitz functions is operator Lipschitz
function from L1 to L1.
However, this conjecture fails.
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Counterexamples

Theorem (Farforovskaya 1972)

There exists a Lipschitz function f and A,B with A− B ∈ L1 such that f (A)− f (B)
does not belong to L1

Theorem (Davies, 1988)

Given d ∈ N, there exist A = A∗,B = B∗ ∈ L∞(C2d) such that

∥|A| − |B |∥L1 ≥ const · log(d) · ∥A− B∥L1 .
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Lipschitz estimates in Lp(H), 1 < p <∞

Theorem (Solomyak 1967, Davies 1988)

If A,B are linear bounded operators on H and if A− B ∈ Lp, 1 < p <∞, then
|A| − |B | ∈ Lp and

∥|A| − |B |∥Lp ≤ cp∥A− B∥Lp .

Here, cp depends only on p.

Theorem (Potapov-Sukochev, Acta Math. 2011)

Let f be a Lipschitz function on R. Then there is a constant cp > 0 such that

∥f (A)− f (B)∥Lp ≤ cp∥A− B∥Lp

holds for all A = A∗,B = B∗ ∈ Lp(H) if and only if 1 < p <∞.
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Lipschitz estimates in L1(H).

In 2009, Nazarov and Peller proved the following assertion

Theorem (Nazarov-Peller, C. R. Math. Acad. Sci. Paris, 2009)

If A− B is rank one operator, then f (A)− f (B) ∈ L1,∞(H) for every Lipschitz function
f .

They formulated the conjecture below.
Conjecture. Every Lipschitz functions is operator Lipschitz function from L1(H) to
L1,∞(H), that is f (A)− f (B) ∈ L1,∞(H) whenever A− B ∈ L1(H).
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Partial positive result

Theorem (Caspers-Potapov-Sukochev-Zanin, JOT, 2015)

If A,B are linear bounded operators on H and if A− B ∈ L1(H), then
|A| − |B | ∈ L1,∞(H) and

∥|A| − |B |∥L1,∞ ≤
(
34 +

2560e

π

)
∥A− B∥L1 .
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Complete resolution of Nazarov-Peller conjecture

Theorem (Caspers-Potapov-Sukochev-Zanin, Amer.J.Math. 2019)

If A,B are self-adjoint bounded operators on H and if A− B ∈ L1(H), then for any
Lipschitz function f we have f (A)− f (B) ∈ L1,∞(H) and

∥f (A)− f (B)∥L1,∞ ≤ cabs∥f ′∥∞∥A− B∥L1 .
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Some new directions

Question

Take an ideal E(H). Describe the optimal ideal F(H) such that every Lipschitz function
f is operator Lipschitz from E(H) into F(H).

This is a generalization of the case when E(H) = L1(H) and F(H) = L1,∞(H).

Theorem (Caspers-Potapov-Sukochev-Zanin, JOT, 2015)

If A,B are compact operators on H such that A−B ∈ L1(H), then |A| − |B | ∈ (L1,∞)0.

Here, the ideal (L1,∞)0 in B(H) is defined by setting

(L1,∞)0 = {A ∈ L1,∞(H) : ks(k ,A) → 0 as k → ∞}.

This ideal coincides with the closure of the ideal of all finite rank operators in L1,∞ and
is commonly called the separable part of L1,∞.
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Theorem (Sukochev/T/Zanin, JFA, 2019)

Let E (Z+) ⊂ Λlog(Z+) be a quasi-Banach symmetric space of sequences and E(H) be
the corresponding non-commutative quasi-Banach ideal. The following are equivalent

(i) Sd : E (Z+) → F (Z+);

(ii) T : E(H) → F(H).

Moreover, if any one of above conditions holds, then for all self-adjoint operators
A,B ∈ B(H) such that A− B ∈ E(H) and for every Lipschitz function f defined on R,
we have

∥f (A)− f (B)∥F(H) ≤ cF ,E∥f ′∥L∞(R)∥A− B∥E(H).
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Theorem (Sukochev/T/Zanin/, Unpublished)

Let φ be an increasing concave function on [0,∞) such that ϕ(0+) = 0 and let ψ be
the function as above. Suppose Mφ(Z+) ⊂ Λlog(Z+). The following are equivalent:

(i) T : Mφ(H) → Mψ(H);

(ii) Sd : Mφ(Z+) → Mψ(Z+).

If any one of above conditions holds, then for all self-adjoint operators A,B ∈ B(H)
such that A− B ∈ Mφ(H) and for every Lipschitz function f : R → R, we have

∥f (A)− f (B)∥Mψ(H) ≤ cφ,ψ∥f ′∥L∞(R)∥A− B∥Mφ(H).

Another application of these results to boundedness of the higher dimensional Hilbert
operator can be found from the recently accepted paper 25

25F. Sukochev, K. Tulenov, and D. Zanin. A weak type (1, 1) estimate for the Hilbert operator in
higher-dimensional setting. Studia Mathematica.,(2022), 1–16. DOI:10.4064/sm201201-4-11.
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Open questions

Question

What is the least ideal F(H) such that

∥f (A)− f (B)∥F(H) ≤ cF ,E∥A− B∥E(H)?

Here, A,B are self-adjoint bounded operators such that A− B ∈ E(H).

In Particular,

Question

What is the least ideal F(H) such that

∥f (A)− f (B)∥F(H) ≤ cF ,E∥A− B∥L1(H)?

Here, A,B are self-adjoint bounded operators such that A− B ∈ L1(H).
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Thank you for your attention !


	Boundedness of the Hilbert transform on Lp (1<p<) space
	Boundedness of the Hilbert transform on p (1<p<) space
	Boundedness of the Hilbert transform from one symmetric space into itself
	Boundedness of the Hilbert transform from one symmetric space into another
	Optimal range of the Hilbert transform in Lorentz spaces
	Optimal range of the Hilbert transform in Marcinkiewicz spaces
	Connection with the Triangular truncation operator
	Applications to operator Lipschitz estimates

