Weak compactness in variable exponent Lebesgue spaces

Mauro Sanchiz Alonso

Joint work with **Francisco L. Hernández** and **César Ruiz** UNIVERSIDAD COMPLUTENSE DE MADRID

WORKSHOP ON BANACH SPACES AND BANACH LATTICES II, ICMAT May 9-13, 2022

Variable Lebesgue spaces

Let (Ω, μ) be a finite separable non-atomic measure space.

Definition

Given $p(\cdot): \Omega \to [1, \infty)$, the variable exponent Lebesgue space $L^{p(\cdot)}(\Omega)$ is the Banach function space consisting of all $f \in L_0(\Omega)$ with

$$\int_{\Omega} \left| rac{f(t)}{r}
ight|^{
ho(t)} dt < \infty, ext{ for some } r > 0,$$

with the Luxemburg norm

$$\|f\|_{p(\cdot)} := \inf\left\{r > 0: \int_{\Omega} \left|\frac{f(t)}{r}\right|^{p(t)} dt \leq 1\right\}.$$

Variable Lebesgue spaces

Let (Ω, μ) be a finite separable non-atomic measure space.

Definition

Given $p(\cdot): \Omega \to [1, \infty)$, the variable exponent Lebesgue space $L^{p(\cdot)}(\Omega)$ is the Banach function space consisting of all $f \in L_0(\Omega)$ with

$$\int_{\Omega} \left| \frac{f(t)}{r} \right|^{\rho(t)} dt < \infty, \text{ for some } r > 0,$$

with the Luxemburg norm

$$\|f\|_{p(\cdot)} := \inf\left\{r > 0: \int_{\Omega} \left|\frac{f(t)}{r}\right|^{p(t)} dt \leq 1\right\}.$$

 $p^+ := ess \sup_{t \in \Omega} p(t)$ and $p^- := ess \inf_{t \in \Omega} p(t)$.

Also, the essential range of $p(\cdot)$ is $R_{p(\cdot)} := \{q \in [1,\infty) \colon \forall \varepsilon > 0, \mu (p^{-1}(q-\varepsilon, q+\varepsilon)) > 0\}.$

Definition

A Musielak-Orlicz function is a measurable function $\Phi: \Omega \times [0, \infty) \rightarrow [0, \infty)$ such that $\Phi(t, \cdot)$ is an Orlicz function for every $t \in \Omega$.

The Musielak-Orlicz space is the space of all $f \in L_0(\Omega)$ with

$$\int_{\Omega} \Phi\left(t, \left|\frac{f(t)}{r}\right|\right) dt < \infty, \text{ for some } r > 0,$$

with the Luxemburg norm

$$\|f\|_{\Phi} = \inf\left\{r > 0: \int_{\Omega} \Phi\left(t, \left|\frac{f(t)}{r}\right|\right) dt \leq 1\right\}.$$

Definition

A Musielak-Orlicz function is a measurable function $\Phi: \Omega \times [0, \infty) \rightarrow [0, \infty)$ such that $\Phi(t, \cdot)$ is an Orlicz function for every $t \in \Omega$.

The Musielak-Orlicz space is the space of all $f \in L_0(\Omega)$ with

$$\int_{\Omega} \Phi\left(t, \left|\frac{f(t)}{r}\right|\right) dt < \infty, \text{ for some } r > 0,$$

with the Luxemburg norm

$$\|f\|_{\Phi} = \inf\left\{r > 0 \colon \int_{\Omega} \Phi\left(t, \left|\frac{f(t)}{r}\right|\right) dt \le 1\right\}.$$

- If Φ(t, x) = φ(x), then L^Φ(Ω) = L^φ(Ω) is an Orlicz space.
 If Φ(t, x) = x^{p(t)}, then L^Φ(Ω) = L^{p(·)}(Ω) is a variable Lebesgue
- If $\Phi(t, x) = x^{p(t)}$, then $L^{\Phi}(\Omega) = L^{p(\cdot)}(\Omega)$ is a variable Lebesgue space.

Properties of $L^{p(\cdot)}(\Omega)$

- $L^{p(\cdot)}(\Omega)$ is separable if and only if $p^+ < \infty$.
- If $p^+ < \infty$, then $\left(L^{p(\cdot)}(\Omega)\right)^* = L^{p^*(\cdot)}(\Omega)$, where $\frac{1}{p(t)} + \frac{1}{p^*(t)} = 1$, μ -a.e.
- $L^{p(\cdot)}(\Omega)$ is reflexive if and only if $1 < p^{-} \le p^{+} < \infty$.

• If $1 < p^- \le p^+ < \infty$, every bounded subset $S \subset L^{p(\cdot)}(\Omega)$ is relatively weakly compact.

• Variable Lebesgue spaces are not rearrengement invariant, nor symmetric.

• ℓ_r is lattice embedded in $L^{p(\cdot)}(\Omega) \Leftrightarrow r \in R_{p(\cdot)}$.

• Which subsets $S \subset L^{p(\cdot)}(\Omega)$ are weakly compact for variable exponents with $p^- = 1$?

Weak compactness in $L_1(\Omega)$

Theorem (Dunford-Pettis)

Let $S \subset L_1(\Omega)$ be bounded. Then, the following are equivalent:

- S is relatively weakly compact.
- S is equi-integrable.
- S does not contain a basic sequence equivalent to the canonical basis of l₁.

Recall that a bounded subset $S \subset L_1(\Omega)$ is equi-integrable if

$$\lim_{\mu(E)\to 0}\sup_{f\in S}\int_E |f(t)|dt=0.$$

Weak compactness in $L_1(\Omega)$

Theorem (Dunford-Pettis)

Let $S \subset L_1(\Omega)$ be bounded. Then, the following are equivalent:

- *S* is relatively weakly compact.
- S is equi-integrable.
- S does not contain a basic sequence equivalent to the canonical basis of l₁.

Recall that a bounded subset $S \subset L_1(\Omega)$ is equi-integrable if

$$\lim_{\mu(E)\to 0}\sup_{t\in S}\int_{E}|f(t)|dt=0.$$

Theorem (De La Vallée Poussin)

A subset $S \in L_1(\Omega)$ is equi-integrable $\Leftrightarrow S$ is norm bounded in some Orlicz space $L^{\varphi}(\Omega)$ for a N-function φ , i.e. with

$$\lim_{x\to\infty}\frac{\varphi(x)}{x}=\infty.$$

Equi-integrability in $L^{p(\cdot)}(\Omega)$

 $\mathcal{S} \subset L^{p(\cdot)}(\Omega)$ is equi-integrable \Leftrightarrow

$$\lim_{x\to\infty}\sup_{f\in S}\int_{\{|f|>x\}}|f(t)|^{p(t)}d\mu=0.$$

Proposition

A bounded subset $S \subset L^{p(\cdot)}(\Omega)$ is equi-integrable $\Leftrightarrow S$ is norm bounded in the Musielak-Orlicz space $L^{\Phi}(\Omega)$, where $\Phi(t, x) = (\varphi(x))^{p(t)}$ for some N-function φ .

Equi-integrability in $L^{p(\cdot)}(\Omega)$

 $\mathcal{S} \subset L^{p(\cdot)}(\Omega)$ is equi-integrable \Leftrightarrow

$$\lim_{x\to\infty}\sup_{f\in S}\int_{\{|f|>x\}}|f(t)|^{p(t)}d\mu=0.$$

Proposition

A bounded subset $S \subset L^{p(\cdot)}(\Omega)$ is equi-integrable $\Leftrightarrow S$ is norm bounded in the Musielak-Orlicz space $L^{\Phi}(\Omega)$, where $\Phi(t, x) = (\varphi(x))^{p(t)}$ for some N-function φ .

• The inclusion $L^{q(\cdot)}(\Omega) \subset L^{p(\cdot)}(\Omega)$ is *L*-weakly compact \Leftrightarrow there exists an *N*-function φ with $L^{q(\cdot)}(\Omega) \subset L^{\Phi}(\Omega)$, where Φ is the Musielak-Orlicz function $\Phi(t, x) = (\varphi(x))^{p(t)}$.

• If $ess \inf(p(x) - q(x)) = \delta > 0$, then the inclusion $L^{p(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega)$ is *L*-weakly compact.

Weak compactness in Orlicz spaces

Theorem

A subset $S \subset L^{\varphi}(\Omega)$ for a N-function φ satisfying the Δ_2 -condition is relatively weakly compact \Leftrightarrow for every $g \in L^{\varphi^*}(\Omega)$,

$$\lim_{\mu(E)\to 0} \sup_{f\in S} \int_E |f(t)\cdot g(t)| dt = 0.$$

Weak compactness in Orlicz spaces

Theorem

A subset $S \subset L^{\varphi}(\Omega)$ for a N-function φ satisfying the Δ_2 -condition is relatively weakly compact \Leftrightarrow for every $g \in L^{\varphi^*}(\Omega)$,

$$\lim_{\mu(E)\to 0} \sup_{f\in S} \int_E |f(t)\cdot g(t)| dt = 0.$$

Theorem (Ândo)

A subset $S \subset L^{\varphi}(\Omega)$ for a N-function φ satisfying the Δ_2 -condition is relatively weakly compact \Leftrightarrow it is norm bounded and

$$\lim_{\lambda\to 0} \sup_{f\in S} \frac{1}{\lambda} \int_{\Omega} \varphi\left(|\lambda \cdot f(t)| \right) dt = 0.$$

Weak compactness in non reflexive $L^{p(\cdot)}(\Omega)$ -spaces

Denote $\Omega_1 := p^{-1}(\{1\}).$

Theorem

Let $L^{p(\cdot)}(\Omega)$ with $p^+ < \infty$ and $\mu(\Omega_1) = 0$. A subset $S \subset L^{p(\cdot)}(\Omega)$ is relatively weakly compact \Leftrightarrow it is norm bounded and

$$\lim_{\lambda\to 0}\sup_{f\in S}\frac{1}{\lambda}\int_{\Omega}|\lambda\cdot f(t)|^{p(t)}dt=0.$$

Weak compactness in non reflexive $L^{p(\cdot)}(\Omega)$ -spaces

Denote $\Omega_1 := p^{-1}(\{1\}).$

Theorem

Let $L^{p(\cdot)}(\Omega)$ with $p^+ < \infty$ and $\mu(\Omega_1) = 0$. A subset $S \subset L^{p(\cdot)}(\Omega)$ is relatively weakly compact \Leftrightarrow it is norm bounded and

$$\lim_{\lambda\to 0}\sup_{t\in S}\frac{1}{\lambda}\int_{\Omega}|\lambda\cdot f(t)|^{p(t)}dt=0.$$

Proposition

Under the same hypothesis, a sequence (f_n) in $L^{p(\cdot)}(\Omega)$ converges weakly to $f \in L^{p(\cdot)}(\Omega) \Leftrightarrow$ (*i*) $\lim_{n} \int_A f_n dt = \int_A f dt$ for each measurable $A \subset \Omega$, and (*ii*) $\lim_{\lambda \to 0} \sup_n \frac{1}{\lambda} \int_{\Omega} |\lambda(f_n - f)|^{p(t)} dt = 0.$

Consequences

Proposition

The inclusion $L^{q(\cdot)}(\Omega) \subset L^{p(\cdot)}(\Omega)$ is weakly compact \Leftrightarrow

$$\lim_{\lambda \to 0} \sup_{\|f\|_{q(\cdot)} \le 1} \frac{1}{\lambda} \int_{\Omega \setminus \Omega_1} |\lambda f(t)|^{p(t)} d\mu = 0$$

æ

- ∢ ⊒ →

Proposition

The inclusion $L^{q(\cdot)}(\Omega) \subset L^{p(\cdot)}(\Omega)$ is weakly compact \Leftrightarrow

$$\lim_{\lambda \to 0} \sup_{\|f\|_{q(\cdot)} \le 1} \frac{1}{\lambda} \int_{\Omega \setminus \Omega_1} |\lambda f(t)|^{p(t)} d\mu = 0$$

Theorem

 $L^{p(\cdot)}(\Omega)$ is weakly Banach-Saks $\Leftrightarrow p^+ < \infty$.

X is weakly Banach-Saks if every sequence (x_n) weakly convergent to $x \in X$ has a Cèsaro convergent subsequence (x_{n_k}) , i.e. such that

$$\lim_{k\to\infty}\left\|\frac{x_{n_1}+\ldots+x_{n_k}}{k}-x\right\|_X=0$$

◇□> ▲□> ▲回> ▲回> ▲□>

The case of σ -finite measure space

For σ -finite separable non-atomic measures (Ω, μ), again:

Theorem

Let $L^{p(\cdot)}(\Omega)$ with $p^+ < \infty$ and $\mu(\Omega_1) = 0$. A subset $S \subset L^{p(\cdot)}(\Omega)$ is relatively weakly compact \Leftrightarrow it is norm bounded and

$$\lim_{\lambda\to 0} \sup_{f\in S} \frac{1}{\lambda} \int_{\Omega} |\lambda \cdot f(t)|^{p(t)} dt = 0.$$

The case of σ -finite measure space

For σ -finite separable non-atomic measures (Ω, μ), again:

Theorem

Let $L^{p(\cdot)}(\Omega)$ with $p^+ < \infty$ and $\mu(\Omega_1) = 0$. A subset $S \subset L^{p(\cdot)}(\Omega)$ is relatively weakly compact \Leftrightarrow it is norm bounded and

$$\lim_{\lambda\to 0}\sup_{f\in S}\frac{1}{\lambda}\int_{\Omega}|\lambda\cdot f(t)|^{p(t)}dt=0.$$

Theorem

Let (Ω, μ) be a non-atomic separable σ -finite measure space. Then, $L^{p(\cdot)}(\Omega)$ is isomodular lattice isomorphic to some space $L^{\widehat{p}(\cdot)}(0, 1)$, where $R_{p(\cdot)} = R_{\widehat{p}(\cdot)}$.

Some bibliography

• T. Ândo. *Weakly compact sets in Orlicz spaces*. Canadian J. Math, 1962.

• P. Gorka, A. Mazios. Almost everything you need to know about relatively compact sets in variable Lebesgue spaces. J. Func. Analysis, 2015.

• F. L. Hernández, C. Ruiz, M. Sanchiz. *Weak compactness in variable exponent spaces*. J. Func. Analysis, 2021.

• F. L. Hernández, C. Ruiz, M. Sanchiz. *Weak compactness and representation in variable exponent spaces of infinite measure.* Preprint, 2021.

THANKS YOU VERY MUCH