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Variable Lebesgue spaces

Let (Ω, µ) be a finite separable non-atomic measure space.

Definition

Given p(·) : Ω → [1,∞), the variable exponent Lebesgue space
Lp(·)(Ω) is the Banach function space consisting of all f ∈ L0(Ω) with∫

Ω

∣∣∣∣ f (t)r

∣∣∣∣p(t) dt < ∞, for some r > 0,

with the Luxemburg norm

∥f∥p(·) := inf

{
r > 0 :

∫
Ω

∣∣∣∣ f (t)r

∣∣∣∣p(t) dt ≤ 1

}
.

p+ := ess supt∈Ω p(t) and p− := ess inf t∈Ω p(t).

Also, the essential range of p(·) is
Rp(·) :=

{
q ∈ [1,∞) : ∀ε > 0, µ

(
p−1(q − ε,q + ε)

)
> 0

}
.
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Musielak-Orlicz spaces

Definition
A Musielak-Orlicz function is a measurable function
Φ : Ω× [0,∞) → [0,∞) such that Φ(t , ·) is an Orlicz function for every
t ∈ Ω.
The Musielak-Orlicz space is the space of all f ∈ L0(Ω) with∫

Ω

Φ

(
t ,
∣∣∣∣ f (t)r

∣∣∣∣)dt < ∞, for some r > 0,

with the Luxemburg norm

∥f∥Φ = inf

{
r > 0 :

∫
Ω

Φ

(
t ,
∣∣∣∣ f (t)r

∣∣∣∣)dt ≤ 1
}
.

• If Φ(t , x) = φ(x), then LΦ(Ω) = Lφ(Ω) is an Orlicz space.
• If Φ(t , x) = xp(t), then LΦ(Ω) = Lp(·)(Ω) is a variable Lebesgue
space.
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Properties of Lp(·)(Ω)

• Lp(·)(Ω) is separable if and only if p+ < ∞.

• If p+ < ∞, then
(
Lp(·)(Ω)

)∗
= Lp∗(·)(Ω), where 1

p(t) +
1

p∗(t) = 1, µ-a.e.

• Lp(·)(Ω) is reflexive if and only if 1 < p− ≤ p+ < ∞.

• If 1 < p− ≤ p+ < ∞, every bounded subset S ⊂ Lp(·)(Ω) is
relatively weakly compact.

• Variable Lebesgue spaces are not rearrengement invariant, nor
symmetric.

• ℓr is lattice embedded in Lp(·)(Ω) ⇔ r ∈ Rp(·).

• Which subsets S ⊂ Lp(·)(Ω) are weakly compact for variable
exponents with p− = 1?



Weak compactness in L1(Ω)

Theorem (Dunford-Pettis)

Let S ⊂ L1(Ω) be bounded. Then, the following are equivalent:
• S is relatively weakly compact.
• S is equi-integrable.
• S does not contain a basic sequence equivalent to the canonical

basis of ℓ1.

Recall that a bounded subset S ⊂ L1(Ω) is equi-integrable if

lim
µ(E)→0

sup
f∈S

∫
E
|f (t)|dt = 0.

Theorem (De La Vallée Poussin)

A subset S ∈ L1(Ω) is equi-integrable ⇔ S is norm bounded in some
Orlicz space Lφ(Ω) for a N-function φ, i.e. with

lim
x→∞

φ(x)
x

= ∞.
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Equi-integrability in Lp(·)(Ω)

S ⊂ Lp(·)(Ω) is equi-integrable ⇔

lim
x→∞

sup
f∈S

∫
{|f |>x}

|f (t)|p(t)dµ = 0.

Proposition

A bounded subset S ⊂ Lp(·)(Ω) is equi-integrable ⇔ S is norm
bounded in the Musielak-Orlicz space LΦ(Ω), where
Φ(t , x) = (φ(x))p(t) for some N-function φ.

• The inclusion Lq(·)(Ω) ⊂ Lp(·)(Ω) is L-weakly compact ⇔ there
exists an N-function φ with Lq(·)(Ω) ⊂ LΦ(Ω), where Φ is the
Musielak-Orlicz function Φ(t , x) = (φ(x))p(t).

• If ess inf(p(x)− q(x)) = δ > 0, then the inclusion Lp(·)(Ω) ⊂ Lq(·)(Ω)
is L-weakly compact.
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Weak compactness in Orlicz spaces

Theorem

A subset S ⊂ Lφ(Ω) for a N-function φ satisfying the ∆2-condition is
relatively weakly compact ⇔ for every g ∈ Lφ∗

(Ω),

lim
µ(E)→0

sup
f∈S

∫
E
|f (t) · g(t)|dt = 0.

Theorem (Ândo)

A subset S ⊂ Lφ(Ω) for a N-function φ satisfying the ∆2-condition is
relatively weakly compact ⇔ it is norm bounded and

lim
λ→0

sup
f∈S

1
λ

∫
Ω

φ (|λ · f (t)|)dt = 0.
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Weak compactness in non reflexive Lp(·)(Ω)-spaces

Denote Ω1 := p−1({1}).

Theorem

Let Lp(·)(Ω) with p+ < ∞ and µ(Ω1) = 0. A subset S ⊂ Lp(·)(Ω) is
relatively weakly compact ⇔ it is norm bounded and

lim
λ→0

sup
f∈S

1
λ

∫
Ω

|λ · f (t)|p(t)dt = 0.

Proposition

Under the same hypothesis, a sequence (fn) in Lp(·)(Ω) converges
weakly to f ∈ Lp(·)(Ω) ⇔
(i) limn

∫
A fn dt =

∫
A f dt for each measurable A ⊂ Ω, and

(ii) limλ→0 supn
1
λ

∫
Ω
|λ(fn − f )|p(t) dt = 0.
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Consequences

Proposition

The inclusion Lq(·)(Ω) ⊂ Lp(·)(Ω) is weakly compact ⇔

lim
λ→0

sup
∥f∥q(·)≤1

1
λ

∫
Ω\Ω1

|λf (t)|p(t)dµ = 0

Theorem

Lp(·)(Ω) is weakly Banach-Saks ⇔ p+ < ∞.

X is weakly Banach-Saks if every sequence (xn) weakly convergent
to x ∈ X has a Cèsaro convergent subsequence (xnk ), i.e. such that

lim
k→∞

∥∥∥∥xn1 + ...+ xnk

k
− x

∥∥∥∥
X
= 0.
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The case of σ-finite measure space

For σ-finite separable non-atomic measures (Ω, µ), again:

Theorem

Let Lp(·)(Ω) with p+ < ∞ and µ(Ω1) = 0. A subset S ⊂ Lp(·)(Ω) is
relatively weakly compact ⇔ it is norm bounded and

lim
λ→0

sup
f∈S

1
λ

∫
Ω

|λ · f (t)|p(t)dt = 0.

Theorem

Let (Ω, µ) be a non-atomic separable σ-finite measure space. Then,
Lp(·)(Ω) is isomodular lattice isomorphic to some space Lp̂(·)(0,1),
where Rp(·) = Rp̂(·).
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