C(K)-spaces in the twisted realm

Alberto Salguero Alarcón

University of Extremadura

Workshop on Banach Spaces and Banach Lattices II

9th - 13th May 2022

This activity has been supported by projects PID-2019-103961GB-C21 funded by MCIN/AEI/10.13039/501100011033. by an FPU Grant FPU18-00990 funded by MCIN/AEI/10.13039/501100011033 and FSE Invierte en tu futuro, and by the project IB20038 funded by Junta de Extremadura.

Consejería de Economía, Ciencia y Agenda Digital < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A. Salguero-Alarcón

2 A counterexample for the complemented subspace problem

Spaces of continuous functions

• K compact Hausdorff space.

$$C(K) = \{f : K \to \mathbb{R} \text{ continuous}\} \quad , \quad \|f\| = \max_{t \in K} |f(t)|$$

Spaces of continuous functions

• K compact Hausdorff space.

$$C(K) = \{f : K o \mathbb{R} \text{ continuous}\} \quad , \quad \|f\| = \max_{t \in K} |f(t)|$$

• Riesz representation theorem:

 $C(K)^* = M(K) = \{$ regular Borel signed measures on $K \}$

Spaces of continuous functions

• K compact Hausdorff space.

$$C(K) = \{f : K o \mathbb{R} \text{ continuous}\} \quad , \quad \|f\| = \max_{t \in K} |f(t)|$$

• Riesz representation theorem:

 $C(K)^* = M(K) = \{$ regular Borel signed measures on $K \}$

•
$$M_1(K) = (B_{M(K)}, w^*).$$

Spaces of continuous functions

• K compact Hausdorff space.

$$C(K) = \{f : K
ightarrow \mathbb{R} ext{ continuous}\} \quad, \quad \|f\| = \max_{t \in K} |f(t)|$$

• Riesz representation theorem:

$$C(K)^* = M(K) = \{ \text{regular Borel signed measures on } K \}$$

•
$$M_1(K) = (B_{M(K)}, w^*).$$

Definition

A C-space is a Banach space which is isomorphic to a space C(K) for some compact Hausdorff space K.

Exact sequences

$$0 \longrightarrow Y \stackrel{i}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

A. Salguero-Alarcón C(K)-spaces

æ

æ

A ■

Exact sequences

$$0 \longrightarrow Y \stackrel{i}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

• *i* is an into isomorphism.

æ

Exact sequences

$$0 \longrightarrow Y \stackrel{i}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

- *i* is an into isomorphism.
- q is a quotient operator.

Exact sequences

$$0 \longrightarrow Y \stackrel{i}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

- *i* is an into isomorphism.
- q is a quotient operator.
- $Z/i(Y) \simeq X$.

Exact sequences

$$0 \longrightarrow Y \stackrel{i}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

- *i* is an into isomorphism.
- q is a quotient operator.
- $Z/i(Y) \simeq X$.

We say Z is a *twisted sum* of Y and X.

Exact sequences

$$0 \longrightarrow Y \stackrel{i}{\longrightarrow} Z \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

- *i* is an into isomorphism.
- q is a quotient operator.
- $Z/i(Y) \simeq X$.

We say Z is a *twisted sum* of Y and X.

Definition

A twisted sum Z is *trivial* if i(Y) is complemented in Z.

$$0 \longrightarrow Y \stackrel{i}{\longrightarrow} Y \oplus X \stackrel{q}{\longrightarrow} X \longrightarrow 0$$

The principal actor

Alexandroff-Urysohn compacta:

$$K_{\mathcal{A}} = \mathbb{N} \cup \{A : A \in \mathcal{A}\} \cup \{\infty\}$$

The principal actor

Alexandroff-Urysohn compacta:

$$K_{\mathcal{A}} = \mathbb{N} \cup \{A : A \in \mathcal{A}\} \cup \{\infty\}$$

 $\ensuremath{\mathbb{B}}$ If $|\mathcal{A}|$ is uncountable, there is a non-trivial exact sequence

$$0 \longrightarrow c_0 \longrightarrow C_0(\mathcal{K}_{\mathcal{A}}) \longrightarrow c_0(\mathcal{A}) \longrightarrow 0$$

Spaces of ultrafilters

æ

æ

⊸₽►

Spaces of ultrafilters

Let \mathfrak{B} be a subalgebra of $\mathcal{P}(\mathbb{N})$.

æ

Spaces of ultrafilters

Let \mathfrak{B} be a subalgebra of $\mathcal{P}(\mathbb{N})$.

Definition

An *ultrafilter* on \mathfrak{B} is a family \mathcal{F} of elements of \mathfrak{B} such that:

Spaces of ultrafilters

Let \mathfrak{B} be a subalgebra of $\mathcal{P}(\mathbb{N})$.

Definition

An *ultrafilter* on \mathfrak{B} is a family $\mathcal F$ of elements of \mathfrak{B} such that:

1. $\mathbb{N} \in \mathcal{F}$.

Spaces of ultrafilters

Let \mathfrak{B} be a subalgebra of $\mathcal{P}(\mathbb{N})$.

Definition

An *ultrafilter* on \mathfrak{B} is a family $\mathcal F$ of elements of \mathfrak{B} such that:

- 1. $\mathbb{N} \in \mathcal{F}$.
- 2. $A \in \mathcal{F}, B \supseteq A \Rightarrow B \in \mathcal{F}.$

Spaces of ultrafilters

Let \mathfrak{B} be a subalgebra of $\mathcal{P}(\mathbb{N})$.

Definition

An *ultrafilter* on \mathfrak{B} is a family $\mathcal F$ of elements of \mathfrak{B} such that:

- 1. $\mathbb{N} \in \mathcal{F}$.
- 2. $A \in \mathcal{F}, B \supseteq A \Rightarrow B \in \mathcal{F}.$
- 3. $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$.

Spaces of ultrafilters

Let \mathfrak{B} be a subalgebra of $\mathcal{P}(\mathbb{N})$.

Definition

An *ultrafilter* on \mathfrak{B} is a family \mathcal{F} of elements of \mathfrak{B} such that:

- 1. $\mathbb{N} \in \mathcal{F}$.
- 2. $A \in \mathcal{F}, B \supseteq A \Rightarrow B \in \mathcal{F}.$
- 3. $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$.
- **4.** $A_1 \cup ... \cup A_n \in \mathcal{F} \Rightarrow \exists i \in \{1, ..., n\} : A_i \in \mathcal{F}$

Spaces of ultrafilters

Let \mathfrak{B} be a subalgebra of $\mathcal{P}(\mathbb{N})$.

Definition

An *ultrafilter* on \mathfrak{B} is a family \mathcal{F} of elements of \mathfrak{B} such that:

- 1. $\mathbb{N} \in \mathcal{F}$.
- 2. $A \in \mathcal{F}, B \supseteq A \Rightarrow B \in \mathcal{F}.$
- 3. $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$.
- **4.** $A_1 \cup ... \cup A_n \in \mathcal{F} \Rightarrow \exists i \in \{1, ..., n\} : A_i \in \mathcal{F}$

Notation: $ult(\mathfrak{B}) = \{ultrafilters \text{ on } \mathfrak{B}\}$ is the Stone space associated to \mathfrak{B} .

$$\widehat{B} = \{ p \in \mathsf{ult}(\mathfrak{B}) : B \in p \}, \ B \in \mathfrak{B}$$

Pocket dictionary

A. Salguero-Alarcón C(K)-spaces

æ

æ

Pocket dictionary

 $\circledast \ \mbox{ If } {\mathcal A} \mbox{ is an almost-disjoint family, then }$

 $K_{\mathcal{A}} = \mathsf{ult}(\mathfrak{A})$

where ${\mathfrak A}$ is the subalgebra generated by ${\mathcal A}$ and finite sets of ${\mathbb N}.$

Pocket dictionary

 $\ensuremath{\mathfrak{B}}$ If $\ensuremath{\mathcal{A}}$ is an almost-disjoint family, then

 $K_{\mathcal{A}} = \mathsf{ult}(\mathfrak{A})$

where ${\mathfrak A}$ is the subalgebra generated by ${\mathcal A}$ and finite sets of ${\mathbb N}.$

 $\mathcal{A} \text{ almost disjoint family } \iff \mathfrak{A} \text{ subalgebra generated by } \mathcal{A} \\ \text{ and finite sets }$

Pocket dictionary

 $\ensuremath{\mathfrak{B}}$ If $\ensuremath{\mathcal{A}}$ is an almost-disjoint family, then

 $K_{\mathcal{A}} = \mathsf{ult}(\mathfrak{A})$

where ${\mathfrak A}$ is the subalgebra generated by ${\mathcal A}$ and finite sets of ${\mathbb N}.$

 $\mathcal{A} \text{ almost disjoint family } \iff \mathfrak{A} \text{ subalgebra generated by } \mathcal{A} \\ \text{ and finite sets }$

 $K_{\mathcal{A}} \iff \operatorname{ult}(\mathfrak{A})$

The complemented subspace problem

A. Salguero-Alarcón C(K)-spaces

The complemented subspace problem

☞ Is every complemented subspace of a *C*-space again a *C*-space?

The complemented subspace problem

☞ Is every complemented subspace of a C-space again a C-space?

Theorem (Plebanek, S-A., 2022)

There are two almost disjoint families \mathcal{A} , \mathcal{B} so that

 $C(K_{\mathcal{B}})=C(K_{\mathcal{A}})\oplus Z$

and Z is not a C-space.

The complemented subspace problem

☞ Is every complemented subspace of a C-space again a C-space?

Theorem (Plebanek, S-A., 2022)

There are two almost disjoint families \mathcal{A} , \mathcal{B} so that

 $C(K_{\mathcal{B}})=C(K_{\mathcal{A}})\oplus Z$

and Z is not a C-space.

We will show: how to construct Z so that it is not a C-space.

Norming and free subsets

A. Salguero-Alarcón C(K)-spaces

æ

Norming and free subsets

Every weak* compact subset $K \subseteq B_{X^*}$ defines

$$T: X \to C(K)$$
 , $T(x)(x^*) = \langle x^*, x \rangle$

Every weak* compact subset $K \subseteq B_{X^*}$ defines

$$T: X \to C(K)$$
 , $T(x)(x^*) = \langle x^*, x \rangle$

We say K is:

• *c*-norming for some $0 < c \le 1$ if T is an isomorphic embedding with $||T^{-1}|| \le \frac{1}{c}$.

Every weak* compact subset $K \subseteq B_{X^*}$ defines

$$T: X \to C(K)$$
 , $T(x)(x^*) = \langle x^*, x \rangle$

We say K is:

• *c*-norming for some $0 < c \le 1$ if T is an isomorphic embedding with $||T^{-1}|| \le \frac{1}{c}$.

$$c \cdot \sup_{x^* \in \mathcal{K}} |\langle x^*, x \rangle| \le \|x\|_X$$

Every weak* compact subset $K \subseteq B_{X^*}$ defines

$$T: X \to C(K)$$
 , $T(x)(x^*) = \langle x^*, x \rangle$

We say K is:

• *c*-norming for some $0 < c \le 1$ if T is an isomorphic embedding with $||T^{-1}|| \le \frac{1}{c}$.

$$c \cdot \sup_{x^* \in \mathcal{K}} |\langle x^*, x \rangle| \le ||x||_X$$

• free if T is onto.

Every weak* compact subset $K \subseteq B_{X^*}$ defines

$$T: X \to C(K)$$
 , $T(x)(x^*) = \langle x^*, x \rangle$

We say K is:

c-norming for some 0 < c ≤ 1 if T is an isomorphic embedding with ||T⁻¹|| ≤ ¹/_c.

$$c \cdot \sup_{x^* \in K} |\langle x^*, x \rangle| \le ||x||_X$$

• free if T is onto. That is, given $f \in C(K)$, there is $x \in X$ so that $f(x^*) = \langle x^*, x \rangle$.

Every weak* compact subset $K \subseteq B_{X^*}$ defines

$$T: X \to C(K)$$
 , $T(x)(x^*) = \langle x^*, x \rangle$

We say K is:

• *c*-norming for some $0 < c \le 1$ if T is an isomorphic embedding with $||T^{-1}|| \le \frac{1}{c}$.

$$c \cdot \sup_{x^* \in K} |\langle x^*, x \rangle| \le ||x||_X$$

• free if T is onto. That is, given $f \in C(K)$, there is $x \in X$ so that $f(x^*) = \langle x^*, x \rangle$.

Proposition

X is a C-space if and only if there is a weak* compact set $K \subseteq B_{X*}$ which is norming and free.

Norming and free subsets

A. Salguero-Alarcón C(K)-spaces

æ

Key Lemma 1

Let \mathfrak{B} be a subalgebra and $Z \in \mathfrak{B}$. If $M \subseteq M_1(ult(\mathfrak{B}))$ lies on a free set, for every $\varepsilon > 0$ there is a simple \mathfrak{B} -measurable function

$$g = \sum_{i=1}^n a_i \cdot 1_{B_i} \in C(\mathsf{ult}(\mathfrak{B}))$$

so that $\big||\mu(Z)| - \langle \mu, g \rangle \big| < \varepsilon$ for every $\mu \in M$.

Key Lemma 1

Let \mathfrak{B} be a subalgebra and $Z \in \mathfrak{B}$. If $M \subseteq M_1(ult(\mathfrak{B}))$ lies on a free set, for every $\varepsilon > 0$ there is a simple \mathfrak{B} -measurable function

$$g = \sum_{i=1}^n a_i \cdot 1_{B_i} \in C(\mathsf{ult}(\mathfrak{B}))$$

so that $\big||\mu(Z)| - \langle \mu, g \rangle \big| < \varepsilon$ for every $\mu \in M$.

Proof:

• The function $\mu \mapsto |\mu(Z)|$ is continuous.

Key Lemma 1

Let \mathfrak{B} be a subalgebra and $Z \in \mathfrak{B}$. If $M \subseteq M_1(ult(\mathfrak{B}))$ lies on a free set, for every $\varepsilon > 0$ there is a simple \mathfrak{B} -measurable function

$$g = \sum_{i=1}^n a_i \cdot 1_{B_i} \in C(\mathsf{ult}(\mathfrak{B}))$$

so that $\big||\mu(Z)| - \langle \mu, g \rangle \big| < \varepsilon$ for every $\mu \in M$.

Proof:

- The function $\mu \mapsto |\mu(Z)|$ is continuous.
- There is $h \in C(\operatorname{ult}(\mathfrak{B}))$ so that $|\mu(Z)| = \langle \mu, h \rangle$ for $\mu \in M$.

Key Lemma 1

Let \mathfrak{B} be a subalgebra and $Z \in \mathfrak{B}$. If $M \subseteq M_1(ult(\mathfrak{B}))$ lies on a free set, for every $\varepsilon > 0$ there is a simple \mathfrak{B} -measurable function

$$g = \sum_{i=1}^n a_i \cdot 1_{B_i} \in C(\mathsf{ult}(\mathfrak{B}))$$

so that $\big||\mu(Z)| - \langle \mu, g \rangle \big| < \varepsilon$ for every $\mu \in M$.

Proof:

- The function $\mu \mapsto |\mu(Z)|$ is continuous.
- There is $h \in C(ult(\mathfrak{B}))$ so that $|\mu(Z)| = \langle \mu, h \rangle$ for $\mu \in M$.
- Pick some simple \mathfrak{B} -measurable g so that $\|h g\| < \varepsilon$.

The construction

The construction

• We assume that $0 \in \mathbb{N}$.

The construction

\Lambda WARNING: technicalities ahead! 🛕

- We assume that $0 \in \mathbb{N}$.
- $\Delta = \{(n,k) \in \mathbb{N} \times \mathbb{N} : 0 \le k \le n\}.$

\Lambda WARNING: technicalities ahead! 🛕

- We assume that $0 \in \mathbb{N}$.
- $\Delta = \{(n,k) \in \mathbb{N} \times \mathbb{N} : 0 \le k \le n\}.$
- Given $n \in \mathbb{N}$, $S_n = \{(n, k) \in \Delta\}$.

\Lambda WARNING: technicalities ahead! 🛕

- We assume that $0 \in \mathbb{N}$.
- $\Delta = \{(n,k) \in \mathbb{N} \times \mathbb{N} : 0 \le k \le n\}.$
- Given $n \in \mathbb{N}$, $S_n = \{(n, k) \in \Delta\}$.
- We aim to construct two almost disjoint families

$$\mathcal{A}\subseteq\mathcal{P}(\mathbb{N})$$
 , $\mathcal{B}\subseteq\mathcal{P}(\Delta)$

with certain conditions.

\Lambda WARNING: technicalities ahead! 🛆

- We assume that $0 \in \mathbb{N}$.
- $\Delta = \{(n,k) \in \mathbb{N} \times \mathbb{N} : 0 \le k \le n\}.$
- Given $n \in \mathbb{N}$, $S_n = \{(n, k) \in \Delta\}$.
- We aim to construct two almost disjoint families

$$\mathcal{A}\subseteq\mathcal{P}(\mathbb{N})$$
 , $\mathcal{B}\subseteq\mathcal{P}(\Delta)$

with certain conditions.

• Let us focus on \mathcal{B} .

\Lambda WARNING: technicalities ahead! 🛆

- We assume that $0 \in \mathbb{N}$.
- $\Delta = \{(n,k) \in \mathbb{N} \times \mathbb{N} : 0 \le k \le n\}.$
- Given $n \in \mathbb{N}$, $S_n = \{(n, k) \in \Delta\}$.
- We aim to construct two almost disjoint families

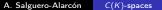
$$\mathcal{A}\subseteq\mathcal{P}(\mathbb{N})$$
 , $\mathcal{B}\subseteq\mathcal{P}(\Delta)$

with certain conditions.

- Let us focus on \mathcal{B} .
- ullet ...or rather, in the subalgebra ${\mathfrak B}$ that it generates.

Admissible sequences

 $0 \longrightarrow C(K_{\mathcal{A}}) \longrightarrow C(K_{\mathcal{B}}) \longrightarrow Z \longrightarrow 0$



æ

《曰》《聞》《臣》《臣》

Admissible sequences

$$0 \longrightarrow C(K_{\mathcal{A}}) \longrightarrow C(K_{\mathcal{B}}) \longrightarrow Z \longrightarrow 0$$

Definition

Given $0 < c \le 1$, a bounded sequence $(\mu_n)_{n=1}^{\infty}$ in $\ell_1(\Delta)$ is *c-admissible* if

•
$$\mu_n(S_k) = 0$$
 for every $n, k \in \mathbb{N}$.

•
$$|\mu_n(n,0)| \ge c$$
 for every $n \in \mathbb{N}$.

Admissible sequences

$$0 \longrightarrow C(K_{\mathcal{A}}) \longrightarrow C(K_{\mathcal{B}}) \longrightarrow Z \longrightarrow 0$$

Definition

Given $0 < c \le 1$, a bounded sequence $(\mu_n)_{n=1}^{\infty}$ in $\ell_1(\Delta)$ is *c-admissible* if

•
$$\mu_n(S_k) = 0$$
 for every $n, k \in \mathbb{N}$.

•
$$|\mu_n(n,0)| \geq c$$
 for every $n \in \mathbb{N}$.

Solution $\mathbb{C}^* \subseteq \mathcal{M}(\mathcal{K}_{\mathcal{B}}) = \ell_1(\Delta) \oplus \ell_1(\mathcal{B})$ "contains" a *c*-admissible sequence.

Admissible sequences

$$0 \longrightarrow C(K_{\mathcal{A}}) \longrightarrow C(K_{\mathcal{B}}) \longrightarrow Z \longrightarrow 0$$

Definition

Given $0 < c \le 1$, a bounded sequence $(\mu_n)_{n=1}^{\infty}$ in $\ell_1(\Delta)$ is *c-admissible* if

•
$$\mu_n(S_k) = 0$$
 for every $n, k \in \mathbb{N}$.

•
$$|\mu_n(n,0)| \ge c$$
 for every $n \in \mathbb{N}$.

Solution $\mathbb{C}^{*} \subseteq \mathbb{C}^{*} \subseteq M(\mathcal{K}_{\mathcal{B}}) = \ell_{1}(\Delta) \oplus \ell_{1}(\mathcal{B})$ "contains" a *c*-admissible sequence.

Definition

A subalgebra \mathfrak{B} kills a *c*-admissible sequence $(\mu_n)_{n=1}^{\infty}$ if there is no *c*-norming free set in $M_1(ult(\mathfrak{B}))$ containing $(\mu_n)_{n=1}^{\infty}$.

How to get away with murder (c-many times)

How to get away with murder (c-many times)

Plan: construct (by induction) \mathfrak{B} so that it kills all *c*-admissible sequences.

• Fix an enumeration $\{(c_{\xi}, (\mu_n^{\xi}))_{n=1}^{\infty}\} : \xi < \mathfrak{c}\}.$

- Fix an enumeration $\{(c_{\xi}, (\mu_n^{\xi}))_{n=1}^{\infty}): \xi < \mathfrak{c}\}.$
- \bullet Step 0: let \mathfrak{B}_0 be the subalgebra generated by finite sets.

- Fix an enumeration $\{(c_{\xi}, (\mu_n^{\xi}))_{n=1}^{\infty}): \xi < \mathfrak{c}\}.$
- Step 0: let \mathfrak{B}_0 be the subalgebra generated by finite sets.
- Step ξ:
 - We have: an *intermediate subalgebra* $\mathfrak{B} = \bigcup_{\alpha < \xi} \mathfrak{B}_{\alpha}$ containing finite sets of Δ and such that $|\mathfrak{B}| < \mathfrak{c}$.

- Fix an enumeration $\{(c_{\xi}, (\mu_n^{\xi}))_{n=1}^{\infty}): \xi < \mathfrak{c}\}.$
- Step 0: let \mathfrak{B}_0 be the subalgebra generated by finite sets.
- Step ξ:
 - We have: an *intermediate subalgebra* $\mathfrak{B} = \bigcup_{\alpha < \xi} \mathfrak{B}_{\alpha}$ containing finite sets of Δ and such that $|\mathfrak{B}| < \mathfrak{c}$.
 - We want: a bigger algebra $\mathfrak{B}_{\xi} \supseteq \mathfrak{B}$ that kills $(\mu_n^{\xi})_{n=1}^{\infty}$.

Plan: construct (by induction) \mathfrak{B} so that it kills all *c*-admissible sequences.

- Fix an enumeration $\{(c_{\xi}, (\mu_n^{\xi}))_{n=1}^{\infty}): \xi < \mathfrak{c}\}.$
- Step 0: let \mathfrak{B}_0 be the subalgebra generated by finite sets.
- Step ξ:
 - We have: an *intermediate subalgebra* $\mathfrak{B} = \bigcup_{\alpha < \xi} \mathfrak{B}_{\alpha}$ containing finite sets of Δ and such that $|\mathfrak{B}| < \mathfrak{c}$.
 - We want: a bigger algebra $\mathfrak{B}_{\xi} \supseteq \mathfrak{B}$ that kills $(\mu_n^{\xi})_{n=1}^{\infty}$.

 \Im Aim: given a subalgebra \mathfrak{B} with $|\mathfrak{B}| < \mathfrak{c}$ and a *c*-admissible sequence $(\mu_n)_{n=1}^{\infty}$, find $Z \subset \Delta$ so that $\mathfrak{B}[Z]$ kills $(\mu_n)_{n=1}^{\infty}$. Notation: $\mathfrak{B}[Z]$ = smallest subalgebra containing \mathfrak{B} and Z.

\mathfrak{B} -separation

A. Salguero-Alarcón C(K)-spaces

æ

< 日 ▶

æ

\mathfrak{B} -separation

Fix a subalgebra $\mathfrak{B}\subset\mathcal{P}(\Delta)$ containing finite sets and $|\mathfrak{B}|<\mathfrak{c}.$

Fix a subalgebra $\mathfrak{B}\subset\mathcal{P}(\Delta)$ containing finite sets and $|\mathfrak{B}|<\mathfrak{c}.$

Definition

Two subsets $M, M' \subseteq M_1(ult(\mathfrak{B}))$ are \mathfrak{B} -separated if there exists $\varepsilon > 0$ and $B_1, ..., B_n \in \mathfrak{B}$ so that for any pair $(\mu, \mu') \in M \times M'$, $|\mu(B_i) - \mu'(B_i)| > \varepsilon$ for some $1 \le i \le n$.

Fix a subalgebra $\mathfrak{B}\subset\mathcal{P}(\Delta)$ containing finite sets and $|\mathfrak{B}|<\mathfrak{c}.$

Definition

Two subsets $M, M' \subseteq M_1(ult(\mathfrak{B}))$ are \mathfrak{B} -separated if there exists $\varepsilon > 0$ and $B_1, ..., B_n \in \mathfrak{B}$ so that for any pair $(\mu, \mu') \in M \times M'$, $|\mu(B_i) - \mu'(B_i)| > \varepsilon$ for some $1 \le i \le n$.

Two useful facts:

Fix a subalgebra $\mathfrak{B} \subset \mathcal{P}(\Delta)$ containing finite sets and $|\mathfrak{B}| < \mathfrak{c}$.

Definition

Two subsets $M, M' \subseteq M_1(ult(\mathfrak{B}))$ are \mathfrak{B} -separated if there exists $\varepsilon > 0$ and $B_1, ..., B_n \in \mathfrak{B}$ so that for any pair $(\mu, \mu') \in M \times M'$, $|\mu(B_i) - \mu'(B_i)| > \varepsilon$ for some $1 \le i \le n$.

Two useful facts:

1. If there is a simple \mathfrak{B} -measurable function g so that $|\langle \mu, g \rangle - \langle \mu', g \rangle| > \varepsilon$ for every $\mu \in M$ and $\mu' \in M'$, then M and M' are \mathfrak{B} -separated.

Fix a subalgebra $\mathfrak{B} \subset \mathcal{P}(\Delta)$ containing finite sets and $|\mathfrak{B}| < \mathfrak{c}$.

Definition

Two subsets $M, M' \subseteq M_1(ult(\mathfrak{B}))$ are \mathfrak{B} -separated if there exists $\varepsilon > 0$ and $B_1, ..., B_n \in \mathfrak{B}$ so that for any pair $(\mu, \mu') \in M \times M'$, $|\mu(B_i) - \mu'(B_i)| > \varepsilon$ for some $1 \le i \le n$.

Two useful facts:

- 1. If there is a simple \mathfrak{B} -measurable function g so that $|\langle \mu, g \rangle \langle \mu', g \rangle| > \varepsilon$ for every $\mu \in M$ and $\mu' \in M'$, then M and M' are \mathfrak{B} -separated.
- 2. If $M \subseteq M_1(ult(\mathfrak{B}))$ is infinite, there exists $M' \subseteq M$ so that M' and $M \setminus M'$ are *not* \mathfrak{B} -separated.

Image: A = A = A

How to deal with \mathfrak{B} -separation

• Let $(\mu_n)_{n=1}^{\infty}$ be a *c*-admissible sequence.

How to deal with \mathfrak{B} -separation

• Let $(\mu_n)_{n=1}^{\infty}$ be a *c*-admissible sequence.

- Consider J₃ ⊆ J₂ ⊆ J₁ ⊆ N so that the following pairs of sets are not 𝔅-separated:
 - $\ \{\mu_n : n \in J_2\} \text{ and } \{\mu_n : n \in J_1 \setminus J_2\}.$
 - $\ \{\mu_n : n \in J_3\} \text{ and } \{\mu_n : n \in J_2 \setminus J_3\}.$

How to deal with \mathfrak{B} -separation

• Let $(\mu_n)_{n=1}^{\infty}$ be a *c*-admissible sequence.

Consider J₃ ⊆ J₂ ⊆ J₁ ⊆ N so that the following pairs of sets are not 𝔅-separated:

- {
$$\mu_n : n \in J_2$$
} and { $\mu_n : n \in J_1 \setminus J_2$ }.
- { $\mu_n : n \in J_3$ } and { $\mu_n : n \in J_2 \setminus J_3$ }.

• Find a set Z so that

$$\mu_n(Z) \approx \begin{cases} c/2 & \text{if } n \in J_3 \\ -c/2 & \text{if } n \in J_2 \setminus J_3 \\ 0 & \text{if } n \in J_1 \setminus J_2 \end{cases}$$

How to deal with \mathfrak{B} -separation

• Let $(\mu_n)_{n=1}^{\infty}$ be a *c*-admissible sequence.

Consider J₃ ⊆ J₂ ⊆ J₁ ⊆ N so that the following pairs of sets are not 𝔅-separated:

$$- \{\mu_n : n \in J_2\} \text{ and } \{\mu_n : n \in J_1 \setminus J_2\}.$$

$$- \{\mu_n : n \in J_3\} \text{ and } \{\mu_n : n \in J_2 \setminus J_3\}.$$

Find a set Z so that

$$\mu_n(Z) \approx \begin{cases} c/2 & \text{if } n \in J_3 \\ -c/2 & \text{if } n \in J_2 \setminus J_3 \\ 0 & \text{if } n \in J_1 \setminus J_2 \end{cases}$$

• If (μ_n) lies inside a free set in $M(ult(\mathfrak{B}[Z]))$, then

$$|\mu_n(Z)| \approx \langle \mu_n, h \rangle \quad \forall n \in \mathbb{N}$$

for some $h = r \cdot 1_Z + g$, where g is simple \mathfrak{B} -measurable.

Dealing with how to deal with \mathfrak{B} -separation

• Therefore

$$\langle \mu_n, g \rangle pprox \begin{cases} (1-r)c/2 & ext{if } n \in J_3 \ (1+r)c/2 & ext{if } n \in J_2 \setminus J_3 \ 0 & ext{if } n \in J_1 \setminus J_2 \end{cases}$$

Dealing with how to deal with \mathfrak{B} -separation

• Therefore

$$\langle \mu_n, g \rangle \approx \begin{cases} (1-r)c/2 & \text{if } n \in J_3 \\ (1+r)c/2 & \text{if } n \in J_2 \setminus J_3 \\ 0 & \text{if } n \in J_1 \setminus J_2 \end{cases}$$

- If $r \approx 0$ then the sets $\{\mu_n : n \in J_2\}$ and $\{\mu_n : n \in J_1 \setminus J_2\}$ are \mathfrak{B} -separated.

Dealing with how to deal with \mathfrak{B} -separation

• Therefore

$$\langle \mu_n, g \rangle \approx \begin{cases} (1-r)c/2 & \text{if } n \in J_3 \\ (1+r)c/2 & \text{if } n \in J_2 \setminus J_3 \\ 0 & \text{if } n \in J_1 \setminus J_2 \end{cases}$$

- If $r \approx 0$ then the sets $\{\mu_n : n \in J_2\}$ and $\{\mu_n : n \in J_1 \setminus J_2\}$ are \mathfrak{B} -separated.
- If $|r| \gg 0$ then the sets $\{\mu_n : n \in J_3\}$ and $\{\mu_n : n \in J_2 \setminus J_3\}$ are \mathfrak{B} -separated.

...Is that all?

A. Salguero-Alarcón C(K)-spaces

æ

æ

< 日 ▶

...Is that all?

We have killed the ξ -th admissible sequence...

...Is that all?

We have killed the ξ -th admissible sequence...

...but the previous sequences may now lie inside a free set.

...Is that all?

We have killed the ξ -th admissible sequence...

...but the previous sequences may now lie inside a free set.

Key Lemma 2

Suppose we have

- A subalgebra $\mathfrak{B} \subseteq \mathcal{P}(\Delta)$ containing finite sets and $|\mathfrak{B}| < \mathfrak{c}$.
- A collection of pairs of non-ℬ-separated subsets of M₁(ult(ℬ)) {(M_α, M'_α) : α < ξ}, ξ < c.

Then for every almost disjoint family \mathcal{Z} of size \mathfrak{c} there is $Z \in \mathcal{Z}$ so that M_{α} and M'_{α} are not $\mathfrak{B}[Z]$ -separated for every $\alpha < \kappa$.

Open problems

A. Salguero-Alarcón C(K)-spaces

æ

æ

A ■

Open problems

1. An Amir-Cambern theorem?

Our counterexample Z is 2-complemented in a C-space.

Open problems

1. An Amir-Cambern theorem?

Our counterexample Z is 2-complemented in a C-space. What about 1-complemented?

Open problems

1. An Amir-Cambern theorem?

Our counterexample Z is 2-complemented in a C-space. What about 1-complemented?

2. A stronger counterexample

Is there a C(K) so that $C(K) = Z \oplus Z'$ where both Z and Z' are not C-spaces?

Thank you very much for your attention!