Institute of Mathematics, Czech Academy of Sciences

Smoothness in normed spaces

Tommaso Russo tommaso.russo.math@gmail.com (j/w Sheldon Dantas and Petr Hájek)

Workshop on Banach spaces and Banach lattices II ICMAT (Madrid), 9-13 May 2022

- Renorming theory = Find an equivalent norm on X with the strongest possible form of a certain property.
- Let U ⊆ X be open. f: U → Y is differentiable at x ∈ U if there is f'(x) ∈ B(X, Y) such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - \langle f'(x), h \rangle}{\|h\|} = 0.$$

- C^k-smoothness, rules of calculus, Implicit Function theorem, ...
- If p ∉ N, the l_p norm is C^{lp]}-smooth, but not C^{lp]+1}
 And l_p has no C^{lp]+1}-smooth norm!
- Smooth references:

Deville, Godefroy, Zizler, Smoothness and Renormings in Banach Spaces.

Hájek, Johanis, Smooth analysis in Banach spaces

- Renorming theory = Find an equivalent norm on X with the strongest possible form of a certain property.
- Let U ⊆ X be open. f: U → Y is differentiable at x ∈ U if there is f'(x) ∈ B(X, Y) such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - \langle f'(x), h \rangle}{\|h\|} = 0.$$

- *C^k*-smoothness, rules of calculus, Implicit Function theorem, ...
- If p ∉ N, the l_p norm is C^{lp]}-smooth, but not C^{lp]+1}
 And l_p has no C^{lp]+1}-smooth norm!
- Smooth references:

Deville, Godefroy, Zizler, Smoothness and Renormings in Banach Spaces.

Hájek, Johanis, Smooth analysis in Banach spaces

- Renorming theory = Find an equivalent norm on X with the strongest possible form of a certain property.
- Let U ⊆ X be open. f: U → Y is differentiable at x ∈ U if there is f'(x) ∈ B(X, Y) such that

$$\lim_{h\to 0}\frac{f(x+h)-f(x)-\langle f'(x),h\rangle}{\|h\|}=0.$$

- *C^k*-smoothness, rules of calculus, Implicit Function theorem, ...
- If p ∉ N, the l_p norm is C^[p]-smooth, but not C^{[p]+1}.
 And l_p has no C^{[p]+1}-smooth norm!
- Smooth references:

Deville, Godefroy, Zizler, Smoothness and Renormings in Banach Spaces.

Hájek, Johanis, Smooth analysis in Banach spaces

- Renorming theory = Find an equivalent norm on X with the strongest possible form of a certain property.
- Let U ⊆ X be open. f: U → Y is differentiable at x ∈ U if there is f'(x) ∈ B(X, Y) such that

$$\lim_{h\to 0}\frac{f(x+h)-f(x)-\langle f'(x),h\rangle}{\|h\|}=0.$$

- *C^k*-smoothness, rules of calculus, Implicit Function theorem, ...
- If p ∉ N, the l_p norm is C^[p]-smooth, but not C^{[p]+1}.
 And l_p has no C^{[p]+1}-smooth norm!
- Smooth references:
 - Deville, Godefroy, Zizler, Smoothness and Renormings in Banach Spaces.
 - Hájek, Johanis, *Smooth analysis in Banach spaces*.

Smoothness and structure

- If a separable Banach space X has a C¹-smooth norm, then X is Asplund (*i.e.*, X^{*} is separable).
 - No closed, inf-dim subspace of ℓ_1 has a C^1 -smooth norm.
- Meshkov (1978). If X and X* admit a C²-smooth norm, then X is isomorphic to a Hilbert space.
- Fabian, Whitfield, Zizler (1983). If X admits a C²-smooth norm, either it contains c₀, or it is super-reflexive with type 2.
- **Deville** (1989). If X has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with exact cotype 2k, and it contains ℓ_{2k} .
 - Can the first case actually happen? The c_0 norm doesn't seem smooth...
- Pechanec, Whitfield, Zizler (1981) Fabian, Zizler (1997). If X has a LFC norm, then it is c₀-saturated and Asplund.

- If a separable Banach space X has a C¹-smooth norm, then X is Asplund (*i.e.*, X^{*} is separable).
 - No closed, inf-dim subspace of ℓ_1 has a C^1 -smooth norm.
- Meshkov (1978). If X and X^{*} admit a C²-smooth norm, then X is isomorphic to a Hilbert space.
- Fabian, Whitfield, Zizler (1983). If X admits a C^2 -smooth norm, either it contains c_0 , or it is super-reflexive with type 2.
- **Deville** (1989). If X has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with exact cotype 2k, and it contains ℓ_{2k} .
 - Can the first case actually happen? The c_0 norm doesn't seem smooth...
- Pechanec, Whitfield, Zizler (1981) Fabian, Zizler (1997). If X has a LFC norm, then it is c₀-saturated and Asplund.

- If a separable Banach space X has a C¹-smooth norm, then X is Asplund (*i.e.*, X^{*} is separable).
 - No closed, inf-dim subspace of ℓ_1 has a C^1 -smooth norm.
- Meshkov (1978). If X and X^{*} admit a C²-smooth norm, then X is isomorphic to a Hilbert space.
- Fabian, Whitfield, Zizler (1983). If X admits a C²-smooth norm, either it contains c₀, or it is super-reflexive with type 2.
- **Deville** (1989). If X has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with exact cotype 2k, and it contains ℓ_{2k} .
 - Can the first case actually happen? The c_0 norm doesn't seem smooth...
- Pechanec, Whitfield, Zizler (1981) Fabian, Zizler (1997). If X has a LFC norm, then it is c₀-saturated and Asplund.

- If a separable Banach space X has a C¹-smooth norm, then X is Asplund (*i.e.*, X^{*} is separable).
 - No closed, inf-dim subspace of ℓ_1 has a C^1 -smooth norm.
- Meshkov (1978). If X and X^{*} admit a C²-smooth norm, then X is isomorphic to a Hilbert space.
- Fabian, Whitfield, Zizler (1983). If X admits a C²-smooth norm, either it contains c₀, or it is super-reflexive with type 2.
- **Deville** (1989). If X has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with exact cotype 2k, and it contains ℓ_{2k} .
 - Can the first case actually happen? The c_0 norm doesn't seem smooth...
- Pechanec, Whitfield, Zizler (1981) Fabian, Zizler (1997). If X has a LFC norm, then it is c₀-saturated and Asplund.

- If a separable Banach space X has a C¹-smooth norm, then X is Asplund (*i.e.*, X^{*} is separable).
 - No closed, inf-dim subspace of ℓ_1 has a C^1 -smooth norm.
- Meshkov (1978). If X and X* admit a C²-smooth norm, then X is isomorphic to a Hilbert space.
- Fabian, Whitfield, Zizler (1983). If X admits a C²-smooth norm, either it contains c₀, or it is super-reflexive with type 2.
- **Deville** (1989). If X has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with exact cotype 2k, and it contains ℓ_{2k} .
 - Can the first case actually happen? The c_0 norm doesn't seem smooth...
- Pechanec, Whitfield, Zizler (1981) Fabian, Zizler (1997). If X has a LFC norm, then it is c₀-saturated and Asplund.

- If a separable Banach space X has a C¹-smooth norm, then X is Asplund (*i.e.*, X^{*} is separable).
 - No closed, inf-dim subspace of ℓ_1 has a C^1 -smooth norm.
- Meshkov (1978). If X and X^{*} admit a C²-smooth norm, then X is isomorphic to a Hilbert space.
- Fabian, Whitfield, Zizler (1983). If X admits a C²-smooth norm, either it contains c₀, or it is super-reflexive with type 2.
- **Deville** (1989). If X has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with exact cotype 2k, and it contains ℓ_{2k} .
 - Can the first case actually happen? The c_0 norm doesn't seem smooth...
- Pechanec, Whitfield, Zizler (1981) Fabian, Zizler (1997). If X has a LFC norm, then it is c_0 -saturated and Asplund.

- Let *X* be a normed space with a countable algebraic basis.
 - Vanderwerff (1992). X has a C^1 -smooth norm.
 - Hájek (1995). X has a C^{∞} -smooth norm.
 - Deville, Fonf, Hájek (1998). X has an analytic norm.
- Guirao, Montesinos, Zizler, *Open problems...*, Problem 149: Does the space of finitely supported vectors in $\ell_1(\Gamma)$ have a C^1 -smooth norm (when Γ is uncountable)?
- Dantas, Hájek, R. (JMAA'20). Given a Banach space X, is there a dense subspace of X that admits a C^k-smooth norm?
- Benyamini, Lindenstrauss, Geometric Nonlinear Functional Analysis
 - Does the existence of a smooth norm on some 'large' subset of a Banach space X imply that X is Asplund?
 - Is there a norm on ℓ_1 that is differentiable outside a countable union of closed hyperplanes?

- Let *X* be a normed space with a countable algebraic basis.
 - Vanderwerff (1992). X has a C^1 -smooth norm.
 - Hájek (1995). X has a C^{∞} -smooth norm.
 - Deville, Fonf, Hájek (1998). X has an analytic norm.
- Guirao, Montesinos, Zizler, *Open problems...*, Problem 149: Does the space of finitely supported vectors in $\ell_1(\Gamma)$ have a C^1 -smooth norm (when Γ is uncountable)?
- Dantas, Hájek, R. (JMAA'20). Given a Banach space X, is there a dense subspace of X that admits a C^k-smooth norm?
- Benyamini, Lindenstrauss, Geometric Nonlinear Functional Analysis
 - Does the existence of a smooth norm on some 'large' subset of a Banach space X imply that X is Asplund?
 - Is there a norm on ℓ_1 that is differentiable outside a countable union of closed hyperplanes?

- Let *X* be a normed space with a countable algebraic basis.
 - Vanderwerff (1992). X has a C^1 -smooth norm.
 - Hájek (1995). X has a C^{∞} -smooth norm.
 - Deville, Fonf, Hájek (1998). X has an analytic norm.
- Guirao, Montesinos, Zizler, *Open problems...*, Problem 149: Does the space of finitely supported vectors in $\ell_1(\Gamma)$ have a C^1 -smooth norm (when Γ is uncountable)?
- Dantas, Hájek, R. (JMAA'20). Given a Banach space X, is there a dense subspace of X that admits a C^k-smooth norm?
- Benyamini, Lindenstrauss, Geometric Nonlinear Functional Analysis
 - Does the existence of a smooth norm on some 'large' subset of a Banach space X imply that X is Asplund?
 - Is there a norm on ℓ_1 that is differentiable outside a countable union of closed hyperplanes?

- Let *X* be a normed space with a countable algebraic basis.
 - Vanderwerff (1992). X has a C^1 -smooth norm.
 - Hájek (1995). X has a C^{∞} -smooth norm.
 - Deville, Fonf, Hájek (1998). X has an analytic norm.
- Guirao, Montesinos, Zizler, *Open problems...*, Problem 149: Does the space of finitely supported vectors in $\ell_1(\Gamma)$ have a C^1 -smooth norm (when Γ is uncountable)?
- Dantas, Hájek, R. (JMAA'20). Given a Banach space X, is there a dense subspace of X that admits a C^k-smooth norm?
- Benyamini, Lindenstrauss, Geometric Nonlinear Functional Analysis
 - Does the existence of a smooth norm on some 'large' subset of a Banach space X imply that X is Asplund?
 - Is there a norm on ℓ_1 that is differentiable outside a countable union of closed hyperplanes?

- $c_0(\Gamma)$ has a C^{∞} -smooth norm.
- Normed spaces of countable dim have a C^{∞} -smooth norm.

 $\ell^F_{\infty} \coloneqq span\{1_A \colon A \subseteq \mathbb{N}\}\$ has a C^{∞} -smooth norm.

$$(x(j))_{j=1}^{\infty} \mapsto ((1 + \varepsilon_j) \cdot x(j))_{j=1}^{\infty}$$

- Look at the picture.
- Take $X \subseteq \ell_{\infty}$ of countable dimension, $X = \text{span}\{e_j\}_{j=1}^{\infty}$.
- Take $\{v_j\}_{j=1}^{\infty} \subseteq \ell_{\infty}^F$ 'very close' to e_j s.
- X is isomorphic to span $\{v_j\}_{j=1}^{\infty}$ (small perturbation lemma).

• Well, I'm cheating a bit, $\{e_j\}_{i=1}^{\infty}$ has to be an M-basis.

- $c_0(\Gamma)$ has a C^{∞} -smooth norm.
- Normed spaces of countable dim have a C^{∞} -smooth norm.

 $\ell^F_{\infty} \coloneqq span\{1_A \colon A \subseteq \mathbb{N}\}$ has a C^{∞} -smooth norm.

$$(x(j))_{j=1}^{\infty} \mapsto ((1 + \varepsilon_j) \cdot x(j))_{j=1}^{\infty}$$

- Look at the picture.
- Take $X \subseteq \ell_{\infty}$ of countable dimension, $X = \text{span}\{e_j\}_{j=1}^{\infty}$.
- Take $\{v_j\}_{j=1}^{\infty} \subseteq \ell_{\infty}^F$ 'very close' to e_j s.
- X is isomorphic to span $\{v_j\}_{j=1}^{\infty}$ (small perturbation lemma).

• Well, I'm cheating a bit, $\{e_j\}_{i=1}^{\infty}$ has to be an M-basis.

- $c_0(\Gamma)$ has a C^{∞} -smooth norm.
- Normed spaces of countable dim have a C^{∞} -smooth norm.

 $\ell^F_{\infty} \coloneqq span\{1_A \colon A \subseteq \mathbb{N}\}$ has a C^{∞} -smooth norm.

$$(x(j))_{j=1}^{\infty} \mapsto ((1 + \varepsilon_j) \cdot x(j))_{j=1}^{\infty}.$$

- Look at the picture.
- Take $X \subseteq \ell_{\infty}$ of countable dimension, $X = \text{span}\{e_j\}_{j=1}^{\infty}$.
- Take $\{v_j\}_{j=1}^{\infty} \subseteq \ell_{\infty}^F$ 'very close' to e_j s.
- X is isomorphic to span $\{v_j\}_{i=1}^{\infty}$ (small perturbation lemma).

Well, I'm cheating a bit, $\{e_j\}_{i=1}^{\infty}$ has to be an M-basis.

- $c_0(\Gamma)$ has a C^{∞} -smooth norm.
- Normed spaces of countable dim have a C^{∞} -smooth norm.

 $\ell^F_{\infty} \coloneqq span\{1_A \colon A \subseteq \mathbb{N}\}$ has a C^{∞} -smooth norm.

$$(x(j))_{j=1}^{\infty} \mapsto ((1 + \varepsilon_j) \cdot x(j))_{j=1}^{\infty}.$$

- Look at the picture.
- Take $X \subseteq \ell_{\infty}$ of countable dimension, $X = \operatorname{span}\{e_j\}_{j=1}^{\infty}$.
- Take $\{v_j\}_{j=1}^{\infty} \subseteq \ell_{\infty}^F$ 'very close' to e_j s.
- X is isomorphic to span $\{v_j\}_{j=1}^{\infty}$ (small perturbation lemma).

Well, I'm cheating a bit, $\{e_j\}_{j=1}^{\infty}$ has to be an M-basis.

- $c_0(\Gamma)$ has a C^{∞} -smooth norm.
- Normed spaces of countable dim have a C^{∞} -smooth norm.

 $\ell^F_{\infty} \coloneqq span\{1_A \colon A \subseteq \mathbb{N}\}$ has a C^{∞} -smooth norm.

• Take a sequence $\varepsilon_j \searrow 0$ and define $T: \ell_{\infty}^F \to \ell_{\infty}$ by

$$(x(j))_{j=1}^{\infty} \mapsto ((1 + \varepsilon_j) \cdot x(j))_{j=1}^{\infty}.$$

- Look at the picture.
- Take $X \subseteq \ell_{\infty}$ of countable dimension, $X = \operatorname{span}\{e_j\}_{j=1}^{\infty}$.
- Take $\{v_j\}_{j=1}^{\infty} \subseteq \ell_{\infty}^F$ 'very close' to e_j s.
- X is isomorphic to span $\{v_j\}_{i=1}^{\infty}$ (small perturbation lemma).

• Well, I'm cheating a bit, $\{e_j\}_{i=1}^{\infty}$ has to be an M-basis.

4/8 T. Russo

Smoothness in normed spaces

- $c_0(\Gamma)$ has a C^{∞} -smooth norm.
- Normed spaces of countable dim have a C^{∞} -smooth norm.

 $\ell^F_{\infty} \coloneqq span\{1_A \colon A \subseteq \mathbb{N}\}$ has a C^{∞} -smooth norm.

• Take a sequence $\varepsilon_j \searrow 0$ and define $T: \ell_{\infty}^F \to \ell_{\infty}$ by

$$(x(j))_{j=1}^{\infty} \mapsto ((1 + \varepsilon_j) \cdot x(j))_{j=1}^{\infty}.$$

- Look at the picture.
- Take $X \subseteq \ell_{\infty}$ of countable dimension, $X = \operatorname{span}\{e_j\}_{j=1}^{\infty}$.
- Take $\{v_j\}_{j=1}^{\infty} \subseteq \ell_{\infty}^F$ 'very close' to e_j s.
- X is isomorphic to span{v_j}_{j=1}[∞] (small perturbation lemma).
 Well, Γm cheating a bit, {e_i}_{j=1}[∞] has to be an M-basis.

4/8 T. Russo

- $c_0(\Gamma)$ has a C^{∞} -smooth norm.
- Normed spaces of countable dim have a C^{∞} -smooth norm.

 $\ell^F_{\infty} \coloneqq span\{1_A \colon A \subseteq \mathbb{N}\}$ has a C^{∞} -smooth norm.

$$(x(j))_{j=1}^{\infty} \mapsto ((1 + \varepsilon_j) \cdot x(j))_{j=1}^{\infty}.$$

- Look at the picture.
- Take $X \subseteq \ell_{\infty}$ of countable dimension, $X = \operatorname{span}\{e_j\}_{j=1}^{\infty}$.
- Take $\{v_j\}_{j=1}^{\infty} \subseteq \ell_{\infty}^F$ 'very close' to e_j s.
- X is isomorphic to span $\{v_j\}_{j=1}^{\infty}$ (small perturbation lemma).
 - Well, I'm cheating a bit, $\{e_j\}_{j=1}^{\infty}$ has to be an M-basis.

Let X be a Banach space with long unconditional basis and let \mathcal{Y} be the linear span of such basis. Then, \mathcal{Y} has a C^{∞} -smooth norm.

Moreover, such norms are dense.

The norm $\|\cdot\|$ is *LFC* on X if for each $x \in S_X$ there exist an open nhood \mathcal{U} of x, functionals $\varphi_1, \ldots, \varphi_k \in X^*$, and $G \colon \mathbb{R}^k \to \mathbb{R}$ such that

 $||y|| = G(\langle \varphi_1, y \rangle, \dots, \langle \varphi_k, y \rangle)$ for every $y \in \mathcal{U}$.

5/8 T. Russo

Smoothness in normed spaces

Let X be a Banach space with long unconditional basis and let \mathcal{Y} be the linear span of such basis. Then, \mathcal{Y} has a C^{∞} -smooth norm.

Theorem (Dantas, Hájek, R., arXiv:2201.03379)

Let X be a Banach space with a fundamental biorthogonal system $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$. Consider $\mathcal{Y} \coloneqq span\{e_{\alpha}\}_{\alpha \in \Gamma}$. Then:

- (i) *Y* admits a polyhedral and LFC norm.
- (ii) \mathcal{Y} admits a C^{∞} -smooth and LFC norm.
- (iii) \mathcal{Y} admits a C^1 -smooth LUR norm.

Moreover, such norms are dense.

The norm $\|\cdot\|$ is *LFC* on X if for each $x \in S_X$ there exist an open nhood \mathcal{U} of x, functionals $\varphi_1, \ldots, \varphi_k \in X^*$, and $G \colon \mathbb{R}^k \to \mathbb{R}$ such that

 $||y|| = G(\langle \varphi_1, y \rangle, \dots, \langle \varphi_k, y \rangle)$ for every $y \in \mathcal{U}$.

Let X be a Banach space with long unconditional basis and let \mathcal{Y} be the linear span of such basis. Then, \mathcal{Y} has a C^{∞} -smooth norm.

Theorem (Dantas, Hájek, R., arXiv:2201.03379)

Let X be a Banach space with a fundamental biorthogonal system $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$. Consider $\mathcal{Y} \coloneqq span\{e_{\alpha}\}_{\alpha \in \Gamma}$. Then:

- (i) *Y* admits a polyhedral and LFC norm.
- (ii) \mathcal{Y} admits a C^{∞} -smooth and LFC norm.
- (iii) \mathcal{Y} admits a C^1 -smooth LUR norm.

Moreover, such norms are dense.

The norm $\|\cdot\|$ is *LFC* on X if for each $x \in S_X$ there exist an open nhood \mathcal{U} of x, functionals $\varphi_1, \ldots, \varphi_k \in X^*$, and $G \colon \mathbb{R}^k \to \mathbb{R}$ such that

 $||y|| = G(\langle \varphi_1, y \rangle, \dots, \langle \varphi_k, y \rangle)$ for every $y \in \mathcal{U}$.

5/8 T. Russo

Smoothness in normed spaces

Let X be a Banach space with long unconditional basis and let \mathcal{Y} be the linear span of such basis. Then, \mathcal{Y} has a C^{∞} -smooth norm.

Theorem (Dantas, Hájek, R., arXiv:2201.03379)

Let X be a Banach space with a fundamental biorthogonal system $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$. Consider $\mathcal{Y} \coloneqq span\{e_{\alpha}\}_{\alpha \in \Gamma}$. Then:

- (i) *Y* admits a polyhedral and LFC norm.
- (ii) \mathcal{Y} admits a C^{∞} -smooth and LFC norm.
- (iii) \mathcal{Y} admits a C^1 -smooth LUR norm.

Moreover, such norms are dense.

The norm $\|\cdot\|$ is *LFC* on X if for each $x \in S_X$ there exist an open nhood \mathcal{U} of x, functionals $\varphi_1, \ldots, \varphi_k \in X^*$, and $G \colon \mathbb{R}^k \to \mathbb{R}$ such that

 $||y|| = G(\langle \varphi_1, y \rangle, \dots, \langle \varphi_k, y \rangle)$ for every $y \in \mathcal{U}$.

5/8 T. Russo

Smoothness in normed spaces

Let X be a Banach space with long unconditional basis and let \mathcal{Y} be the linear span of such basis. Then, \mathcal{Y} has a C^{∞} -smooth norm.

Theorem (Dantas, Hájek, R., arXiv:2201.03379)

Let X be a Banach space with a fundamental biorthogonal system $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$. Consider $\mathcal{Y} \coloneqq span\{e_{\alpha}\}_{\alpha \in \Gamma}$. Then:

- (i) *Y* admits a polyhedral and LFC norm.
- (ii) \mathcal{Y} admits a C^{∞} -smooth and LFC norm.
- (iii) \mathcal{Y} admits a C^1 -smooth LUR norm.

Moreover, such norms are dense.

5/8

The norm $\|\cdot\|$ is *LFC* on X if for each $x \in S_X$ there exist an open nhood \mathcal{U} of x, functionals $\varphi_1, \ldots, \varphi_k \in X^*$, and $G \colon \mathbb{R}^k \to \mathbb{R}$ such that

 $\frac{\|y\| = G(\langle \varphi_1, y \rangle, \dots, \langle \varphi_k, y \rangle)}{\text{T. Russo}} \quad \text{for every } y \in \mathcal{U}.$

- Dantas, Hájek, R. (JMAA'20). No dense subspace of $c_0(\omega_1)$ admits an analytic norm.
- Fabian, Whitfield, Zizler (1983). Let 𝒴 be a normed space with a C^{1,+}_{loc}-smooth (*e.g.*, C²-smooth) LUR norm ||·||. Then the completion of 𝒴 is super-reflexive.
- What about dense subspaces that are not the span of a fundamental biorthogonal system?
 - Hájek, R., JFA'20. Different dense subspaces of a Banach space can be extremely different.
 - See Slide 8 for more about this.
- Main problem. Is there a Banach space X such that no dense subspace of X has a C^k-smooth norm?

- Dantas, Hájek, R. (JMAA'20). No dense subspace of $c_0(\omega_1)$ admits an analytic norm.
- Fabian, Whitfield, Zizler (1983). Let 𝒴 be a normed space with a $C_{loc}^{1,+}$ -smooth (*e.g.*, C^2 -smooth) LUR norm $\|\cdot\|$. Then the completion of 𝒴 is super-reflexive.
- What about dense subspaces that are not the span of a fundamental biorthogonal system?
 - Hájek, R., JFA'20. Different dense subspaces of a Banach space can be extremely different.
 - See Slide 8 for more about this.
- Main problem. Is there a Banach space X such that no dense subspace of X has a C^k-smooth norm?

- Dantas, Hájek, R. (JMAA'20). No dense subspace of $c_0(\omega_1)$ admits an analytic norm.
- Fabian, Whitfield, Zizler (1983). Let 𝒴 be a normed space with a $C_{loc}^{1,+}$ -smooth (*e.g.*, C^2 -smooth) LUR norm $\|\cdot\|$. Then the completion of 𝒴 is super-reflexive.
- What about dense subspaces that are not the span of a fundamental biorthogonal system?
 - Hájek, R., JFA'20. Different dense subspaces of a Banach space can be extremely different.
 - See Slide 8 for more about this.
- Main problem. Is there a Banach space X such that no dense subspace of X has a C^k-smooth norm?

- Dantas, Hájek, R. (JMAA'20). No dense subspace of $c_0(\omega_1)$ admits an analytic norm.
- Fabian, Whitfield, Zizler (1983). Let 𝒴 be a normed space with a $C_{loc}^{1,+}$ -smooth (*e.g.*, C^2 -smooth) LUR norm $\|\cdot\|$. Then the completion of 𝒴 is super-reflexive.
- What about dense subspaces that are not the span of a fundamental biorthogonal system?
 - Hájek, R., JFA'20. Different dense subspaces of a Banach space can be extremely different.
 - See Slide 8 for more about this.
- Main problem. Is there a Banach space X such that no dense subspace of X has a C^k-smooth norm?

- Dantas, Hájek, R. (JMAA'20). No dense subspace of $c_0(\omega_1)$ admits an analytic norm.
- Fabian, Whitfield, Zizler (1983). Let 𝒴 be a normed space with a $C_{loc}^{1,+}$ -smooth (*e.g.*, C^2 -smooth) LUR norm $\|\cdot\|$. Then the completion of 𝒴 is super-reflexive.
- What about dense subspaces that are not the span of a fundamental biorthogonal system?
 - Hájek, R., JFA'20. Different dense subspaces of a Banach space can be extremely different.
 - See Slide 8 for more about this.
- Main problem. Is there a Banach space X such that no dense subspace of X has a C^k-smooth norm?

- $\langle \varphi_{\beta}, e_{\alpha} \rangle = \delta_{\alpha,\beta},$
- span $\{e_{\alpha}\}_{\alpha\in\Gamma}$ is dense in X.

- Plichko spaces (*e.g.*, WCG, reflexive, c₀(Γ), L₁(μ) for a finite measure, C(K) for K Valdivia),
- **Kalenda (2020).** Every space with projectional skeleton (duals of Asplund spaces, preduals of Von Neumann algebras, preduals of JBW*-triples),
- $\ell_{\infty}(\Gamma), \, \ell_{\infty}^{c}(\Lambda) \text{ when } |\Lambda| \leq \mathfrak{c},$
- $C(\mathcal{T})$, when \mathcal{T} is a tree,
- **Davis, Johnson (1973).** X with dens $X = \kappa$ that has a WCG quotient of density κ ,
- Todorčević (2006). All Banach spaces of density ω₁, under MM.

- $\langle \varphi_{\beta}, e_{\alpha} \rangle = \delta_{\alpha,\beta},$
- span $\{e_{\alpha}\}_{\alpha\in\Gamma}$ is dense in X.

- Plichko spaces (e.g., WCG, reflexive, c₀(Γ), L₁(μ) for a finite measure, C(K) for K Valdivia),
- **Kalenda (2020).** Every space with projectional skeleton (duals of Asplund spaces, preduals of Von Neumann algebras, preduals of JBW*-triples),
- $\ell_{\infty}(\Gamma), \ell_{\infty}^{c}(\Lambda)$ when $|\Lambda| \leq \mathfrak{c},$
- $C(\mathcal{T})$, when \mathcal{T} is a tree,
- Davis, Johnson (1973). *X* with dens *X* = *κ* that has a WCG quotient of density *κ*,
- Todorčević (2006). All Banach spaces of density ω₁, under MM.

- $\langle \varphi_{\beta}, e_{\alpha} \rangle = \delta_{\alpha,\beta},$
- span $\{e_{\alpha}\}_{\alpha\in\Gamma}$ is dense in X.

- Plichko spaces (*e.g.*, WCG, reflexive, c₀(Γ), L₁(μ) for a finite measure, C(K) for K Valdivia),
- **Kalenda (2020).** Every space with projectional skeleton (duals of Asplund spaces, preduals of Von Neumann algebras, preduals of JBW*-triples),
- $\ell_{\infty}(\Gamma), \ell_{\infty}^{c}(\Lambda)$ when $|\Lambda| \leq \mathfrak{c},$
- $C(\mathcal{T})$, when \mathcal{T} is a tree,
- **Davis, Johnson (1973).** X with dens $X = \kappa$ that has a WCG quotient of density κ ,
- Todorčević (2006). All Banach spaces of density ω₁, under MM.

- $\langle \varphi_{\beta}, e_{\alpha} \rangle = \delta_{\alpha,\beta},$
- span $\{e_{\alpha}\}_{\alpha\in\Gamma}$ is dense in X.

- Plichko spaces (*e.g.*, WCG, reflexive, c₀(Γ), L₁(μ) for a finite measure, C(K) for K Valdivia),
- **Kalenda (2020).** Every space with projectional skeleton (duals of Asplund spaces, preduals of Von Neumann algebras, preduals of JBW*-triples),
- $\ell_{\infty}(\Gamma), \ell_{\infty}^{c}(\Lambda)$ when $|\Lambda| \leq \mathfrak{c}$,
- $C(\mathcal{T})$, when \mathcal{T} is a tree,
- **Davis, Johnson (1973).** *X* with dens *X* = *κ* that has a WCG quotient of density *κ*,
- Todorčević (2006). All Banach spaces of density ω₁, under MM.

- $\langle \varphi_{\beta}, e_{\alpha} \rangle = \delta_{\alpha,\beta},$
- span $\{e_{\alpha}\}_{\alpha\in\Gamma}$ is dense in X.

- Plichko spaces (*e.g.*, WCG, reflexive, c₀(Γ), L₁(μ) for a finite measure, C(K) for K Valdivia),
- **Kalenda (2020).** Every space with projectional skeleton (duals of Asplund spaces, preduals of Von Neumann algebras, preduals of JBW*-triples),
- $\ell_{\infty}(\Gamma), \ell_{\infty}^{c}(\Lambda)$ when $|\Lambda| \leq \mathfrak{c}$,
- $C(\mathcal{T})$, when \mathcal{T} is a tree,
- Davis, Johnson (1973). X with dens $X = \kappa$ that has a WCG quotient of density κ ,
- Todorčević (2006). All Banach spaces of density ω_1 , under MM.

- $\langle \varphi_{\beta}, e_{\alpha} \rangle = \delta_{\alpha,\beta},$
- span $\{e_{\alpha}\}_{\alpha\in\Gamma}$ is dense in X.

- Plichko spaces (*e.g.*, WCG, reflexive, c₀(Γ), L₁(μ) for a finite measure, C(K) for K Valdivia),
- **Kalenda (2020).** Every space with projectional skeleton (duals of Asplund spaces, preduals of Von Neumann algebras, preduals of JBW*-triples),
- $\ell_{\infty}(\Gamma), \ell_{\infty}^{c}(\Lambda)$ when $|\Lambda| \leq \mathfrak{c}$,
- $C(\mathcal{T})$, when \mathcal{T} is a tree,
- Davis, Johnson (1973). X with dens $X = \kappa$ that has a WCG quotient of density κ ,
- Todorčević (2006). All Banach spaces of density ω_1 , under MM.

- ℓ_p has a dense subspace of dimension continuum with a C^{∞} -smooth norm.
- If *p* > 1 such subspace is an operator range.
- **Rosenthal (1970).** Every non-separable operator range in $\ell_1(\Gamma)$ contains $\ell_1(\omega_1)$.
- Let X be a separable Banach space. Does it have a dense subspace of dimension continuum with a C[∞]-smooth norm?
- Can a dense hyperplane in ℓ_1 have a smooth norm?
- Does the space of simple functions in *L*₁ have a smooth norm?

- ℓ_p has a dense subspace of dimension continuum with a C^{∞} -smooth norm.
- If *p* > 1 such subspace is an operator range.
- Rosenthal (1970). Every non-separable operator range in $\ell_1(\Gamma)$ contains $\ell_1(\omega_1)$.
- Let *X* be a separable Banach space. Does it have a dense subspace of dimension continuum with a *C*[∞]-smooth norm?
- Can a dense hyperplane in ℓ_1 have a smooth norm?
- Does the space of simple functions in *L*₁ have a smooth norm?

- ℓ_p has a dense subspace of dimension continuum with a C^{∞} -smooth norm.
- If p > 1 such subspace is an operator range.
- Rosenthal (1970). Every non-separable operator range in $\ell_1(\Gamma)$ contains $\ell_1(\omega_1)$.
- Let *X* be a separable Banach space. Does it have a dense subspace of dimension continuum with a *C*[∞]-smooth norm?
- Can a dense hyperplane in ℓ_1 have a smooth norm?
- Does the space of simple functions in *L*₁ have a smooth norm?

- ℓ_p has a dense subspace of dimension continuum with a C^{∞} -smooth norm.
- If p > 1 such subspace is an operator range.
- Rosenthal (1970). Every non-separable operator range in *l*₁(Γ) contains *l*₁(ω₁).
- Let *X* be a separable Banach space. Does it have a dense subspace of dimension continuum with a *C*[∞]-smooth norm?
- Can a dense hyperplane in ℓ_1 have a smooth norm?
- Does the space of simple functions in *L*₁ have a smooth norm?

- ℓ_p has a dense subspace of dimension continuum with a C^{∞} -smooth norm.
- If p > 1 such subspace is an operator range.
- Rosenthal (1970). Every non-separable operator range in *l*₁(Γ) contains *l*₁(ω₁).
- Let *X* be a separable Banach space. Does it have a dense subspace of dimension continuum with a *C*[∞]-smooth norm?
- Can a dense hyperplane in ℓ_1 have a smooth norm?
- Does the space of simple functions in *L*₁ have a smooth norm?

- ℓ_p has a dense subspace of dimension continuum with a C^{∞} -smooth norm.
- If p > 1 such subspace is an operator range.
- Rosenthal (1970). Every non-separable operator range in *l*₁(Γ) contains *l*₁(ω₁).
- Let *X* be a separable Banach space. Does it have a dense subspace of dimension continuum with a *C*[∞]-smooth norm?
- Can a dense hyperplane in ℓ_1 have a smooth norm?
- Does the space of simple functions in L_1 have a smooth norm?

- S. Dantas, P. Hájek, and T. Russo, Smooth norms in dense subspaces of Banach spaces, *J. Math. Anal. Appl.* 487 (2020), 123963.
- P. Hájek and T. Russo, On densely isomorphic normed spaces, *J. Funct. Anal.* 279 (2020), 108667.
- S. Dantas, P. Hájek, and T. Russo, Smooth and polyhedral norms via fundamental biorthogonal systems, arXiv:2201.03379.
- S. Dantas, P. Hájek, and T. Russo, Smooth norms in dense subspaces of $\ell_p(\Gamma)$ and operator ranges, *in preparation*.

Thank you for your attention!

- S. Dantas, P. Hájek, and T. Russo, Smooth norms in dense subspaces of Banach spaces, *J. Math. Anal. Appl.* 487 (2020), 123963.
- P. Hájek and T. Russo, On densely isomorphic normed spaces, *J. Funct. Anal.* 279 (2020), 108667.
- S. Dantas, P. Hájek, and T. Russo, Smooth and polyhedral norms via fundamental biorthogonal systems, arXiv:2201.03379.
- S. Dantas, P. Hájek, and T. Russo, Smooth norms in dense subspaces of $\ell_p(\Gamma)$ and operator ranges, *in preparation*.

Thank you for your attention!