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• Renorming theory = Find an equivalent norm on X with the
strongest possible form of a certain property.

• Let U ⊆ X be open. f : U → Y is differentiable at x ∈ U if
there is f ′(x) ∈ B(X,Y) such that

lim
h→0

f (x + h) − f (x) − ⟨f ′(x), h⟩
∥h∥ = 0.

• Ck-smoothness, rules of calculus, Implicit Function theorem, ...
• If p ∉ N, the ℓp norm is C ⌊p⌋-smooth, but not C ⌊p⌋+1.

And ℓp has no C ⌊p⌋+1-smooth norm!
• Smooth references:

Deville, Godefroy, Zizler, Smoothness and Renormings in
Banach Spaces.

Hájek, Johanis, Smooth analysis in Banach spaces.

Smoothness 101
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• If a separable Banach space X has a C1-smooth norm, then X is
Asplund (i.e., X∗ is separable).

• No closed, inf-dim subspace of ℓ1 has a C1-smooth norm.
• Meshkov (1978). If X and X∗ admit a C2-smooth norm, then X

is isomorphic to a Hilbert space.
• Fabian, Whitfield, Zizler (1983). If X admits a C2-smooth

norm, either it contains c0, or it is super-reflexive with type 2.
• Deville (1989). If X has a C∞-smooth norm, either it contains c0,

or it is super-reflexive, with exact cotype 2k, and it contains ℓ2k.
• Can the first case actually happen? The c0 norm doesn’t seem

smooth...
• Pechanec, Whitfield, Zizler (1981) – Fabian, Zizler (1997). If
X has a LFC norm, then it is c0-saturated and Asplund.

All these proofs require X to be complete (variational principles).

Smoothness and structure
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• Let X be a normed space with a countable algebraic basis.
• Vanderwerff (1992). X has a C1-smooth norm.
• Hájek (1995). X has a C∞-smooth norm.
• Deville, Fonf, Hájek (1998). X has an analytic norm.

• Guirao, Montesinos, Zizler, Open problems..., Problem 149:
Does the space of finitely supported vectors in ℓ1(Γ) have a
C1-smooth norm (when Γ is uncountable)?

• Dantas, Hájek, R. (JMAA’20). Given a Banach space X, is
there a dense subspace of X that admits a Ck-smooth norm?

• Benyamini, Lindenstrauss, Geometric Nonlinear Functional Analysis
• Does the existence of a smooth norm on some ‘large’ subset of a

Banach space X imply that X is Asplund?
• Is there a norm on ℓ1 that is differentiable outside a countable

union of closed hyperplanes?

Normed spaces
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• c0(Γ) has a C∞-smooth norm.
• Normed spaces of countable dim have a C∞-smooth norm.

Theorem (Dantas, Hájek, R., JMAA’20)

ℓF
∞ B span{1A : A ⊆ N} has a C∞-smooth norm.

• Take a sequence 𝜀j ↘ 0 and define T : ℓF
∞ → ℓ∞ by

(x(j))∞j=1 ↦→ ((1 + 𝜀j) · x(j))∞j=1.

• Look at the picture. ■

• Take X ⊆ ℓ∞ of countable dimension, X = span{ej}∞j=1.
• Take {vj}∞j=1 ⊆ ℓF

∞ ‘very close’ to ejs.
• X is isomorphic to span{vj}∞j=1 (small perturbation lemma).

• Well, I’m cheating a bit, {ej}∞j=1 has to be an M-basis.

Strong maxima
A.k.a. The secret of smoothness unveiled
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Time flies
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Theorem (Dantas, Hájek, R., JMAA’20)

Let X be a Banach space with long unconditional basis and let Y be
the linear span of such basis. Then, Y has a C∞-smooth norm.

Theorem (Dantas, Hájek, R., arXiv:2201.03379)

Let X be a Banach space with a fundamental biorthogonal system
{e𝛼; 𝜑𝛼}𝛼∈Γ. Consider Y B span{e𝛼}𝛼∈Γ. Then:

(i) Y admits a polyhedral and LFC norm.
(ii) Y admits a C∞-smooth and LFC norm.
(iii) Y admits a C1-smooth LUR norm.

Moreover, such norms are dense.

The norm ∥·∥ is LFC on X if for each x ∈ SX there exist an open
nhood U of x, functionals 𝜑1, . . . , 𝜑k ∈ X∗, and G : Rk → R such that

∥y∥ = G
(
⟨𝜑1, y⟩, . . . , ⟨𝜑k, y⟩

)
for every y ∈ U.

Fundamental biorthogonal systems
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• Dantas, Hájek, R. (JMAA’20). No dense subspace of c0(𝜔1)
admits an analytic norm.

• Fabian, Whitfield, Zizler (1983). Let Y be a normed space with
a C1,+

loc -smooth (e.g., C2-smooth) LUR norm ∥·∥. Then the
completion of Y is super-reflexive.

• What about dense subspaces that are not the span of a
fundamental biorthogonal system?

• Hájek, R., JFA’20. Different dense subspaces of a Banach space
can be extremely different.

• See Slide 8 for more about this.
• Main problem. Is there a Banach space X such that no dense

subspace of X has a Ck-smooth norm?

Can we aim for more?
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{e𝛼; 𝜑𝛼}𝛼∈Γ ⊆ X ×X∗ is a fundamental biorthogonal system for X if
• ⟨𝜑𝛽 , e𝛼⟩ = 𝛿𝛼,𝛽 ,
• span{e𝛼}𝛼∈Γ is dense in X.

Which Banach spaces admit a fundamental biorthogonal system?
• Plichko spaces (e.g., WCG, reflexive, c0(Γ), L1(𝜇) for a finite

measure, C(K) for K Valdivia),
• Kalenda (2020). Every space with projectional skeleton (duals

of Asplund spaces, preduals of Von Neumann algebras, preduals
of JBW∗-triples),

• ℓ∞(Γ), ℓc
∞(Λ) when |Λ| ⩽ 𝔠,

• C(T ), when T is a tree,
• Davis, Johnson (1973). X with densX = 𝜅 that has a WCG

quotient of density 𝜅,
• Todorc̆ević (2006). All Banach spaces of density 𝜔1, under MM.

How general is the result?
Enter at your own risk
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Theorem (Dantas, Hájek, R., in preparation)

Let 1 ⩽ p < ∞ and r ∈ (0, p). The dense subspace ℓr (Γ) of ℓp(Γ) has
a C∞-smooth norm.

• ℓp has a dense subspace of dimension continuum with a
C∞-smooth norm.

• If p > 1 such subspace is an operator range.
• Rosenthal (1970). Every non-separable operator range in ℓ1(Γ)

contains ℓ1(𝜔1).
• Let X be a separable Banach space. Does it have a dense

subspace of dimension continuum with a C∞-smooth norm?
• Can a dense hyperplane in ℓ1 have a smooth norm?
• Does the space of simple functions in L1 have a smooth norm?

Other dense subspaces
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