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Spaces of Lipschitz functions

Given a complete metric space (M,d) with a distinguished point 0 ∈ M and a
Banach space X , we consider the space

Lip0(M,X ) := {f : M −→ X : f is Lipschitz, f (0) = 0}

which is a Banach space when equipped with the norm

‖f‖L := sup

{
‖f (x)− f (y)‖

d(x , y)
: x 6= y

}
.

When X = R we simply write Lip0(M).
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Geometric properties on Lip0(M)

A lot of properties have been analysed in Lip0(M) as well as in its predual
F(M) (approximation properties, the property of being an L1 or L∞ space,
octahedrality, Daugavet property etc.).

However, many of these properties are
unknown in the vector valued case. This is the case, for instance, of
octahedral norms.

Definition
Let X be a Banach space. We say that X is octahedral if, given a
finite-dimensional subspace Y of X and ε > 0, there exists x ∈ SX so that

‖y + λx‖ ≥ (1− ε)(‖y‖+ |λ|)

holds for every y ∈ Y and every λ ∈ R.

It is known that in the previous definition we can replace “finite dimensional
subspace” with “finite subset”.
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Octahedrality on Lip0(M)

As a consequence of a big collective effort

(Y. Ivakhno, V. Kadets and D.
Werner (2007), L. García-Lirola, A. Procházka and A. R.Z. (2018), Prof. Avilés
and G. Martínez-Cervantes (2019)) the following characterisation is obtained.

Theorem
Let M be a (complete) metric space. The following are equivalent:

1 Lip0(M) is octahedral.
2 For every pair of points x , y then d(x , y) is the infimum of the lengths of

the rectifiable curves joining them (M is length).
3 For every Lipschitz function f and ε > 0, the set of ε-points is infinite,

where x ∈ M is an ε-point if ı́nf
δ>0
‖f|B(x,δ)‖ ≥ ‖f‖ − ε.

4 Lip0(M) has the Daugavet property (if T : Lip0(M) −→ Lip0(M) rank-one
linear continuous then ‖T + I‖ = 1 + ‖T‖).
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Sketch of proof (3)⇒(1)

Pick f1, . . . , fn ∈ SLip0(M) and ε > 0. Let us find g ∈ SLip0(M) with
‖fi + g‖ > 2− ε.

For every i , pick xi ∈ M so that fi ε-approximates its norm at
B(xi , δ) for every δ > 0. Assume the xi ’s are different. Find R > 0 so that
B(xi ,R) are pairwise disjoint. Take two points ui , vi ∈ B(xi , r) so that
fi (ui )− fi (vi ) > (1− ε)d(ui , vi ) for r < R. Now define g = 0 out of

⋃
i B(xi ,R),

so that g(vi ) = 0 for every i and g(ui ) = d(ui , vi ). If r is small enough ‖g‖ ≤ 1.
It remains to extend the functions to M (McShane theorem) and it is done,
because ‖fi + g‖ ≈ 2 evaluating at ui , vi .

Can the above proof be adapted to vector-valued case?
No, McShane extension theorem is false in higher dimensions.
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A new structure on Lip0(M,X )

Given m ∈ M we can define the evaluaton mapping δm ∈ Lip(M)∗ by
δm(f ) = f (m) for all f ∈ Lip0(M).

If we define F(M) := span{δm : m ∈ M} we
get that

F(M)∗ = Lip0(M).

Given a metric space M, a Banach space X and a Lispchitz map f : M −→ X
such that f (0) = 0, there exists a bounded operator f̂ : F(M) −→ X defined by

f̂ (δm) := f (m)

This operator f̂ satisfies that ‖f̂‖ = ‖f‖L and that the following diagram is
conmutative

M f //
� _

δ

��

X

F(M)
f̂

<<
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A new structure on Lip0(M,X )

From here it follows that the mapping

Lip0(M,X ) −→ L(F(M),X ),

f 7−→ f̂

is an onto linear isometry, so Lip0(M,Y ) = L(F(M),Y ).

So Lip0(M,X ) is a
space of operators. Moreover, for dual Banach spaces

Lip0(M,X ∗) = L(F(M),X ∗) = L(X ,F(M)∗) = L(X ,Lip0(M)).
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Does L(X ,Y ) structure help?

It is known that L(X ,Y ) octahedral+ X uniformly convex⇒ X is
finitely-representable in Y (i.e. every finite dimensional subspace F ⊆ X can
be embedded in Y with ε-isometries).
Hence, Y octahedral 6⇒ L(X ,Y ) octahedral (X = `p (2 < p <∞) and Y = `1).

Proposition
Let X be finitely representable in `1, Y be octahedral. If X has MAP then
L(X ,Y ) is octahedral.

Idea: T1, . . . ,Tn ∈ SL(X ,Y ) and ε > 0, we need to find T ∈ SL(X ,Y ) s.t.

‖Ti + T‖ > 2− ε ∀i ∈ {1, . . . ,n}.

This is equivalent to find, for every i , en element xi ∈ SX so that

2− ε < ‖Ti (xi ) + T (xi )‖ ≤ ‖Ti (xi )‖+ ‖T (xi )‖ ≤ 2.
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Idea

Proposition
Let X be finitely representable in `1, Y be octahedral. If X has MAP then
L(X ,Y ) is octahedral.

Let xi ∈ SX s.t. ‖Ti (xi )‖ ≈ 1.

Find (MAP) P : X −→ X norm-one and finite rank
with ‖P(xi )‖ ≈ 1. Take (finite representability) Φ : P(X ) ↪→ `K

1 a ε-isometry.
By octahedrality of Y , taking Z := span{Ti (xi ) : 1 ≤ i ≤ n} and δ > 0, find a
subspace S ⊆ Y so that

S is δ-isometric to `K
1 .

‖z + s‖ > (1− δ)(‖z‖+ ‖s‖) holds for every z ∈ Z and s ∈ S
Take Ψ : `K

1 −→ S a δ-isometry and i : S −→ Y the inclusion operator. Now
define

T : X P−→P(X )
Φ−→ `n

1
Ψ−→S i−→Y
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Main result

Corollary
X finitely representable in `1 with MAP. If Lip0(M) octahedral⇒ L(X ,Lip0(M))
octahedral.

Theorem
Let M be a complete metric space and X be a Banach space. If Lip0(M) has
octahedral norm, then L(X ,Lip0(M)) has octahedral norm.
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Key Lemma

Lemma
Let Lip0(M) be octahedral. Given f1, . . . , fn ∈ SLip0(M) we can find a subspace
Y ⊆ Lip0(M) so that

1 ‖fi + f‖ > 2− ε holds for every i and every f ∈ SY .
2 Y is isometric to c0.

Let Vi := {x ∈ M : ‖fi‖B(x,δ) > 1− ε ∀δ > 0}, which is infinite. Take {x i
n} ⊆ Vi

where all the points are different (x i
n 6= x j

m if (n, i) 6= (m, j)). Given n ∈ N define
gn as we did in the previous proof. It can be constructed so that gn have
pairwise disjoint support, so {gn} is isometric to c0 (Kadets-Martín-Soloviova
2016). Condition 1 is computation.
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Sketch for the theorem

Theorem
Let M be a complete metric space and X be a Banach space. If Lip0(M) has
octahedral norm, then L(X ,Lip0(M)) has octahedral norm.

Let T1, . . . ,Tn norm-one operators in L(X ,Lip0(M)).

Find xi so that
‖Ti (xi )‖ > 1− ε for every i . A perturbation argument and the lemma allows to
find a subspace Y ⊆ Lip0(M) so that

Y isometric to c0.
‖Ti (xi ) + y‖ ≈ ‖Ti (xi )‖+ ‖y‖ for every y ∈ Y .

It is sufficient to construct an operator T : X −→ Lip0(M) so that ‖T (xi )‖ ≈ 1
and T (xi ) ∈ Y . If so

‖T + Ti‖ ≥ ‖T (xi ) + Ti (xi )‖ ≈ ‖T (xi )‖+ ‖Ti (xi )‖ ≈ 2.
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Sketch for the theorem

It is sufficient to construct an operator T : X −→ Lip0(M) so that ‖T (xi )‖ ≈ 1
and T (xi ) ∈ Y .

Take Z := span{x1, . . . , xn}. Find a (1 + ε)-isometry
φ : Z −→ c0 (finite representability).

Theorem (Lindenstrauss, 1964)
Given a Banach space X, TFAE:

1 X ∗ is isometrically isomorphic to L1(µ), for certain measure µ.
2 All T : Z −→ X compact admits, for all ε > 0 and all Z ⊆ Y, a compact

extension T̂ : Y −→ X s.t. ‖T̂‖ ≤ (1 + ε)‖T‖.
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Consequences

Corollary
Let M be a complete metric space. TFAE:

1 Lip0(M) is octahedral.
2 M is length (d(x , y) length of rectifiable curves).
3 Lip0(M,X ∗) is octahedral for every Banach space X.

Question
Let M be a length space. Does Lip0(M,X ) have the Daugavet property for
every X?

1 The answer is YES if M is an injective Banach space or a Hilbert space.
2 The proof holds because M are good norm-preserving extensors of

Lipschitz functions N ⊆ M −→ M.
3 This is a task for another day ...
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