Geometry of spaces of vector-valued Lipschitz functions

Abraham Rueda Zoca Workshop on Banach spaces and Banach lattices II

Universidad de Murcia Departamento de Matemáticas

Abraham Rueda Zoca (Universidad de Murcia) Geometry of spaces of vector-valued Lipschitz function

< E

・ロ・・ (日・・ (日・)

Given a **complete** metric space (M, d) with a distinguished point $0 \in M$ and a Banach space *X*, we consider the space

$$\operatorname{Lip}_{0}(M, X) := \{f : M \longrightarrow X : f \text{ is Lipschitz}, f(0) = 0\}$$

which is a Banach space when equipped with the norm

$$\|f\|_L := \sup\left\{\frac{\|f(x) - f(y)\|}{d(x, y)} : x \neq y\right\}.$$

Given a **complete** metric space (M, d) with a distinguished point $0 \in M$ and a Banach space *X*, we consider the space

$$\operatorname{Lip}_{0}(M, X) := \{f : M \longrightarrow X : f \text{ is Lipschitz}, f(0) = 0\}$$

which is a Banach space when equipped with the norm

$$||f||_L := \sup \left\{ \frac{||f(x) - f(y)||}{d(x, y)} : x \neq y \right\}.$$

When $X = \mathbb{R}$ we simply write $\operatorname{Lip}_0(M)$.

A lot of properties have been analysed in $\operatorname{Lip}_0(M)$ as well as in its predual $\mathcal{F}(M)$ (approximation properties, the property of being an L_1 or L_∞ space, octahedrality, Daugavet property etc.).

A lot of properties have been analysed in $\operatorname{Lip}_0(M)$ as well as in its predual $\mathcal{F}(M)$ (approximation properties, the property of being an L_1 or L_∞ space, octahedrality, Daugavet property etc.). However, many of these properties are unknown in the vector valued case.

A lot of properties have been analysed in $\operatorname{Lip}_0(M)$ as well as in its predual $\mathcal{F}(M)$ (approximation properties, the property of being an L_1 or L_∞ space, octahedrality, Daugavet property etc.). However, many of these properties are unknown in the vector valued case. This is the case, for instance, of *octahedral norms*.

Definition

Let X be a Banach space.

A lot of properties have been analysed in $\operatorname{Lip}_0(M)$ as well as in its predual $\mathcal{F}(M)$ (approximation properties, the property of being an L_1 or L_∞ space, octahedrality, Daugavet property etc.). However, many of these properties are unknown in the vector valued case. This is the case, for instance, of *octahedral norms*.

Definition

Let *X* be a Banach space. We say that *X* is *octahedral* if, given a finite-dimensional subspace *Y* of *X* and $\varepsilon > 0$, there exists $x \in S_X$ so that

$$\|\mathbf{y} + \lambda \mathbf{x}\| \ge (1 - \varepsilon)(\|\mathbf{y}\| + |\lambda|)$$

holds for every $y \in Y$ and every $\lambda \in \mathbb{R}$.

A lot of properties have been analysed in $\operatorname{Lip}_0(M)$ as well as in its predual $\mathcal{F}(M)$ (approximation properties, the property of being an L_1 or L_∞ space, octahedrality, Daugavet property etc.). However, many of these properties are unknown in the vector valued case. This is the case, for instance, of *octahedral norms*.

Definition

Let *X* be a Banach space. We say that *X* is *octahedral* if, given a finite-dimensional subspace *Y* of *X* and $\varepsilon > 0$, there exists $x \in S_X$ so that

$$\|\mathbf{y} + \lambda \mathbf{x}\| \ge (1 - \varepsilon)(\|\mathbf{y}\| + |\lambda|)$$

holds for every $y \in Y$ and every $\lambda \in \mathbb{R}$.

It is known that in the previous definition we can replace "finite dimensional subspace" with "finite subset".

Octahedrality on $Lip_0(M)$

As a consequence of a big collective effort

As a consequence of a big collective effort (Y. Ivakhno, V. Kadets and D. Werner (2007), L. García-Lirola, A. Procházka and A. R.Z. (2018), Prof. Avilés and G. Martínez-Cervantes (2019))

Theorem

Theorem

Let M be a (complete) metric space. The following are equivalent:

• Lip₀(M) is octahedral.

Theorem

- Lip₀(M) is octahedral.
- For every pair of points x, y then d(x, y) is the infimum of the lengths of the rectifiable curves joining them (M is length).

Theorem

- Lip₀(M) is octahedral.
- For every pair of points x, y then d(x, y) is the infimum of the lengths of the rectifiable curves joining them (M is length).
- Solution For every Lipschitz function f and ε > 0, the set of ε-points is infinite, where x ∈ M is an ε-point if inf_{δ>0} ||f_{|B(x,δ)}|| ≥ ||f|| − ε.

Theorem

- Lip₀(M) is octahedral.
- For every pair of points x, y then d(x, y) is the infimum of the lengths of the rectifiable curves joining them (M is length).
- Solution For every Lipschitz function f and ε > 0, the set of ε-points is infinite, where x ∈ M is an ε-point if inf_{δ>0} ||f_{|B(x,δ)}|| ≥ ||f|| − ε.
- Solution Lip₀(*M*) has the Daugavet property (if *T* : Lip₀(*M*) → Lip₀(*M*) rank-one linear continuous then ||*T* + *I*|| = 1 + ||*T*||).

Pick $f_1, \ldots, f_n \in S_{\operatorname{Lip}_0(M)}$ and $\varepsilon > 0$. Let us find $g \in S_{\operatorname{Lip}_0(M)}$ with $||f_i + g|| > 2 - \varepsilon$.

Pick $f_1, \ldots, f_n \in S_{\operatorname{Lip}_0(M)}$ and $\varepsilon > 0$. Let us find $g \in S_{\operatorname{Lip}_0(M)}$ with $||f_i + g|| > 2 - \varepsilon$. For every *i*, pick $x_i \in M$ so that $f_i \varepsilon$ -approximates its norm at $B(x_i, \delta)$ for every $\delta > 0$. Assume the x_i 's are different.

Pick $f_1, \ldots, f_n \in S_{\operatorname{Lip}_0(M)}$ and $\varepsilon > 0$. Let us find $g \in S_{\operatorname{Lip}_0(M)}$ with $||f_i + g|| > 2 - \varepsilon$. For every *i*, pick $x_i \in M$ so that $f_i \varepsilon$ -approximates its norm at $B(x_i, \delta)$ for every $\delta > 0$. Assume the x_i 's are different. Find R > 0 so that $B(x_i, R)$ are pairwise disjoint. Take two points $u_i, v_i \in B(x_i, r)$ so that $f_i(u_i) - f_i(v_i) > (1 - \varepsilon)d(u_i, v_i)$ for r < R.

Pick $f_1, \ldots, f_n \in S_{\operatorname{Lip}_0(M)}$ and $\varepsilon > 0$. Let us find $g \in S_{\operatorname{Lip}_0(M)}$ with $||f_i + g|| > 2 - \varepsilon$. For every *i*, pick $x_i \in M$ so that $f_i \varepsilon$ -approximates its norm at $B(x_i, \delta)$ for every $\delta > 0$. Assume the x_i 's are different. Find R > 0 so that $B(x_i, R)$ are pairwise disjoint. Take two points $u_i, v_i \in B(x_i, r)$ so that $f_i(u_i) - f_i(v_i) > (1 - \varepsilon)d(u_i, v_i)$ for r < R. Now define g = 0 out of $\bigcup_i B(x_i, R)$, so that $g(v_i) = 0$ for every *i* and $g(u_i) = d(u_i, v_i)$.

Pick $f_1, \ldots, f_n \in S_{\operatorname{Lip}_0(M)}$ and $\varepsilon > 0$. Let us find $g \in S_{\operatorname{Lip}_0(M)}$ with $\|f_i + g\| > 2 - \varepsilon$. For every *i*, pick $x_i \in M$ so that $f_i \varepsilon$ -approximates its norm at $B(x_i, \delta)$ for every $\delta > 0$. Assume the x_i 's are different. Find R > 0 so that $B(x_i, R)$ are pairwise disjoint. Take two points $u_i, v_i \in B(x_i, r)$ so that $f_i(u_i) - f_i(v_i) > (1 - \varepsilon)d(u_i, v_i)$ for r < R. Now define g = 0 out of $\bigcup_i B(x_i, R)$, so that $g(v_i) = 0$ for every *i* and $g(u_i) = d(u_i, v_i)$. If *r* is small enough $\|g\| \le 1$. It remains to extend the functions to *M* (McShane theorem) and it is done, because $\|f_i + g\| \approx 2$ evaluating at u_i, v_i .

Pick $f_1, \ldots, f_n \in S_{\operatorname{Lip}_0(M)}$ and $\varepsilon > 0$. Let us find $g \in S_{\operatorname{Lip}_0(M)}$ with $\|f_i + g\| > 2 - \varepsilon$. For every *i*, pick $x_i \in M$ so that $f_i \varepsilon$ -approximates its norm at $B(x_i, \delta)$ for every $\delta > 0$. Assume the x_i 's are different. Find R > 0 so that $B(x_i, R)$ are pairwise disjoint. Take two points $u_i, v_i \in B(x_i, r)$ so that $f_i(u_i) - f_i(v_i) > (1 - \varepsilon)d(u_i, v_i)$ for r < R. Now define g = 0 out of $\bigcup_i B(x_i, R)$, so that $g(v_i) = 0$ for every *i* and $g(u_i) = d(u_i, v_i)$. If *r* is small enough $\|g\| \le 1$. It remains to extend the functions to *M* (McShane theorem) and it is done, because $\|f_i + g\| \approx 2$ evaluating at u_i, v_i .

Can the above proof be adapted to vector-valued case?

Pick $f_1, \ldots, f_n \in S_{\operatorname{Lip}_0(M)}$ and $\varepsilon > 0$. Let us find $g \in S_{\operatorname{Lip}_0(M)}$ with $\|f_i + g\| > 2 - \varepsilon$. For every *i*, pick $x_i \in M$ so that $f_i \varepsilon$ -approximates its norm at $B(x_i, \delta)$ for every $\delta > 0$. Assume the x_i 's are different. Find R > 0 so that $B(x_i, R)$ are pairwise disjoint. Take two points $u_i, v_i \in B(x_i, r)$ so that $f_i(u_i) - f_i(v_i) > (1 - \varepsilon)d(u_i, v_i)$ for r < R. Now define g = 0 out of $\bigcup_i B(x_i, R)$, so that $g(v_i) = 0$ for every *i* and $g(u_i) = d(u_i, v_i)$. If *r* is small enough $\|g\| \le 1$. It remains to extend the functions to *M* (McShane theorem) and it is done, because $\|f_i + g\| \approx 2$ evaluating at u_i, v_i .

Can the above proof be adapted to vector-valued case? No, McShane extension theorem is false in higher dimensions.

Given $m \in M$ we can define the evaluaton mapping $\delta_m \in Lip(M)^*$ by $\delta_m(f) = f(m)$ for all $f \in Lip_0(M)$.

Given $m \in M$ we can define the evaluaton mapping $\delta_m \in Lip(M)^*$ by $\delta_m(f) = f(m)$ for all $f \in Lip_0(M)$. If we define $\mathcal{F}(M) := \overline{\text{span}} \{\delta_m : m \in M\}$ we get that

 $\mathcal{F}(M)^* = \operatorname{Lip}_0(M).$

Given $m \in M$ we can define the evaluaton mapping $\delta_m \in Lip(M)^*$ by $\delta_m(f) = f(m)$ for all $f \in Lip_0(M)$. If we define $\mathcal{F}(M) := \overline{\text{span}} \{\delta_m : m \in M\}$ we get that

$$\mathcal{F}(M)^* = \operatorname{Lip}_0(M).$$

Given a metric space *M*, a Banach space *X* and a Lispchitz map $f : M \longrightarrow X$ such that f(0) = 0, there exists a bounded operator $\hat{f} : \mathcal{F}(M) \longrightarrow X$ defined by

$$\hat{f}(\delta_m) := f(m)$$

Given $m \in M$ we can define the evaluaton mapping $\delta_m \in Lip(M)^*$ by $\delta_m(f) = f(m)$ for all $f \in Lip_0(M)$. If we define $\mathcal{F}(M) := \overline{\text{span}} \{\delta_m : m \in M\}$ we get that

$$\mathcal{F}(M)^* = \operatorname{Lip}_0(M).$$

Given a metric space *M*, a Banach space *X* and a Lispchitz map $f : M \longrightarrow X$ such that f(0) = 0, there exists a bounded operator $\hat{f} : \mathcal{F}(M) \longrightarrow X$ defined by

$$\hat{f}(\delta_m) := f(m)$$

This operator \hat{f} satisfies that $\|\hat{f}\| = \|f\|_L$ and that the following diagram is conmutative

From here it follows that the mapping

$$\begin{array}{rcl} \operatorname{Lip}_0(M,X) & \longrightarrow & L(\mathcal{F}(M),X), \\ f & \longmapsto & \hat{f} \end{array}$$

is an onto linear isometry, so $\operatorname{Lip}_0(M, Y) = L(\mathcal{F}(M), Y)$.

From here it follows that the mapping

$$\begin{array}{rcl} \operatorname{Lip}_0(M,X) & \longrightarrow & L(\mathcal{F}(M),X), \\ f & \longmapsto & \hat{f} \end{array}$$

is an onto linear isometry, so $Lip_0(M, Y) = L(\mathcal{F}(M), Y)$. So $Lip_0(M, X)$ is a space of operators. Moreover, for dual Banach spaces

$$\operatorname{Lip}_{0}(M, X^{*}) = L(\mathcal{F}(M), X^{*}) = L(X, \mathcal{F}(M)^{*}) = L(X, \operatorname{Lip}_{0}(M)).$$

Abraham Rueda Zoca (Universidad de Murcia) Geometry of spaces of vector-valued Lipschitz function

It is known that L(X, Y) octahedral+ X uniformly convex \Rightarrow X is finitely-representable in Y

It is known that L(X, Y) octahedral+ X uniformly convex \Rightarrow X is finitely-representable in Y (i.e. every finite dimensional subspace $F \subseteq X$ can be embedded in Y with ε -isometries).

It is known that L(X, Y) octahedral+ X uniformly convex \Rightarrow X is finitely-representable in Y (i.e. every finite dimensional subspace $F \subseteq X$ can be embedded in Y with ε -isometries).

Hence, Y octahedral $\neq L(X, Y)$ octahedral ($X = \ell_p (2 and <math>Y = \ell_1$).

It is known that L(X, Y) octahedral+ X uniformly convex $\Rightarrow X$ is finitely-representable in Y (i.e. every finite dimensional subspace $F \subseteq X$ can be embedded in Y with ε -isometries).

Hence, Y octahedral $\neq L(X, Y)$ octahedral ($X = \ell_p$ ($2) and <math>Y = \ell_1$).

Proposition

Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Idea: $T_1, \ldots, T_n \in S_{L(X,Y)}$ and $\varepsilon > 0$, we need to find $T \in S_{L(X,Y)}$ s.t.

 $||T_i + T|| > 2 - \varepsilon \forall i \in \{1, \ldots, n\}.$

It is known that L(X, Y) octahedral+ X uniformly convex $\Rightarrow X$ is finitely-representable in Y (i.e. every finite dimensional subspace $F \subseteq X$ can be embedded in Y with ε -isometries).

Hence, Y octahedral $\neq L(X, Y)$ octahedral ($X = \ell_p \ (2 and <math>Y = \ell_1$).

Proposition

Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Idea: $T_1, \ldots, T_n \in S_{L(X,Y)}$ and $\varepsilon > 0$, we need to find $T \in S_{L(X,Y)}$ s.t.

$$||T_i + T|| > 2 - \varepsilon \,\forall i \in \{1, \ldots, n\}.$$

This is equivalent to find, for every *i*, en element $x_i \in S_X$ so that

$$2-\varepsilon < \|T_i(x_i) + T(x_i)\|$$

It is known that L(X, Y) octahedral+ X uniformly convex $\Rightarrow X$ is finitely-representable in Y (i.e. every finite dimensional subspace $F \subseteq X$ can be embedded in Y with ε -isometries).

Hence, Y octahedral $\neq L(X, Y)$ octahedral ($X = \ell_p (2 and <math>Y = \ell_1$).

Proposition

Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Idea: $T_1, \ldots, T_n \in S_{L(X,Y)}$ and $\varepsilon > 0$, we need to find $T \in S_{L(X,Y)}$ s.t.

$$||T_i + T|| > 2 - \varepsilon \,\forall i \in \{1, \ldots, n\}.$$

This is equivalent to find, for every *i*, en element $x_i \in S_X$ so that

$$2 - \varepsilon < \|T_i(x_i) + T(x_i)\| \le \|T_i(x_i)\| + \|T(x_i)\| \le 2.$$
Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Let $x_i \in S_X$ s.t. $||T_i(x_i)|| \approx 1$.

Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Let $x_i \in S_X$ s.t. $||T_i(x_i)|| \approx 1$. Find (MAP) $P : X \longrightarrow X$ norm-one and finite rank with $||P(x_i)|| \approx 1$.

Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Let $x_i \in S_X$ s.t. $||T_i(x_i)|| \approx 1$. Find (MAP) $P : X \longrightarrow X$ norm-one and finite rank with $||P(x_i)|| \approx 1$. Take (finite representability) $\Phi : P(X) \hookrightarrow \ell_1^K$ a ε -isometry.

Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Let $x_i \in S_X$ s.t. $||T_i(x_i)|| \approx 1$. Find (MAP) $P: X \longrightarrow X$ norm-one and finite rank with $||P(x_i)|| \approx 1$. Take (finite representability) $\Phi: P(X) \hookrightarrow \ell_1^K$ a ε -isometry. By octahedrality of Y, taking $Z := \text{span}\{T_i(x_i): 1 \le i \le n\}$ and $\delta > 0$, find a subspace $S \subseteq Y$ so that

Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Let $x_i \in S_X$ s.t. $||T_i(x_i)|| \approx 1$.Find (MAP) $P : X \longrightarrow X$ norm-one and finite rank with $||P(x_i)|| \approx 1$. Take (finite representability) $\Phi : P(X) \hookrightarrow \ell_1^K$ a ε -isometry. By octahedrality of Y, taking $Z := \text{span}\{T_i(x_i) : 1 \le i \le n\}$ and $\delta > 0$, find a subspace $S \subseteq Y$ so that

• S is δ -isometric to ℓ_1^K .

Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Let $x_i \in S_X$ s.t. $||T_i(x_i)|| \approx 1$.Find (MAP) $P : X \longrightarrow X$ norm-one and finite rank with $||P(x_i)|| \approx 1$. Take (finite representability) $\Phi : P(X) \hookrightarrow \ell_1^K$ a ε -isometry. By octahedrality of Y, taking $Z := \text{span}\{T_i(x_i) : 1 \le i \le n\}$ and $\delta > 0$, find a subspace $S \subseteq Y$ so that

- S is δ -isometric to ℓ_1^K .
- $\|z + s\| > (1 \delta)(\|z\| + \|s\|)$ holds for every $z \in Z$ and $s \in S$

Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Let $x_i \in S_X$ s.t. $||T_i(x_i)|| \approx 1$.Find (MAP) $P : X \longrightarrow X$ norm-one and finite rank with $||P(x_i)|| \approx 1$. Take (finite representability) $\Phi : P(X) \hookrightarrow \ell_1^K$ a ε -isometry. By octahedrality of Y, taking $Z := \text{span}\{T_i(x_i) : 1 \le i \le n\}$ and $\delta > 0$, find a subspace $S \subseteq Y$ so that

- S is δ -isometric to ℓ_1^K .
- $||z + s|| > (1 \delta)(||z|| + ||s||)$ holds for every $z \in Z$ and $s \in S$

Take $\Psi : \ell_1^K \longrightarrow S$ a δ -isometry and $i : S \longrightarrow Y$ the inclusion operator.

Let X be finitely representable in ℓ_1 , Y be octahedral. If X has MAP then L(X, Y) is octahedral.

Let $x_i \in S_X$ s.t. $||T_i(x_i)|| \approx 1$.Find (MAP) $P: X \longrightarrow X$ norm-one and finite rank with $||P(x_i)|| \approx 1$. Take (finite representability) $\Phi: P(X) \hookrightarrow \ell_1^K$ a ε -isometry. By octahedrality of Y, taking $Z := \text{span}\{T_i(x_i): 1 \le i \le n\}$ and $\delta > 0$, find a subspace $S \subseteq Y$ so that

• S is δ -isometric to ℓ_1^K .

• $||z + s|| > (1 - \delta)(||z|| + ||s||)$ holds for every $z \in Z$ and $s \in S$

Take $\Psi : \ell_1^K \longrightarrow S$ a δ -isometry and $i : S \longrightarrow Y$ the inclusion operator. Now define

$$T: X \xrightarrow{P} P(X) \xrightarrow{\Phi} \ell_1^n \xrightarrow{\Psi} S \xrightarrow{i} Y$$

X finitely representable in ℓ_1 with MAP. If $\operatorname{Lip}_0(M)$ octahedral $\Rightarrow L(X, \operatorname{Lip}_0(M))$ octahedral.

X finitely representable in ℓ_1 with MAP. If $\operatorname{Lip}_0(M)$ octahedral $\Rightarrow L(X, \operatorname{Lip}_0(M))$ octahedral.

Theorem

Let *M* be a complete metric space and *X* be a Banach space. If $Lip_0(M)$ has octahedral norm, then $L(X, Lip_0(M))$ has octahedral norm.

Let $Lip_0(M)$ be octahedral. Given $f_1, \ldots, f_n \in S_{Lip_0(M)}$ we can find a subspace $Y \subseteq Lip_0(M)$ so that

Let $Lip_0(M)$ be octahedral. Given $f_1, \ldots, f_n \in S_{Lip_0(M)}$ we can find a subspace $Y \subseteq Lip_0(M)$ so that

• $\|f_i + f\| > 2 - \varepsilon$ holds for every *i* and every $f \in S_Y$.

Let $Lip_0(M)$ be octahedral. Given $f_1, \ldots, f_n \in S_{Lip_0(M)}$ we can find a subspace $Y \subseteq Lip_0(M)$ so that

• $\|f_i + f\| > 2 - \varepsilon$ holds for every *i* and every $f \in S_Y$.

2 Y is isometric to c_0 .

Let $V_i := \{x \in M : ||f_i||_{B(x,\delta)} > 1 - \varepsilon \ \forall \delta > 0\}$, which is infinite.

Let $Lip_0(M)$ be octahedral. Given $f_1, \ldots, f_n \in S_{Lip_0(M)}$ we can find a subspace $Y \subseteq Lip_0(M)$ so that

•
$$\|f_i + f\| > 2 - \varepsilon$$
 holds for every *i* and every $f \in S_Y$.

2 Y is isometric to c_0 .

Let $V_i := \{x \in M : \|f_i\|_{\mathcal{B}(x,\delta)} > 1 - \varepsilon \ \forall \delta > 0\}$, which is infinite. Take $\{x_n^i\} \subseteq V_i$ where all the points are different $(x_n^i \neq x_m^j \text{ if } (n,i) \neq (m,j))$.

Let $Lip_0(M)$ be octahedral. Given $f_1, \ldots, f_n \in S_{Lip_0(M)}$ we can find a subspace $Y \subseteq Lip_0(M)$ so that

•
$$\|f_i + f\| > 2 - \varepsilon$$
 holds for every *i* and every $f \in S_Y$.

2 Y is isometric to c_0 .

Let $V_i := \{x \in M : ||f_i||_{B(x,\delta)} > 1 - \varepsilon \ \forall \delta > 0\}$, which is infinite. Take $\{x_n^i\} \subseteq V_i$ where all the points are different $(x_n^i \neq x_m^j \text{ if } (n, i) \neq (m, j))$. Given $n \in \mathbb{N}$ define g_n as we did in the previous proof.

Let $Lip_0(M)$ be octahedral. Given $f_1, \ldots, f_n \in S_{Lip_0(M)}$ we can find a subspace $Y \subseteq Lip_0(M)$ so that

•
$$\|f_i + f\| > 2 - \varepsilon$$
 holds for every *i* and every $f \in S_Y$.

2 Y is isometric to c_0 .

Let $V_i := \{x \in M : ||f_i||_{B(x,\delta)} > 1 - \varepsilon \ \forall \delta > 0\}$, which is infinite. Take $\{x_n^i\} \subseteq V_i$ where all the points are different $(x_n^i \neq x_m^j \text{ if } (n, i) \neq (m, j))$. Given $n \in \mathbb{N}$ define g_n as we did in the previous proof. It can be constructed so that g_n have pairwise disjoint support, so $\{g_n\}$ is isometric to c_0 (Kadets-Martín-Soloviova 2016).

Let $Lip_0(M)$ be octahedral. Given $f_1, \ldots, f_n \in S_{Lip_0(M)}$ we can find a subspace $Y \subseteq Lip_0(M)$ so that

•
$$\|f_i + f\| > 2 - \varepsilon$$
 holds for every *i* and every $f \in S_Y$.

2 Y is isometric to c_0 .

Let $V_i := \{x \in M : ||f_i||_{B(x,\delta)} > 1 - \varepsilon \ \forall \delta > 0\}$, which is infinite. Take $\{x_n^i\} \subseteq V_i$ where all the points are different $(x_n^i \neq x_m^j \text{ if } (n, i) \neq (m, j))$. Given $n \in \mathbb{N}$ define g_n as we did in the previous proof. It can be constructed so that g_n have pairwise disjoint support, so $\{g_n\}$ is isometric to c_0 (Kadets-Martín-Soloviova 2016). Condition 1 is computation.

Let *M* be a complete metric space and *X* be a Banach space. If $Lip_0(M)$ has octahedral norm, then $L(X, Lip_0(M))$ has octahedral norm.

Let T_1, \ldots, T_n norm-one operators in $L(X, \operatorname{Lip}_0(M))$.

Let *M* be a complete metric space and *X* be a Banach space. If $Lip_0(M)$ has octahedral norm, then $L(X, Lip_0(M))$ has octahedral norm.

Let T_1, \ldots, T_n norm-one operators in $L(X, \operatorname{Lip}_0(M))$. Find x_i so that $||T_i(x_i)|| > 1 - \varepsilon$ for every *i*. A perturbation argument and the lemma allows to find a subspace $Y \subseteq \operatorname{Lip}_0(M)$ so that

- Y isometric to c₀.
- $||T_i(x_i) + y|| \approx ||T_i(x_i)|| + ||y||$ for every $y \in Y$.

Let *M* be a complete metric space and *X* be a Banach space. If $Lip_0(M)$ has octahedral norm, then $L(X, Lip_0(M))$ has octahedral norm.

Let T_1, \ldots, T_n norm-one operators in $L(X, \operatorname{Lip}_0(M))$. Find x_i so that $||T_i(x_i)|| > 1 - \varepsilon$ for every *i*. A perturbation argument and the lemma allows to find a subspace $Y \subseteq \operatorname{Lip}_0(M)$ so that

- Y isometric to c₀.
- $||T_i(x_i) + y|| \approx ||T_i(x_i)|| + ||y||$ for every $y \in Y$.

It is sufficient to construct an operator $T : X \longrightarrow \text{Lip}_0(M)$ so that $||T(x_i)|| \approx 1$ and $T(x_i) \in Y$.

Let *M* be a complete metric space and *X* be a Banach space. If $Lip_0(M)$ has octahedral norm, then $L(X, Lip_0(M))$ has octahedral norm.

Let T_1, \ldots, T_n norm-one operators in $L(X, \operatorname{Lip}_0(M))$. Find x_i so that $||T_i(x_i)|| > 1 - \varepsilon$ for every *i*. A perturbation argument and the lemma allows to find a subspace $Y \subseteq \operatorname{Lip}_0(M)$ so that

• Y isometric to c₀.

•
$$||T_i(x_i) + y|| \approx ||T_i(x_i)|| + ||y||$$
 for every $y \in Y$.

It is sufficient to construct an operator $T : X \longrightarrow \operatorname{Lip}_0(M)$ so that $||T(x_i)|| \approx 1$ and $T(x_i) \in Y$. If so

$$||T + T_i|| \ge ||T(x_i) + T_i(x_i)|| \approx ||T(x_i)|| + ||T_i(x_i)|| \approx 2.$$

It is sufficient to construct an operator $T : X \longrightarrow \operatorname{Lip}_0(M)$ so that $||T(x_i)|| \approx 1$ and $T(x_i) \in Y$.

It is sufficient to construct an operator $T : X \longrightarrow \text{Lip}_0(M)$ so that $||T(x_i)|| \approx 1$ and $T(x_i) \in Y$. Take $Z := \text{span}\{x_1, \ldots, x_n\}$. Find a $(1 + \varepsilon)$ -isometry $\phi : Z \longrightarrow c_0$ (finite representability). It is sufficient to construct an operator $T : X \longrightarrow \text{Lip}_0(M)$ so that $||T(x_i)|| \approx 1$ and $T(x_i) \in Y$. Take $Z := \text{span}\{x_1, \ldots, x_n\}$. Find a $(1 + \varepsilon)$ -isometry $\phi : Z \longrightarrow c_0$ (finite representability).

Theorem (Lindenstrauss, 1964)

Given a Banach space X, TFAE:

- X^* is isometrically isomorphic to $L_1(\mu)$, for certain measure μ .
- 2 All $T : Z \longrightarrow X$ compact admits, for all $\varepsilon > 0$ and all $Z \subseteq Y$, a compact extension $\hat{T} : Y \longrightarrow X$ s.t. $\|\hat{T}\| \le (1 + \varepsilon)\|T\|$.

It is sufficient to construct an operator $T : X \longrightarrow \operatorname{Lip}_0(M)$ so that $||T(x_i)|| \approx 1$ and $T(x_i) \in Y$. Take $Z := \operatorname{span}\{x_1, \ldots, x_n\}$. Find a $(1 + \varepsilon)$ -isometry $\phi : Z \longrightarrow c_0$ (finite representability). Extend ϕ to $\Phi : X \longrightarrow c_0$ with $||\Phi|| \le (1 + \varepsilon)$ (c_0 is an L_1 -predual+Lindenstrauss). It is sufficient to construct an operator $T : X \longrightarrow \operatorname{Lip}_0(M)$ so that $||T(x_i)|| \approx 1$ and $T(x_i) \in Y$. Take $Z := \operatorname{span}\{x_1, \ldots, x_n\}$. Find a $(1 + \varepsilon)$ -isometry $\phi : Z \longrightarrow c_0$ (finite representability). Extend ϕ to $\Phi : X \longrightarrow c_0$ with $||\Phi|| \le (1 + \varepsilon)$ (c_0 is an L_1 -predual+Lindenstrauss). Define an isometry $\Psi : c_0 \longrightarrow Y$ and $i : Y \longrightarrow \operatorname{Lip}_0(M)$ the canonical embedding. Let

$$T: X \xrightarrow{\Phi} c_0 \xrightarrow{\Psi} Y \xrightarrow{i} \operatorname{Lip}_0(M).$$

It is sufficient to construct an operator $T : X \longrightarrow \operatorname{Lip}_0(M)$ so that $||T(x_i)|| \approx 1$ and $T(x_i) \in Y$. Take $Z := \operatorname{span}\{x_1, \ldots, x_n\}$. Find a $(1 + \varepsilon)$ -isometry $\phi : Z \longrightarrow c_0$ (finite representability). Extend ϕ to $\Phi : X \longrightarrow c_0$ with $||\Phi|| \le (1 + \varepsilon)$ (c_0 is an L_1 -predual+Lindenstrauss). Define an isometry $\Psi : c_0 \longrightarrow Y$ and $i : Y \longrightarrow \operatorname{Lip}_0(M)$ the canonical embedding. Let

$$T: X \xrightarrow{\Phi} c_0 \xrightarrow{\Psi} Y \xrightarrow{i} \operatorname{Lip}_0(M).$$

The norm is $\leq 1 + \varepsilon$.

It is sufficient to construct an operator $T : X \longrightarrow \operatorname{Lip}_0(M)$ so that $||T(x_i)|| \approx 1$ and $T(x_i) \in Y$. Take $Z := \operatorname{span}\{x_1, \ldots, x_n\}$. Find a $(1 + \varepsilon)$ -isometry $\phi : Z \longrightarrow c_0$ (finite representability). Extend ϕ to $\Phi : X \longrightarrow c_0$ with $||\Phi|| \le (1 + \varepsilon)$ (c_0 is an L_1 -predual+Lindenstrauss). Define an isometry $\Psi : c_0 \longrightarrow Y$ and $i : Y \longrightarrow \operatorname{Lip}_0(M)$ the canonical embedding. Let

$$T: X \xrightarrow{\Phi} c_0 \xrightarrow{\Psi} Y \xrightarrow{i} \operatorname{Lip}_0(M).$$

The norm is $\leq 1 + \varepsilon$. Moreover, T(X) is clearly included in Y. Finally $||T(x_i)|| = ||\Phi(x_i)|| \approx 1$, and we are done.

Let M be a complete metric space. TFAE:

Let M be a complete metric space. TFAE:

• Lip₀(M) is octahedral.

Let M be a complete metric space. TFAE:

- Lip₀(M) is octahedral.
- **2** *M* is length (d(x, y) length of rectifiable curves).

Let M be a complete metric space. TFAE:

- Lip₀(M) is octahedral.
- **2** *M* is length (d(x, y) length of rectifiable curves).
- Solution $\operatorname{Lip}_0(M, X^*)$ is octahedral for every Banach space X.

Let M be a complete metric space. TFAE:

- Lip₀(M) is octahedral.
- **2** *M* is length (d(x, y) length of rectifiable curves).
- Solution $\operatorname{Lip}_0(M, X^*)$ is octahedral for every Banach space X.

Question

Let *M* be a length space. Does $Lip_0(M, X)$ have the Daugavet property for every *X*?

Let M be a complete metric space. TFAE:

- Lip₀(M) is octahedral.
- **2** *M* is length (d(x, y) length of rectifiable curves).
- Solution $\operatorname{Lip}_0(M, X^*)$ is octahedral for every Banach space X.

Question

Let *M* be a length space. Does $Lip_0(M, X)$ have the Daugavet property for every *X*?

• The answer is YES if *M* is an injective Banach space or a Hilbert space.

Let M be a complete metric space. TFAE:

- Lip₀(M) is octahedral.
- **2** *M* is length (d(x, y) length of rectifiable curves).
- Solution $\operatorname{Lip}_0(M, X^*)$ is octahedral for every Banach space X.

Question

Let *M* be a length space. Does $Lip_0(M, X)$ have the Daugavet property for every *X*?

- The answer is YES if M is an injective Banach space or a Hilbert space.
- Output: The proof holds because *M* are good norm-preserving extensors of Lipschitz functions *N* ⊆ *M* → *M*.

Let M be a complete metric space. TFAE:

- Lip₀(M) is octahedral.
- **2** *M* is length (d(x, y) length of rectifiable curves).
- Solution $\operatorname{Lip}_0(M, X^*)$ is octahedral for every Banach space X.

Question

Let *M* be a length space. Does $Lip_0(M, X)$ have the Daugavet property for every *X*?

- The answer is YES if M is an injective Banach space or a Hilbert space.
- Output: The proof holds because *M* are good norm-preserving extensors of Lipschitz functions *N* ⊆ *M* → *M*.
- This is a task for another day ...
- A. Avilés and G. Martínez-Cervantes, *Complete metric spaces with property (Z) are length spaces*, J. Math. Anal. Appl. **473** (2019), 334–344.
- L. García-Lirola, A. Procházka and A. Rueda Zoca, A characterisation of the Daugavet property in spaces of Lipschitz functions, J. Math. Anal. Appl. 464, 1 (2018), 473–492.
- Y. Ivakhno, V. Kadets and D. Werner, *The Daugavet property in spaces of Lipschitz functions*, Math. Scand. **101** (2007), 109–118.
- J. Langemets and A. Rueda Zoca, *Octahedral norms in duals and biduals of Lipschitz-free spaces*, J. Funct. Anal. **279** (2020), article 108557.
- J. Lindenstrauss, *Extension of compact operators*, Mem. Amer. Math. Soc. **48** (1964).